首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The heart rate of jack mackerel [16.5–21.2 cm fork length (FL), n = 24] was examined through forced swimming exercise in a flume tank by 10-min step-ups of speed levels in 1.5–6.0 FL/s range at different temperatures of 10, 15, and 22 °C. Electrocardiograph (ECG) monitoring was conducted by comparing the heartbeat pattern in still water without flow as a control, and continuously during exercise by speed levels until fatigue and during the recovery phase. Average heart rates in the control at each temperature were 36.5 beats/min at 10 °C, 56.1 beats/min at 15 °C, and 75.2 beats/min at 22 °C. The heart rate of jack mackerel significantly increased as the swimming speed was increased in each temperature. At the lower swimming speed of 1.5–2.4 FL/s, the heart rate was the same level as the control value at each respective temperature. The heart rate started to increase at swimming speeds of 2.3–2.5 FL/s at all temperatures. The higher heart rate in the range of 150–200 beats/min was achieved at a swimming speed of 6.0 FL/s at 22 °C. The recovery time after the maximum heart rate at high speed became longer at high temperatures.  相似文献   

2.
The migration of Schizothorax prenanti, an ecologically important and commercially valuable species, is impeded by dams. Effective fishways would contribute to conservation of wild populations, and swimming performance data are necessary for fishway design. The swimming performance of S. prenanti was investigated at four temperatures (15, 19, 23, 27 °C), and numerical models were used to characterize the effect of temperature on swimming performance. As temperature increases, critical swimming speed (U crit) increases from 15 to 23 °C and then decreases significantly. The highest U crit (7.71 BL/s) occurs at 24 °C, as estimated by interpolation. Swimming efficiency was similar from 19 to 23 °C, but decreases significantly at 27 °C. The temperature range 15–23 °C is suitable for S. prenanti. However, the excess post-exercise oxygen consumption values of Q 10 for the four temperature increments indicate that 19–23 °C is the optimal range for swimming performance. Maximum tail beat amplitude increased >25 % (0.35–0.45 BL) over the temperature range considered, but variation of tail beat frequency was erratic. White muscle fiber begins to contribute to swimming at swimming speeds ~40 % U crit at the lower three temperatures, but increases to almost 60 % at 27 °C, and the contribution is relatively small. The results of this investigation advance the knowledge of fish metabolism while swimming provides data critical for fishway design.  相似文献   

3.
The effect of fatigue on swimming performance was examined by measuring the swimming endurance time and heart rate of the jack mackerel Trachurus japonicus [15.7 ± 0.8 cm fork length (FL), n = 15] during forced exercise in a flume tank at fixed swimming speeds of 4, 5 and 6 FL/s. Electrocardiographic (ECG) monitoring during the experimental process from control (0.8 FL/s) to exercise phase revealed a rapid cardiac response of T. japonicus to the elevation of swimming speed. The heart rate of T. japonicus significantly increased from the control level of 52.9 beats/min at a slow flow speed of 0.8 FL/s to 148.2 beats/min at 4 FL/s, 168.6 beats/min at 5 FL/s and 183.2 beats/min at 6 FL/s. During the fixed speed test, the heart rate of each individual fish was stabilized without any recognizable increase or decrease until the fish failed to swim because of fatigue. Fatigue analysis on endurance time demonstrated that prior swimming experience at prolonged speeds would impair the endurance performance during subsequent swimming exercise. Recovery time of the heart rate after the fish was fully exhausted by prolonged fast exercise increased with increasing swimming endurance time.  相似文献   

4.
流速是影响鱼类生存与繁衍栖息的重要因子。为了了解鱼类在中等流速区的游泳行为,探究其对水流的适应特征,利用鱼类游泳能力测定装置,以鲢(Hypophthalmichthys molitrix)幼鱼[体重(9.82±3.81) g,体长(8.56±1.11) cm)]为对象,采用递增流速法,分析了游泳过程中的非疲劳贴网行为与姿态转换行为。结果表明,在22℃水温条件下,鲢幼鱼平均相对临界游泳速度(critical swimming speed,U_(crit))相比其体长(body length,BL)为(6.00±0.93)BL/s;其非疲劳贴网速度(no-fatigue impingement speed,U_(imp))与临界游泳速度呈线性正相关,U_(crit)=1.03 U_(imp)+1.26 (R~2=0.86,P0.01);姿态转换速度(gait transition speed,U_(tran))与临界游泳速度呈线性正相关,U_(tran)=0.59 U_(crit)+1.55 (R~2=0.43,P0.01);非疲劳贴网速度与姿态转换速度呈线性正相关,U_(tran)=0.51U_(imp)+2.72 (R~2=0.41,P0.001)。在中等流速范围内(2~4 BL/s),实验鱼摆尾频率(tail beat frequency, TBF)和单次摆尾周期前进距离(stride length, SL)均随流速增加而增大。首次出现非疲劳贴网的流速为4.62 BL/s,流速增至5.08 BL/s时出现姿态转换行为。发生姿态转换后,TBF开始下降,而SL随流速增加快速增大。研究显示,鲢幼鱼非疲劳贴网行为对游泳能力和姿态转换速度有显著影响,且非疲劳贴网行为与姿态转换行为之间也存在相互影响。研究结果可为自然环境中鱼类生态行为研究、鱼类资源保护及渔业管理提供参考。  相似文献   

