首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
牙鲆遗传作图及生长性状QTL定位   总被引:3,自引:1,他引:2  
采用牙鲆日本群体和韩国群体杂交的92个F1个体作为分离群体, 利用微卫星标记和Joinmap 4.0作图软件构建了牙鲆遗传连锁图谱。共有221个SSR标记用于连锁图谱构建, 雌性图谱中, 共178个微卫星标记定位到22个连锁群上, 观测总长度为(G oa )599.0 cM, 覆盖率(C oa )达76.27%。雄性图谱中, 共194个微卫星标记定位到23个连锁群上, G oa 为693.4 cM, C oa 为78.82%。对全长、体质量、体高3组数据进行主成分分析处理, 得到可解释3个性状的89.6%特征的一组数据, 命名为牙鲆生长性状GT。用WinQTLCart 2.5软件的复合区间作图,在已构建的遗传连锁图谱上对牙鲆生长性状GT进行QTL定位, 取LOD经验值2.5为QTL存在的阈值; 对微卫星标记进行性状—标记之间的回归分析。本研究共定位3个与牙鲆生长性状GT相关的QTLs, qGT-f4 qGT-m20 qGT-f20,可解释表型变异率分别为27.60%, 13.74%, 10.27%。在性状—标记之间的回归分析中, 得到22个与生长性状GT相关(P<0.05)的微卫星标记, 单个标记可解释表型变异率介于3.70%~10.42%, 其中6个微卫星标记scaffold558_51720、scaffold558_26183、scaffold903_69232、scaffold485_47120 、scaffold1262_77386、scaffold809_65154与生长性状GT之间呈极显著相关(P><0.01), 可解释表型变异率分别为10.42%、7.31%、10.07%、10.07%、8.39%和11.26%。  相似文献   

2.
本研究以长牡蛎(Crassostrea gigas)F1全同胞家系为作图群体,在已构建的基于120个微卫星和66个SNP标记的长牡蛎性别平均连锁图谱上,利用PROC QTL 2.0软件对出肉率和壳形(壳宽和壳深)性状进行QTL定位分析。结果表明,共检测到13个相关的QTL,分布在3个连锁群上;其中,与出肉率相关的4个QTL定位在1号和3号连锁群上(LG1和LG3),表型解释率为0.25%~47.53%;与壳宽相关的3个QTL定位在10号连锁群上(LG10),表型解释率为0.71%~45.39%;与壳深相关的6个QTL也定位在LG10,表型解释率为3.37%~24.78%。根据QTL连锁群分析和性状相关性分析结果可以推测,出肉率与糖原含量性状以及壳宽与壳深性状分别具有相近的遗传特征,利用与相关性状共同关联的分子标记可以同时对出肉率与糖原含量性状、壳宽与壳深性状进行遗传改良。本研究结果为今后长牡蛎相关性状候选基因克隆和分子标记辅助育种提供了参考。  相似文献   

3.
黄颡鱼遗传图谱构建及生长相关性状的QTL定位   总被引:2,自引:0,他引:2  
以野生(♂)和人工养殖(♀)黄颡鱼杂交的100个F1个体为作图群体,用SSR、SRAP和TRAP3种DNA分子标记技术构建黄颡鱼的遗传连锁图谱。图谱整合了13个SSR标记,89个SRAP标记,26个TRAP标记。其中雌性框架图谱包括16个连锁群,图谱的长度为585.5cM;雄性框架图谱包括15个连锁群,图谱的长度为752.3cM;共享框架图谱包括5个连锁群,图谱的长度为231.3cM。用该连锁图谱对黄颡鱼的5个生长相关性状进行QTL扫描,在雌性图谱上检测到1个头宽的QTL,定位于第七连锁群上,LOD值为3.2,可解释的表型变异为13%。在雄性图谱上分别检测到1个体高和体长的QTL,均定位于第一连锁群上。体高QTL的LOD值为2.4,可解释的表型变异为12%。全长QTL的LOD值为2.1,可解释的表型变异为11%。3个QTL均可用于黄颡鱼的生长性状的标记辅助育种。  相似文献   

