首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了进一步优化封闭式循环水处理的系统工艺和运行参数,通过循环水养殖半滑舌鳎(Cynoglossus semilaevis)的试验手段,将循环水处理系统工艺中的臭氧投加位置进行前置与后置的比较分析,探讨臭氧工艺变化对半滑舌鳎循环水养殖系统水环境的影响.结果显示,养鱼池进水口化学需氧量(COD)浓度都随着氧化还原电位(ORP)的增加而降低,臭氧后置比前置COD浓度下降更快,在ORP达到356 mV时,COD浓度降低29.38%;养鱼池进水口的氨氮、亚硝酸氮浓度后置低于前置;随着臭氧添加浓度的增加,系统对COD、氨氮、亚硝酸氮的去除率都显著增加(P<0.05),且当达到356 mV时,后置时系统对COD、氨氮、亚硝酸氮的去除率达到最大分别为34.89%、50.63%、20.64%.结果表明臭氧最佳的投加位置在循环水处理工艺的后端,臭氧投加量控制在ORP指标350 mV时,对氨氮、亚硝酸氮的去除效果更具优势,并可清新水质,节省纯氧用量.  相似文献   

2.
臭氧对大菱鲆半封闭循环水养殖系统水质净化研究   总被引:2,自引:0,他引:2  
为设计构建一套半封闭循环水大菱鲆(Scophthalmus maximus)养殖系统,通过向低压喷淋式溶氧器添加一定量的臭氧,探讨臭氧对水质的改善作用.试验结果表明,添加臭氧后,系统能有效及时去除悬浮物,去除率约59%,将系统总悬浮物浓度基本控制在8 mg/L以下;能提高系统的增氧能力,平均每个循环可增加溶解氧约8.38 mg/L;通过向低压喷淋式溶氧器添加0.26 mg/L的臭氧,总氨氮去除率约为18%,亚硝酸盐氮去除率约为8%,杀菌率约为94%.在海水循环水养殖系统中,臭氧不但杀菌效果显著,而且对去除系统总悬浮物、总氨氮和亚硝酸盐氮效果良好.  相似文献   

3.
为了探讨臭氧对循环水系统养殖水体水质的净化效果及作用机理,开展3种不同臭氧投加量对水体中有机污染物和氨氮、亚硝酸盐等作用影响的试验,并在此基础上对净化机理进行分析。结果显示:臭氧优先与有机污染物发生反应,其次为亚硝酸盐,然后才是氧化氨氮;臭氧对有机物的去除是选择性的,优先降低UV_(254)和水色,对于COD和DOC处理效果不明显,但能显著提高养殖水的可生化性; 15 mg/L的臭氧投加量可取得较经济适宜的净化效果,对于UV_(254)、亚硝酸盐、水色、COD分别可降低73. 86%、92. 35%、37. 52%和16. 43%,并将DOC/UV_(254)比值升高到448. 86 (cm·mg)/L,显著提高养殖水的可生化性。研究表明:臭氧氧化技术在养殖水体净化处理中发挥了良好作用,针对不同情况选择适宜的臭氧投加量对于提高净化处理效率有重要意义。  相似文献   

4.
陈萍  王秀江 《齐鲁渔业》2006,23(4):17-18
以臭氧在大菱鲆亲鱼养殖回用水系统中的工程实例数据,分析臭氧在养殖水处理系统中的杀菌效果、脱除转化氨氮的效能。结果表明,臭氧在该工艺流程中杀菌率可达51.82%,对氨氮 亚硝酸氮的平均去除率达56.30%,这表明臭氧应用于工厂化养殖水处理中具有较好效果。  相似文献   