5.
通过自制的鱼类游泳试验装置,研究了流速对鲫(Carassius auratus)游泳行为和能量消耗的影响。结果表明,鲫的摆尾频率、摆尾幅度随游泳速度变化有明显的规律。随着游泳速度的增加,鲫的摆尾频率与幅度都相应地增加。流速小于3倍体长/s与大于3倍体长/s,摆尾频率差异性显著(P〈0.05),而摆尾幅度差异性不明显。鲫单位时间耗氧率随着流速的增加而显著增加,并且随着速度的增加,鲫用于游泳所消耗的能量占总能量消耗逐渐趋于稳定,运动净耗氧率最大为90%。水温(16±1)℃时,体长12~20cm鲫的相对极限流速为其(3.85±1.10)倍体长/s,绝对极限流速为(0.66±0.10)m/s;相同流速的温度环境中,随着体重的增加,耗氧量呈增加趋势。在相同的流速下,水温(10±1)℃时的游泳耗氧量小于(16±1)℃,而净耗氧率较大;温度(16±1)℃时,2.5倍体长/s的游泳速度有利于鲫生长代谢的能量积累。  相似文献   

6.
Chinese sturgeon (Acipenser sinensis) is a critically endangered species. A flume-type respirometer, with video, was used to conduct two consecutive stepped velocity tests at 10, 15, 20, and 25 °C. Extent of recovery was measured after the 60-min recovery period between trials, and the recovery ratio for critical swimming speed (U crit) averaged 91.88% across temperatures. Temperature (T) effects were determined by comparing U crit, oxygen consumption rate (MO 2), and tail beat frequency (TBF) for each temperature. Results from the two trials were compared to determine the effect of exercise. The U crit occurring at 15 °C in both trials was significantly higher than that at 10 and 25 °C (p < 0.05). The U crit was plotted as a function of T and curve-fitting allowed calculation of the optimal swimming temperature 3.28 BL/s at 15.96 °C (trial 1) and 2.98 BL/s at 15.85 °C (trial 2). In trial 1, MO 2 increased rapidly with U, but then declined sharply as swimming speed approached U crit. In trial 2, MO 2 increased more slowly, but continuously, to U crit. TBF was directly proportional to U and the slope (dTBF/dU) for trial 2 was significantly lower than that for trial 1. The inverse slope (tail beats per body length, TB/BL) is a measure of swimming efficiency and the significant difference in slopes implies that the exercise training provided by trial 1 led to a significant increase in swimming efficiency in trial 2.  相似文献   

7.
利用鱼类游泳能力测定装置,以人工繁殖的圆口铜鱼(Coreius guichenoti)幼鱼为实验对象,体重(3.05±0.99)g,体长(5.94±0.66)cm,采用递增流速法研究其游泳能力与游泳行为。结果表明,在(20±1)℃水温条件下,圆口铜鱼平均相对临界游泳速度(critical swimming speed,Ucrit)为(8.41±1.56)BL/s;其步态转换速度(gait transition speed,Uchg)与临界游泳速度呈线性正相关:Uchg=0.63 Ucrit+0.21(P<0.01,R 2=0.86);摆尾频率(tail beat frequency,TBF)与进口流速(inlet velocity,Uin)呈线性正相关:TBF=0.48 Uin+2.53(P<0.01,R 2=0.95);进口流速(inlet velocity,Uin)与步长(step length,SL)呈线性正相关:SL=0.11 Uin+0.41(P<0.01,R 2=0.99)。实验鱼的摆尾幅度(tail beat amplitude,TBA)、冲刺次数、各进口流速下的摆尾时间百分比及稳定摆尾与非稳定摆尾比例,均随进口流速改变而变化。随流速增大,摆尾幅度呈现先增大、再减小、最后又增大的趋势;冲刺次数也是先增加、随后逐渐下降;摆尾时间百分比最初是快速增大,随后基本保持不变,流速增至8 BL/s高流速时,再次随流速增加而快速增大。当流速与临界游速比值(U/U max)为0.38时,实验鱼出现非稳定摆尾行为;比值为0.58时,实验鱼稳定摆尾行为与非稳定摆尾行为比例为1∶1;比值增至0.78时,稳定摆尾行为消失。人工繁殖的圆口铜鱼游泳能力较强,在不同流速下,通过改变游泳行为以保持更长的游泳时间及距离。研究结果可为以圆口铜鱼为过鱼对象的鱼道建设以及养殖流速优化提供参考。  相似文献   