4.
为挖掘镜鲤头长及头长体长比性状的主效QTL区间,实验利用368个SSR、336个SNP标记对镜鲤良种后代杂交F1群体的68个个体进行基因型检测,运用JoinMap 4.0软件包构建遗传连锁图谱。该图谱包含535个分子标记并被分配到50个连锁群上,覆盖基因组总长度为2 244.66 cM,标记间平均距离为4.63 cM。利用MapQTL 5.0(interval mapping,IM)区间作图法进行QTL检测。结果显示,共得到2个与头长相关的QTL区间,分别分布在LG21和LG42,可解释型变异分别为28.2%、32.6%;6个与头长体长比性状相关的QTL位于LG8、LG15、LG18、LG21、LG39、LG40,可解释表型变异范围是16.4%~49.3%。全部QTL区间中贡献率大于20%的主效QTL有7个,HL-21和HL-42是头长性状的主效区间;HBR-8、HBR-15、HBR-21、HBR-39和HBR-40是头长体长比性状的主效QTL区间。利用SPSS的一般线性模型(GLM)针对另一群体进行验证,结果表明HLJ692与镜鲤头长体长比显著相关。  相似文献   

5.
牙鲆身体纵轴生长相关性状QTL定位   总被引:1,自引:1,他引:0  
以经紫外线灭活的真鲷(Pagrosomus major)精子作为异源精子,诱导牙鲆(Paralichthys olivaceus)卵子进行有丝分裂雌核发育,通过静水压方法获得165个双单倍体作为实验材料.测量牙鲆身体纵轴6个生长相关性状(体长、头长、背鳍基长、腹鳍基长、尾柄长和尾长),并用SPSS 19.0对其进行正态分布及相关性分析.运用MapQTL4.0中多座位QTL 模型(MQM)对控制6个性状的QTL进行定位及遗传效应分析.结果表明,所检测6个性状均符合正态分布,并且相互之间呈极显著相关(P<0.01).在全部24个连锁群上检测到22个控制相关性状的QTL,分布在10个连锁群上.其中与体长相关的QTL有4个,头长相关的QTL为3个,控制背鳍基长的QTL为4个,与腹鳍基长相关的QTL为3个,与尾柄长相关QTL 7个,控制尾长的QTL仅有1个.各QTLs的LOD 值在2.01~3.68之间,可解释3.7%~12.6%的表型变异.控制体长和尾长的 QTL存在共定位,控制体长的 QTL 还与控制背鳍基长及腹鳍基长的QTL存在共定位.本研究结果可为今后进一步辅助育种和改良性状提供参考.  相似文献   

6.
利用基因组测序得到的大量微卫星序列,以681383B为父本、6812E36为母本杂交获得的F1为作图群体,构建了牙鲆(Paralichthys olivaceus)微卫星标记(SSR)遗传连锁图谱。雌雄图谱共定位SSR标记529个,其中雄性连锁图谱包括418个标记,分布在24个连锁群上,总长度1 418.1 cM,标记平均间隔3.62 cM,图谱覆盖率为88.7%;雌性连锁图谱包括437个标记,分布在24个连锁群上,总长度1 298.1 cM,标记平均间隔为3.16 cM,图谱覆盖率为89.1%。牙鲆中密度遗传图谱的构建为QTL分析以及分子标记辅助育种进一步奠定基础,并可以有效推动牙鲆的遗传改良工作,推动牙鲆养殖业的可持续发展。  相似文献   

7.
半滑舌鳎微卫星标记遗传连锁图谱的构建   总被引:1,自引:1,他引:0  
利用全基因组测序方法筛选出微卫星标记,以渤海近海野生个体和人工养殖的半滑舌鳎(Cynoglossus semi-laevis)为亲本交配产生的F1全同胞家系为作图群体,构建了半滑舌鳎雌、雄微卫星标记遗传连锁图谱。用320对引物对父母本和92个F1个体进行遗传分析,共得到288个分离标记,其中包含112个偏分离标记(P<0.05)。其中雌性框架图包含242个标记,分布在21个连锁群上,总长度1 311.9 cM,标记间平均距离为4.9 cM,图谱覆盖率为83.3%;雄性框架图定位标记218个,21个连锁群,总长度1 316.2 cM,标记间平均距离为5.5 cM,覆盖率为82%。半滑舌鳎遗传连锁图谱的构建为半滑舌鳎重要经济性状QTL定位、分子标记辅助育种和性别控制奠定了重要基础。  相似文献   