5.
为提高对虾养殖系统水质净化能力,改善对虾养殖水环境,利用3种微生态制剂(枯草芽孢杆菌、硝化细菌、光合细菌)和2种生物膜载体(陶粒、纤维毛球)建立4个南美白对虾(Penaeus vannamei)养殖系统,比较不同养殖系统硝化功能的建立过程及对氨氮和亚硝酸盐氮的净化能力,采用高通量测序方法分析细菌群落结构。结果表明,各系统硝化功能建立后,24 h氨氮去除率较初期分别提高12.47%、13.95%、17.25%和17.65%。以纤维毛球为载体,投加硝化细菌、枯草芽孢杆菌和光合细菌系统的氨氧化能力和亚硝酸盐氧化能力强于陶粒系统,24 h氨氮去除率分别高9.03%和9.06%。投放虾苗后,在30 d养殖周期内,各系统氨氮和亚硝酸盐氮含量分别维持在0.20 mg/L和0.15 mg/L以下,硝酸盐氮含量呈缓慢上升趋势。细菌群落结构分析表明,养殖系统生物膜中优势菌门均为变形菌门,占比超40%;优势菌纲为α-变形菌纲、β-变形菌纲、γ-变形菌纲,系统中存在Nitrosomonas、Nitrospira和Nitrococcus等多种参与水体净化以及Algisphaera、Gemmatimonas和Paucibacter等参与有机质分解与对虾益生作用的类群。本研究可为减少养殖水体废物排放及降低水生环境污染风险提供参考。  相似文献   

6.
冷水鱼循环水养殖中的低温氨氮处理技术研究   总被引:1,自引:0,他引:1  
为解决冷水鱼养殖过程中养殖水体中的氨氮累积问题,根据低温生物滤器及臭氧催化氧化处理氨氮的特点,设计了冷水鱼工厂化养殖氨氮处理系统并进行了试验。试验基于以臭氧氧化为主、低温生物处理为辅的处理工艺,试验鱼为虹鳟鱼,养殖密度为23 kg/m3,试验水体约为10 m3,试验周期为7 d。结果表明,该系统能够满足冷水鱼工厂化养殖过程中有关氨氮处理的水质指标要求,处理后的养殖池进水口的水质指标总氨氮≤0.18 mg/L,硝酸盐氮氮≤29.43 mg/L,亚硝酸盐氮氮≤0.1 mg/L;养殖水体氨氮浓度监测表明,臭氧在水中残留低于0.008 mg/L,符合养殖鱼类对水体臭氧浓度的安全要求。  相似文献   

7.
室内凡纳滨对虾工厂化养殖循环水调控技术与模式   总被引:13,自引:1,他引:12       下载免费PDF全文
利用臭氧仪、泡沫分离器和粗滤器等组成的循环水处理系统开展室内凡纳滨对虾工厂化养殖.养殖初始用水及在每次循环处理前的来自虾池的循环水,均置于消毒池以臭氧处理4 h、曝气2 h,初始水经处理细菌总数约杀灭99%,弧菌量小于1 cell·mL-1.试验期间,按4~6 d间隔,以水处理系统循环处理养殖水12 h,以去除氨氮、亚硝基氮、有机物、悬浮物与细菌等.养殖约60 d后,视水质监测结果增加粗滤和泡沫分离次数,并辅以生石灰水调节循环水pH.在128d全程养殖中,未用药和换水,水处理系统有效控制养殖水质指标在虾生长合适范围内,试验池各指标平均值为:浑浊度13.9 NTU,pH 8.08,氧化还原电位399 mV,NH3-Nt(NH3-Nm)0.267(0.015)mg·L-1.,NO2--N 0.203 mg·L-1,CODMn10.34 mg·L-1.同时获得良好的养殖效果:收获虾平均体重13.56 g,成活率59.6%,单位水体产量4.27 k·m-3,饵料系数1.01.据试验结果与凡纳滨对虾养殖特点,提出了虾类室内工厂化养殖循环水调控模式.  相似文献   