8.
水流对杂交鲟幼鱼游泳行为的影响   总被引:4,自引:1,他引:3  
在26℃水温下,使用特制的鱼类游泳行为测定装置研究了杂交鲟(Huso duricusGeorgi♂×Acipenser schrenc-kiBrandt♀)幼鱼在0 m/s、0.1 m/s、0.3 m/s、0.5 m/s 4种流速条件下的游泳行为。结果显示:杂交鲟幼鱼随着流速的增加趋流率增大,且在90min内趋流率达到100%所需的时间明显缩短。实过过程中0.3 m/s和0.5 m/s两组摆尾频率都高于0.1 m/s和静水组,但在各个时段内,摆尾频率与趋流率均没有显著的相关。杂交鲟幼鱼的游泳状态明显受到所处流速的影响:0.1 m/s流速下以逆流前进为主,约占时间比例56.3%;0.3 m/s流速下以逆流静止为主,约占时间比例58.1%;0.5 m/s流速下以逆流后退为主,约占时间比例80.7%。在逆流前进和逆流静止两种游泳状态下,杂交鲟幼鱼的游泳速度和摆尾频率呈线性相关。但在逆流后退和顺流而下两种状态下,两者之间却没有显著的相关,且此两种状态下其游泳速度和摆尾频率随流速增加的变化趋势也不一致。  相似文献   

9.
As a crucial step in developing a bioenergetics model for Pacific Chub Mackerel Scomber japonicus (hereafter chub mackerel), parameters related to metabolism, the largest dissipation term in bioenergetics modelling, were estimated. Swimming energetics and metabolic data for nine chub mackerel were collected at 14°C, a low temperature within the typical thermal range of this species, using variable‐speed swim‐tunnel respirometry. These new data were combined with previous speed‐dependent metabolic data at 18 and 24°C and single‐speed (1 fork length per second: FL/s) metabolic data at 15 and 20°C to estimate respiration parameters for model development. Based on the combined data, the optimal swimming speed (the swimming speed with the minimum cost of transport, Uopt) was 42.5 cm/s (1.5–3.0 FL/s or 2.1 ± 0.4 FL/s) and showed no significant dependence on temperature or fish size. The daily mass‐specific oxygen consumption rate (R, g O2 g fish?1 day?1) was expressed as a function of fish mass (W), temperature (T) and swimming speed (U): R = 0.0103W?0.490 e(0.0457T) e(0.0235U). Compared to other small pelagic fishes such as Pacific Herring Clupea harengus pallasii, Pacific Sardine Sardinops sagax and various anchovy species, chub mackerel respiration showed a lower dependence on fish mass, temperature and swimming speed, suggesting a greater swimming ability and lower sensitivity to environmental temperature variation.  相似文献   

10.
The effect of temperature on the swimming performance of jack mackerel Trachurus japonicus was examined in a flume tank by measuring the swimming endurance time and heart rate. The lower swimming performance was observed at 10°C (the lowest temperature tested), manifesting as the shortest endurance time and the slowest maximum sustained speed. ECG measurements of the heart rate under free-swimming conditions at zero flow velocity revealed a temperature effect, with 25.3 beats/min observed at 10°C, 38.9 at 15°C, and 67.2 at 22°C. The heart rate also increased with swimming speed to maximum levels of 60, 125, and 208 beats/min, respectively, at these three temperatures. Heart rate recovery times measured after the fish had been swimming at prolonged speed tended to increase with temperature, while a negative correlation resulting in relatively short recovery times was observed after swimming at close to the burst swimming speed at each water temperature.  相似文献   