8.
利用992个微卫星标记检测了德国镜鲤(Cyprinus carpio)F1代190个个体基因组DNA进行基因型检测,共组成51个连锁群,覆盖基因组总长度为5138.2cM,标记间平均距离为5.19cM;利用软件MapQTL 6.0采用区间作图法对酸性磷酸酶性状进行数量性状基因座(QTL)定位分析。研究结果共检测到9个与酸性磷酸酶有关的QTLs,分布于8个连锁群。其中LG24连锁群LOD值最大(5.37),位于LG24连锁群,最大的可解释表型变异为13.8%。通过BLAST与斑马鱼进行序列比对,找到了与斑马鱼富含亮氨酸重复蛋白、横跨膜蛋白50a、ADP核糖化因子和细胞因子受体家族b8同源的分子标记。本研究结果对鲤鱼分子标记辅助育种和疾病调控具有重要应用价值。  相似文献   

9.
为了克服单个家系数量性状位点(QTL)检测效率低、假阳性高等缺点,实验利用250对微卫星(SSR)标记对镜鲤8个全同胞家系的522尾子代进行基因组扫描,采用半同胞家系的分析策略对镜鲤体长(SL)和体质量(BW)性状进行QTL分析。结果显示,基于父系的QTL分析,共检测到4个QTL区间,其中,3个体长的QTL中,1个为95%基因组水平(genome-wide)显著性,位于LG24,可解释表型变异率为20.3%;其余2个均为95%染色体水平(chromosome-wide)显著性,分别位于LG6和LG30,可解释表型变异率分别为11.9%和11.6%。1个体质量的QTL达到99%基因组水平,位于LG24,可解释表型变异率达到38.3%,且与体长QTL区间重叠。基于母系的QTL分析,共检测到8个QTL区间,其中,5个体长的QTL中,1个为99%染色体水平,位于LG8,可解释表型变异率为16.6%;其余4个均为95%染色体水平,分别位于LG24、LG30、LG31和LG45,可解释表型变异率为9.6%~14.2%,且位于LG24和LG30上的QTL为父母本共有;3个体质量的QTL均与体长QTL区间重叠,1个为95%染色体水平,位于LG24,其余2个均为99%染色体水平,位于LG30和LG45,可解释表型变异率分别为14.1%和13.6%。进一步分析发现,位于LG24上的体长和体质量QTL区间重叠且均为父母本共有,体质量的3个QTL均与体长QTL存在重叠区域且呈现成簇分布的特点。本研究结果不仅可以为鲤分子育种提供更可靠的标记,而且为家系和品种间QTL变异规律的探索提供基础数据。  相似文献   

10.
鲤头长、体厚、体高性状的QTL定位及遗传效应分析   总被引:2,自引:2,他引:0  
用174个SSR、41个EST、345个SNP标记对以镜鲤良种后代为祖父母本所培育的杂交F2群体的68个个体进行基因型检测,运用JoinMap4.0软件包构建遗传连锁图。利用MapQTL5.0区间作图法(interval mapping,IM)和多QTL区间定位法(MQM mapping,MQM)进行QTL检测,通过置换实验(1000次重复)确定连锁群显著性水平阈值。在对体高、头长、体厚的区间定位中,共检测到6个与体高性状相关的QTLs区间,分布在LG1(SNP1339-SNP1490)、LG10(HLJE469-SNP1491)、LG12(SNP0922-HLJ1316)、LG13(SNP0937-HLJ328)、LG25(SNP1041-HLJ594)、LG35(SNP1425-SNP0389)等6个连锁群上,解释表型变异范围为20.0%~43.3%。其中,SNP1339-SNP1490区间LOD值最大为3.64,解释表型变异35.4%。6个与头长相关的QTLs,分布在LG1(SNP1339-SNP1490)、LG12(HLJ071-HLJ336)、LG13(SNP0937-HLJ328)、LG24(SN...  相似文献   

11.
The locations and effects of quantitative trait loci (QTL) were estimated for nine characters for growth‐related traits in the Pacific abalone (Haliotis discus hannai Ino) using a randomly amplified polymorphic DNA (RAPD), amplification fragment length polymorphism (AFLP) and SSR genetic linkage map. Twenty‐eight putatively significant QTLs (LOD>2.4) were detected for nine traits (shell length, shell width, total weight, shell weight, weight of soft part, muscle weight, gonad and digestive gland weight, mantle weight and gill weight). The percentage of phenotypic variation explained by a single QTL ranged from 8.0% to 35.9%. The significant correlations (P<0.001) were found among all the growth‐related traits, and Pearson's correlation coefficients were more than 0.81. For the female map, the QTL for growth were concentrated on groups 1 and 4 linkage maps. On the male map, the QTL that influenced growth‐related traits gathered on the groups 1 and 9 linkage maps. Genetic linkage map construction and QTL analysis for growth‐related traits are the basis for the marker‐assisted selection and will eventually improve production and quality of the Pacific abalone.  相似文献   