8.
采用循环水养殖系统实现养殖用水的重复利用并进行封闭式生产,被认为是一种环境友好的水产品获取方式。自养硝化过程将氨氮经由亚硝酸盐氮转化成硝酸盐氮,是目前封闭式循环水养殖系统中最普遍的一种氨氮控制途径。固定膜式生物过滤器为硝化细菌提供附着基面,形成生物膜,是常用的自养硝化实现方式,也是循环水养殖系统核心的水处理单元。可根据生物膜载体与水流的接触方式或载体流经滤器的水体中的位置分为几种类型。本文综述了滴滤式、浸没式、流化床、移动床等循环水养殖系统中较常用的几种生物过滤器,分析其优缺点并进行比较,同时结合具体案例进行生物过滤器的设计举例,为循环水养殖系统的构建提供参考。  相似文献   

9.
生物过滤技术是循环水养殖系统中很关键的水处理技术,选择合适的滤料在很大程度上决定着生物过滤效果的好坏和循环水养殖系统能否正常运行。本次试验对一种新型悬浮式滤料在循环水高密度养殖系统中的水处理能力进行了研究,结果表明:(1)该滤料的挂膜性能好,挂膜时间短,且生物膜状态稳定;(2)该滤料的生物过滤能力好,具有较高的氨氮去除率和氨氮负荷,最高分别为57.5%和182.9 g/(m~3·d);其亚硝酸盐去除率平均为45.4%。  相似文献   

10.
硝化细菌对海参养殖系统水质的净化效果   总被引:1,自引:0,他引:1  
氨和亚硝酸盐对海洋生物有强烈的毒害作用,是海水养殖系统的主要污染物。本文研究硝化细菌制剂对海参养殖系统水质的净化效果。结果表明:硝化细菌对养殖系统水质有明显的净化效果。投加菌剂的实验组氨氮和亚硝酸盐氮出现峰值的时间和对照组相比明显缩短,表明投加硝化细菌制剂后,养殖系统内的氨氧化细菌、亚硝酸盐氧化细菌可在短时间内形成优势,促进了氨和亚硝酸盐的进一步转化。对照组氨氧化细菌和亚硝酸盐氧化细菌需要较长的时间才形成优势,从而导致氨氮和亚硝酸盐氮的积累。观察实验过程中海参的生长情况发现,实验组海参生长状况良好,而对照组中海参在19d时全部死亡。  相似文献   

11.
循环海水养殖系统硝化滤器中氨氧化微生物分析   总被引:2,自引:0,他引:2  
研究循环水养殖硝化滤器载体上附着生物膜的微生物群落结构可以为提高其处理速率和效率,并为特异性工程菌构建提供依据。采用改良的AFLP方法分析了循环水养殖硝化滤器载体上附着的氨氧化细菌16S rRNA基因和氨单加氧酶amoA基因片段及其系统发育情况。结果表明:分析16S rRNA基因得到的序列片段比分析amoA基因片段得到了更多信息,准确度较高,可作为分析循环水养殖硝化滤器氨氧化菌群组成的有效方法。克隆测序所得序列与网上公布数据比对,可见存在于循环水养殖硝化滤器载体上的氨氧化细菌与Nitrosomonas cryotolerans、Nitrosomonas oligotropha、Nitrosospira tenuis、Nitrosomonas marina相似度达100%,与Nitrosomonas aestuarii相似度为87%。大部分属于亚硝化单胞菌属(Nitrosomonas),仅少数序列属于亚硝化螺菌属(Nitrosospira)。采用16S rRNA基因和amoA片段分析方法得到的附着于封闭循环海水养殖硝化滤器载体上的氨氧化细菌主要为变形菌(Proteobacteria)的β-亚类的亚硝化单胞菌属(Nitrosomonas)和少量的亚硝化螺菌属(Nitrosospira)氨氧化细菌,以及一定数量的γ-亚类氨氧化细菌。  相似文献   