11.
The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between kinematic variables. We here perform such an analysis by means of a meta‐analysis. Using data of 27 species, we examine the relationships between the swimming speed and several kinematic variables, namely frequency and amplitude of the tail beat, length and speed of the propulsive wave, length of the body, the Reynolds number, the Strouhal number and the slip ratio U/V (between the forward swimming speed U and the rearward speed V of the propulsive wave). We present results in absolute units (cm) and in units relative to the length of the organism (total length, TL). Our data show several kinematic relations: the strongest influence on swimming speed is the speed of the propulsive wave, and the other variables (amplitude and frequency of the tail beat, length of the propulsive wave and length of the body) influence it more weakly (but significantly). In several cases, results differ when variables are expressed in different units (absolute or relative to length). Our data reveal significant differences between kinematics of swimming of shallow‐bodied and deep‐bodied individuals, with shallow‐bodied ones swimming with a shorter propulsive wave length and a higher Strouhal number. The slip ratio U/V and the Strouhal number appear to depend on the Reynolds number in a non‐linear manner.  相似文献   

12.
Swimming depth and selected environmental factors were examined using 2764 days of archival tag data for 18 bigeye tuna Thunnus obesus (fork length at release 58.5 ± 7.2 cm) that were captured, tagged, and released into Japanese waters. Daytime swimming depth was deeper with increasing body length. The lowest temperature encountered was usually about 10 °C or slightly higher. A positive correlation between swimming depth and light intensity at the ocean surface was dominant for during both daytime and nighttime. Synchronicity of swimming depth with deep scattering layer (DSL) was observed, except around midday. Deep diving to depths exceeding 550 m was observed a mean of 0.30 dives/fish/day. Based on the classification and analyses of deep diving pattern and consideration of environmental data, deep diving was assumed to be undertaken for the purposes of foraging, predator avoidance, and exploration of bathymetry, as well as due to aberrant behavior. Occasionally, extremely deep diving events exceeding 1000 m (maximum 1616 m) were recorded. Bigeye tuna appear to have high visual acuity and tolerance of both low and wide temperature ranges, and low dissolved oxygen content. Thus, probably bigeye tuna swimming depth is primarily adjusted based on prey distribution.  相似文献   

13.
圆口铜鱼幼鱼可持续游泳能力及活动代谢研究   总被引:2,自引:0,他引:2  
以圆口铜鱼(Coreius guichenoti)幼鱼为研究对象,通过自制的鱼类游泳实验装置,测定了4个温度(10,15,20和25℃)下圆口铜鱼幼鱼游泳速度达到临界游速过程中及运动疲劳后耗氧率的变化情况;在自然水温条件下,测定了5个不同流速下的可持续游泳时间,并通过摄像记录分析了不同游泳速度下的游泳行为。结果显示:圆口铜鱼幼鱼在运动疲劳前耗氧率随流速的增加显著上升(P0.05),在临界游速时达到峰值;运动疲劳后耗氧率逐渐下降,40~50 min内耗氧率恢复至低流速时的水平。自然水温(18.0±1.5)℃条件下幼鱼的可持续游泳时间随流速增加逐渐减小(P0.01),在1.31倍临界游速的固定流速下,平均可持续游泳时间达29 min,体现了较强的游泳耐力及无氧代谢能力。录像分析表明,摆尾频率(TBF)与游速的关系呈线性正相关(P0.001),且随着温度升高,TBF随流速增加的趋势越明显。  相似文献   

14.
全双工射频识别系统(RFID)相较于半双工具有操作简便、数据传输方便等优势,国外广泛应用于鱼道过鱼效果评价。针对而国内相关研究较少的现状,以植有PIT标签的仿野生齐口裂腹鱼(Schizothorax prenanti)识别与否作为评判系统监测效率高低的依据,定量分析鱼体入射角度、鱼体入射范围、鱼体长大小和游泳速度对全双工射频识别系统监测效率的影响,以接收到监测数据作为因变量,构建Logistic回归模型,利用AIC模型准则筛选出最优的Logistic回归模型。结果表明,游泳速度(P=0.001)和鱼体长大小(P=0.03)与系统成功监测概率呈负相关。鱼体入射角度(0°~90°)对系统监测效率的影响不显著(P0.05);鱼体入射范围0~10 cm的监测效率显著高于入射20~30 cm和30~40 cm(P0.05)。为进一步提高鱼道监测效率,建议在开展实际鱼道工程监测前,应掌握鱼类基础参数(如体长)和行为(如游泳速度)数据,合理布置天线位置,将有助于为监测评估后的鱼道优化设计提供技术支撑和数据参考。  相似文献   