12.
Pacific bluefin tuna (Thunnus orientalis) has high market value, but its wild populations have decreased in recent years. The broodstock of Pacific bluefin tuna that were hatched artificially and reared under aquaculture conditions is beginning to be used for production. The creation of broodstock with commercially valuable traits, such as rapid growth, is therefore of great interest. Genetic linkage map‐based identification of markers associated with quantitative trait loci (QTLs) facilitates marker‐assisted selection (MAS) breeding and allows efficient genetic improvement of broodstock. Single nucleotide polymorphism (SNP)‐based genetic linkage map construction using the genotyping‐by‐sequencing method can expand the number of mapped markers and help identify growth‐related QTLs. In this study, we constructed sex‐specific maps for 24 linkage groups consisting of 677 SNP and 651 microsatellite markers. The total lengths of 93 progenies in the mapping population followed normal distribution, with an average length of 9.4 mm. We performed composite interval mapping in the mapping population. QTL analysis revealed one significant QTL in LG10 on the female linkage map. The genetic linkage map—the second such map generated for Pacific bluefin tuna—and the growth‐related QTLs detected in this study will be useful for tuna aquaculture MAS programs.  相似文献   

13.
Genetic linkage maps were constructed for bluegill sunfish, Lepomis macrochirus, using AFLP in a F1 inter-population hybrid family based on a double-pseudo testcross strategy. Sixty-four primer combinations produced 4,010 loci, of which 222 maternal loci and 216 paternal loci segregated at a 1:1 Mendelian ratio, respectively. The female and male framework maps consisted of 176 and 177 markers ordered into 31 and 33 genetic linkage groups, spanning 1628.2 and 1525.3 cM, with an average marker spacing of 10.71 and 10.59 cM, respectively. Genome coverage was estimated to be 69.5 and 69.3% for the female and male framework maps, respectively. On the maternal genetic linkage map, the maximum length and marker number of the linkage groups were 122.9 cM and 14, respectively. For the paternal map, the maximum length and marker number of the linkage groups were 345.3 cM and 19, respectively, which were much greater than those on the maternal genetic linkage map. The other genetic linkage map parameters of the paternal genetic linkage map were similar to those in the maternal genetic linkage map. For both the female and male maps, the number of linkage groups was greater than the haploid chromosome number of bluegill (2n = 48), indicating some linkage groups may distribute on the same chromosome. This genetic linkage mapping is the first step toward to the QTL mapping of traits important to cultured breeding in bluegill.  相似文献   

14.
Growth‐related traits are the main target of genetic breeding programmes in grouper aquaculture. We constructed genetic linkage maps for tiger grouper (Epinephelus fuscoguttatus) and giant grouper (E. lanceolatus) using 399 simple sequence repeat markers and performed a quantitative trait locus (QTL) analysis to identify the genomic regions responsible for growth‐related traits in F1 hybrid grouper (E. fuscoguttatus × E. lanceolatus). The tiger grouper (female) linkage map contained 330 markers assigned to 24 linkage groups (LGs) and spanned 1,202.0 cM. The giant grouper (male) linkage map contained 231 markers distributed in 24 LGs and spanned 953.7 cM. Six QTLs affecting growth‐related traits with 5% genome‐wide significance were detected on different LGs. Four QTLs were identified for total length and body weight on Efu_LG8, 10, 13 and 19 on the tiger grouper map, which explained 6.6%–12.0% of the phenotypic variance. An epistatic QTL with a reciprocal association was observed between Efu_LG8 and 10. Two QTLs were identified for body weight on Ela_LG3 and 10 on the giant grouper map, which explained 6.9% of the phenotypic variance. Two‐way analysis of variance indicated that the QTL on Efu_LG13 interacts with the QTLs on Ela_LG3 and 10 with large effects on body weight. Furthermore, these six QTLs showed different features among the winter, summer and rainy seasons, suggesting that environmental factors and fish age affected these QTLs. These findings will be useful to understand the genetic structure of growth and conduct genetic breeding in grouper species.  相似文献   