12.
利用自制的硝化细菌菌剂促进移动床生物膜反应器(Moving bed biofilm reactor,MBBR)的挂膜启动,分析不同载体氨氮负荷、碳氮比条件下反应器运行状况,并进一步进行了实验室模拟循环水养殖草金鱼实验。结果显示,利用自制硝化菌剂能够完成整个移动床反应器的启动过程,在接种15 d后使循环出水氨氮稳定在1 mg/L以下。单位体积载体氨氮负荷实验表明,MBBR能够在100 mg TAN/(L填料·d)条件下,使出水满足一般水产养殖水质要求(氨氮0.5 mg/L,亚硝氮0.1 mg/L)。进水碳氮比在1以内时MBBR能够稳定高效运行。在实验室模拟循环水养殖过程中,经菌剂强化的MBBR能维持循环出水氨氮低于0.5 mg/L,亚硝氮低于0.05 mg/L。  相似文献   

13.
The aim of this study was to evaluate variability of nitrifying bacterial community in the biofilm and in the water of a recirculating aquaculture systems (RAS) in a tilapia farming in order to determine if nitrification process is dependent, or not, of nitrifying bacteria abundance. Biofilm and water samples were collected periodically for 30 days and analysed with the fluorescent in situ hybridization (FISH) technique, used to quantify ammonia‐oxidizing bacteria (AOB) and nitrite‐oxidizing bacteria (NOB). Ammonia presented the peak in the first week, while the nitrite's maximum was recorded in the second week. Nitrate increased steadily, indicating nitrification activity. Total bacterial abundance in biofilm increased continuously, while in water, it did not change significantly. In the biofilm, number of AOB was high at beginning, decreased after few days and increased again following augment of ammonia. Number of NOB also showed an increase in abundance in biofilm following the increment of nitrite and nitrate. In water, AOB and NOB did not show major variability. Relative abundance of nitrifying bacteria represented more than 30% of total bacteria in biofilm at beginning of the experiment. Their contribution decreased to >3% in last days. It indicates that nitrifying bacteria are biofilm colonizers, and that their activity seems to be directly related to the concentration of nitrogen compounds. However, contribution of nitrifying bacteria did not vary much along the time. We may conclude that the biofilm‐nitrifying bacteria plays major role in nitrification process in RAS and that the activity of these organisms is dependent of their abundance in response to the concentration of nitrogen compounds.  相似文献   

14.
The high levels of water-reuse in intensive recirculating aquaculture systems (RAS) require an effective water treatment in order to maintain good water quality. In order to reveal the potential and limitations of ozonation for water quality improvement in marine RAS, we tested ozone's ability to remove nitrite, ammonia, yellow substances and total bacterial biomass in seawater, considering aspects such as efficiency, pH-dependency as well as the formation of toxic ozone-produced oxidants (OPO). Our results demonstrate that ozone can be efficiently utilized to simultaneously remove nitrite and yellow substances from process water in RAS without risking the formation of toxic OPO concentrations. Contemporaneously, an effective reduction of bacterial biomass was achieved by ozonation in combination with foam fractionation. In contrast, ammonia is not oxidized by ozone so long as nitrite and yellow substances are present in the water, as the dominant reaction of the ozone-based ammonia-oxidation in seawater requires the previous formation of OPO as intermediates. The oxidation of ammonia in seawater by ozone is basically a bromide-catalyzed reaction with nitrogen gas as end product, enabling an almost complete removal of ammonia-nitrogen from the aquaculture system. Results further show that pH has no effect on the ozone-based ammonia oxidation in seawater. Unlike in freshwater, an effective removal of ammonia even at pH-values as low as 6.5 has been shown to be feasible in seawater. However, as the predominant reaction pathway involves an initial accumulation of OPO to toxic amounts, we consider the ozone-based removal of ammonia in marine RAS as risky for animal health and economically unviable.  相似文献   