15.
应用SSR和SRAP标记构建青虾遗传连锁图谱   总被引:4,自引:0,他引:4  
采用SSR和SRAP标记结合拟测交策略构建青虾(Macrobrachium nipponense)遗传连锁图谱。共有175个标记(含27个SSR、148个SRAP标记)分布在53个连锁群上。每个连锁群含2~8个标记,其中不少于3个标记的连锁群有35个,连锁对18个,平均每个连锁群的标记数为3.3个;连锁群长度在6.7~91.2 cM之间,相邻标记间最大间隔为49.0 cM,最小为1.4 cM,平均间隔为13.1 cM。青虾框架图谱长度为997.2 cM,图谱观察总长度为2 270.5cM,根据估算,青虾遗传连锁图谱预期长度为4 380.6 cM,图谱的覆盖率为51.83%。本研究构建了青虾遗传连锁图谱,该图谱也是淡水虾蟹类第一张遗传连锁图谱,可为青虾QTL定位、基因克隆、遗传选育等提供指导,并为进一步构建高密度的青虾遗传连锁图谱奠定了基础。  相似文献   

16.
This paper presents the genetic linkage map of the Chinese shrimp Penaeus (Fenneropenaeus) chinensis constructed with 472 AFLP markers. A hundred F1 progeny from an intercross between a female from the new variety “Yellow Sea No. 1” and wild caught male used for the mapping study. Two separate maps were constructed for each parent. The female linkage map consisted of 197 marker loci forming 35 linkage groups and spanned a total length of 2191.1 cM, with an average marker space of 13.5 cM. The male map consisted of 194 marker loci mapped to 36 linkage groups and spanned a total length of 1737.3 cM, with an average marker spacing of 11.0 cM. The level of segregation distortion observed in this study was 12.2%. The estimated genome length of P. chinensis was 3150.3 cM for the female and 2549.3 cM for the male, respectively. The observed genome coverage was 69.6% for the female and 68.1% for the male map. The linkage maps constructed in this study provide basic information for further linkage studies on Chinese shrimp, and more importantly, the construction of the maps are part of the work of the genetic breeding programs which will be used for growth discovered in the QTL analysis of P. chinensis.  相似文献   

17.
镜鲤与建鲤生长性状共享 QTL 标记及优势基因型   总被引:1,自引:0,他引:1  
本研究以1个镜鲤(Cyprinus carpio L.)全同胞家系(190个个体)构建的微卫星遗传图谱(992个标记)为基础,从体重、体长、体高和体厚的QTL区间内发掘了54个标记,其与性状具有显著相关性,进而通过对不同基因型性状间的比较,筛选出83个优势基因型。在此基础上,用54个镜鲤QTL标记分析了建鲤(Cyprinus carpio var.jian)作图群体,其中40个标记在建鲤中表现出多态性,比例为74.07%;相关性分析结果显示,其中22个标记与建鲤家系的体重、体长、体高或体厚性状具有显著相关性(P0.05),占多态标记的55.00%;镜鲤与建鲤共享的22个QTL标记中,18个标记与至少1个相同的性状具有显著相关性(P0.05),从中筛选出建鲤性状具有优势的基因型30个,可用于指导建鲤的选育。品种间共享QTL的发掘能够扩展QTL标记的使用空间,减少新品种重新构建图谱进行QTL标记定位的工作量和成本。  相似文献   

18.
Genetic linkage maps were constructed with amplified fragment length polymorphism (AFLP) and microsatellite markers for the pearl oyster, Pinctada martensii (Dunker), the main bivalve used for marine pearl production in Asia. Twenty‐four AFLP and 84 microsatellite primer pairs were used for linkage analysis in a full‐sib family with two parents and 78 offspring. Of the 2357 AFLP fragments generated, 394 (16.7%) were polymorphic and segregating. Most (340 or 86.2%) of the markers segregated according to expected Mendelian ratios. Female and male linkage maps were constructed using 230 and 189 markers, including 15 and 10 microsatellites respectively. The female map consisted of 110 markers in 15 linkage groups, covering 1415.9 cM, with an average interval of 14.9 cM. The male map consisted of 98 markers in 16 linkage groups, with a total length of 1323.2 cM and an average interval of 16.1 cM. When unlinked doublets were considered, genome coverages were 78.5% for the female and 73.5% for the male map. Although preliminary, the genetic maps constructed here should be useful for future linkage and quantitative trait loci mapping efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号