15.
Florfenicol (Aquaflor®) is the only U.S. Food and Drug Administration (FDA) approved drug for treating diseased fish reared in recirculating aquaculture systems (RAS). Treating diseased fish in RAS is challenging because of the potential to damage nitrifying bacteria in the biofilters. Impaired nitrification can lead to concentrations of ammonia and nitrite that compromise fish welfare. The objective of this study was to determine the effects of a FDA‐approved parasiticide and fungicide, Parasite‐S® (formalin), on biofilter nitrification. Stable biofilters were exposed once to 0, 9.25, 18.5, 37, or 55.5 mg/L formaldehyde. Total ammonia nitrogen (TAN) and nitrite nitrogen were monitored daily before and throughout the study to quantify biofilter function. Formaldehyde concentrations ≥37 mg/L increased TAN and nitrite nitrogen concentrations, and nitrification did not recover to pre‐exposure concentrations up to 8 day postexposure. On the basis of those results, a second trial was conducted. Stable biofilters were exposed once or on four consecutive days to 9.25 or 18.5 mg/L formaldehyde. Biofilters repeatedly exposed to formaldehyde showed signs of impairment and had variable recovery relative to single exposures. Results of this study may help identify formaldehyde concentrations that can be safely applied to RAS when treating diseased fish.  相似文献   

16.
Intensive recirculating aquaculture relies on biofilters to sustain satisfactory water quality in the system. Fluidized bed and immobilized cell technologies were used to remove ammonia from the water and maintain fish health. A high‐rate nitrifying fluidized bed biofilter combined with valveless filter was designed for use in a recirculation aquaculture system (RAS). The suspended solids produced during fish culture could automatically be removed using a valveless filter. Natural porosity with fitting proportion, steady fluidization and expanding rate was chosen as the fluidized carrier. The technology of bacterial separation and cultivation was used. The immobilized Rhodopseudomonas palustris (R. palustris) produced through a biotechnologically embedding medium is suitable for fish and could help prevent diseases. Nitrification was promoted through the selective rearing of nitrobacteria in a fluidized bed biofilter. Water quality was improved using fluidized bed biofilter and immobilized R. palustris in the RAS. In addition, the proposed system was able to reduce costs. Maximum fish load was 45 ± 3 kg m?3 in the closed recirculating water fish culture system, and water use was reduced by 80–90%. The total ammonia nitrogen removal rate of the technology was 80–95%, and nitrite N removal rate was above 80%.  相似文献   

17.
为了建立优化的循环海水养殖系统,采用水质国标检测方法分析了珊瑚石生物滤池在不同氨氮和溶解氧(DO)负荷实验条件下对养殖废水中氨氮、化学耗氧量(COD)及颗粒悬浮物(SS)的处理效果。结果显示,进水氨氮浓度对出水氨氮(正相关)、COD(正相关)均有极显著的影响(P0.01),对SS处理效果影响不显著。当进水氨氮浓度为0.45~0.65 mg/L时,滤池对水体处理效果最优(氨氮平均清除率为82.1%±3.3%;COD平均清除率为7.1%±1.5%;SS平均清除率为5.8%±1.6%)。DO浓度对水体氨氮(负相关)和COD(负相关)处理效果的影响显著(P0.05),对SS处理效果影响不显著。DO浓度为5.0~7.0 mg/L时,水体处理效果最优(氨氮平均清除率为78.7%±3.5%;COD平均清除率为23.0%±5.3%;SS平均清除率为7.1%±2.0%)。因此,本实验环境下的循环海水养殖系统珊瑚石生物滤池在氨氮浓度为0.45~0.65 mg/L,DO浓度为5.0~7.0 mg/L时,对水体中的氨氮、COD、SS的综合处理效果最优。  相似文献   

18.
From an environmental point of view, hydrogen peroxide (HP) has beneficial attributes compared with other disinfectants in terms of its ready degradation and neutral by‐products. The rapid degradation of HP can, however, cause difficulties with regard to safe and efficient water treatment when applied in different systems. In this study, we investigated the degradation kinetics of HP in biofilters from water recirculating aquaculture systems (RAS). The potential effect of HP on the nitrification process in the biofilters was also examined. Biofilter elements from two different pilot‐scale RAS were exposed to various HP treatments in batch experiments, and the HP concentration was found to follow an exponential decay. The biofilter ammonia and nitrite oxidation processes showed quick recuperation after exposure to a single dose of HP up to 30 mg L?1. An average HP concentration of 10–13 mg L?1 maintained over 3 h had a moderate inhibitory effect on the biofilter elements from one of the RAS with relatively high organic loading, while the nitrification was severely inhibited in the pilot‐scale biofilters from the other RAS with a relatively low organic loading. A pilot‐scale RAS, equipped with two biofilter units, both a moving‐bed (Biomedia) and a fixed‐bed (BIO‐BLOK®) biofilter, was subjected to an average HP concentration of ~12 mg L?1 for 3 h. The ammonium‐ and nitrite‐degrading efficiencies of both the Biomedia and the BIO‐BLOK® filters were drastically reduced. The filters had not reverted to pre‐HP exposure efficiency after 24 h, suggesting a possible long‐term impact on the biofilters.  相似文献   

19.
The effluents of traditional shrimp monoculture cause pollution and promote eutrophication and hypernutrification of the receiving coastal ecosystems. Integrated aquaculture and a recirculating aquaculture system (RAS) have been proposed as an alternative to address these problems. In this study, we developed a dynamic model to simulate the concentration of total ammonia nitrogen (TAN), nitrite, and nitrate in an integrated culture of whiteleg shrimp, Litopenaeus vannamei, and seaweed, Gracilaria vermiculophylla, in a recirculating and zero water exchange system, and the effect of nitrifying and heterotrophic bacteria was also included. The experiments demonstrated that a dynamic model can explain the concentrations of dissolved inorganic nitrogen and variations in these concentrations over time in the integrated culture. The results also suggest that nitrifying and heterotrophic bacteria play an important role in the transformation of dissolved nitrogenous compounds; therefore, these bacteria should be considered within the dynamics of nitrogen in integrated systems with low water exchange.  相似文献   

20.
In marine recirculating aquaculture systems (RAS) ozone is often used in combination with biofiltration for the improvement of process water quality. Especially for disinfection purposes ozone residuals are required, that lead to a fast formation of secondary oxidants in seawater, summed up as ozone-produced oxidants (OPO). We studied the impact of OPO on nitrifying biofilter bacteria in a series of laboratory batch experiments by exposing (i) cell suspensions of the ammonia-oxidizing bacteria (AOB) Nitrosomonas marina strain 22 and the nitrite-oxidizing bacteria (NOB) Nitrospira strain Ecomares 2.1, (ii) a pure culture of the NOB Nitrospira strain immobilized on biocarriers, as well as (iii) a heterogeneous biofilm culture settled on biocarriers from a marine RAS for 1 h to different OPO concentrations up to 0.6 mg/l chlorine equivalent. Subsequent activity tests detected a negative linear correlation between OPO concentration and nitrifying activity of suspended pure cultures. Immobilization on biocarriers increased the tolerance of AOB and NOB dramatically, suggesting the biofilm matrix to be highly protective against OPO. Furthermore, we investigated the chronic effect of moderate ozonation at OPO concentrations of 0, 0.05, 0.10 and 0.15 mg/l chlorine equivalent on biofilter performance in a 21 d exposure experiment using 12 experimental RAS, stocked with tilapia (Oreochromis niloticus). Chronic exposure experiments could not reveal any harmful impact on biofilter performance for OPO concentrations up to 0.15 mg/l, even at continuous exposure. Surprisingly, nitrifying activity was enhanced at all OPO concentrations compared to the control without ozonation, suggesting moderate ozonation to promote biological nitrification. It can be concluded that rather health, welfare and performance of most cultivated fish species are the limiting factors for ozone dosage than nitrification performance of biofilters. The results may further have practical implications in relation to design and operational strategy of water treatment processes in RAS and might thus contribute to the optimization of an effective and safe treatment combination of biofiltration and ozonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号