15.
The physiological effect of temperature on feed intake and haematological parameters after exhaustive swimming in diploid and triploid brown trout (Salmo trutta) was investigated. Trout were exposed to an incremental temperature challenge (2 °C/day) from ambient (6 °C) to either 10 or 19 °C. Feed intake profiles did not differ between ploidy at 10 °C; however, triploids had a significantly higher total feed intake at 19 °C. After 24 days, each temperature–ploidy group was exposed to exhaustive swimming for 10 min. The haematological response differed between ploidy, with the magnitude of the response affected by temperature and ploidy. Post-exercise, acid–base and ionic differences were observed. Plasma lactate increased significantly from rest for both temperature and ploidy groups, but glucose increased significantly at higher temperature. Post-exercise, triploids at 19 °C had significantly higher osmolality and cholesterol than diploids, but differences were resumed within 4 h. Elevated alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in fish at higher temperature suggested greater tissue damage; however, both ploidy responded similarly. Despite no significant differences in deformity prevalence, the type and location of deformities observed differed between ploidy (decreased intervertebral space with higher prevalence in tail area and fin regions for diploids, while vertebral compression, fusion in cranial and caudal trunks for triploids). These results suggest triploids have greater appetite than diploids at elevated temperature and that triploids suffer similar blood disturbances after exercise as diploids. These findings have implications for the management of freshwater ecosystems and suggest that stocking triploid brown trout may offer an alternative to diploid brown trout.  相似文献   

16.
Juvenile sablefish, Anoplopoma fimbria (mean length 15.5 ± 1.9 cm, mean weight 68.5 ± 4.8 g), were used to evaluate the effects on growth, oxidative stress, and non-specific immune responses by changes of water temperature (8, 10, 12, 14, 16, 18, and 20 °C) and salinity (100 (35.0), 90 (31.5), 80 (28.0), 70 (24.5), 60 (21.0), 50 (17.5), and 40% (14.0) (‰)) for 4 months. The growth performance was significantly increased at the temperature of 12 and 14 °C, and the feed efficiency was notably decreased at the temperature of 18 °C. The growth performance and feed efficiency were also significantly decreased at low salinity. The antioxidant responses such as superoxide dismutase and catalase were significantly increased by the high temperature and decreased by the low salinity. The immune responses such as lysozyme and phagocytosis were elevated by the temperature of 18 °C and decreased by the salinity of 50%. The results of this study indicate that the growth performance of juvenile sablefish, A. fimbria, is influenced by the temperature and salinity, and the excessive temperature and salinity levels can affect the antioxidant and immune responses.  相似文献   

17.
研究温度和重复疲劳运动对中华鲟游泳行为和能量代谢的影响,为中华鲟养殖环境水质量监测管理、物种保护和鱼道的设计等提供参考。在密封鱼类游泳装置中,利用速度递增法测定了不同温度(10、15、20和25℃)、流速条件下中华鲟(Acipenser sinensis)幼鱼(体长8.50~11.00 cm,体重5.10~8.80 g)的摆尾频率(TBF)、呼吸频率(RR),并同时测定了游泳过程中的耗氧率(M_(O_2))。结果表明:随着摆尾频率或呼吸频率的增加,中华鲟幼鱼的耗氧率增加,耗氧率与摆尾频率或呼吸频率呈指数相关(M_(O_2)=a×TBF~b;M_(O_2)=A×RR~B);随着温度增加,b值先减小后增加,15℃和20℃时b值较小;疲劳恢复后,第2次测试b值大于第1次;随着温度的增加,B值逐渐增加;疲劳恢复后,第2次测试B值小于第1次。游泳过程能量消耗随着温度的升高先降低后升高,15~20℃能量消耗较小。疲劳恢复后,第2次测试能量消耗大于第1次,游泳效率降低,特别是在10℃和25℃,15~20℃变化不明显。温度和重复游泳对中华鲟幼鱼游泳行为影响显著,温度不适宜和重复疲劳运动会产生叠加效应,导致游泳效率显著降低。  相似文献   

18.
ABSTRACT:   The tail beat and activity behavior of four captive Japanese flounder Paralichthys olivaceus , were monitored with acceleration data-loggers while the fish swam in an aquarium. Depth, swimming speeds and two-axis acceleration data were collected continuously for approximately 20 h per fish. Simultaneously, the swimming behaviors of the fish were filmed at different angles. Using the specific characteristic of the acceleration profiles, in tandem with other types of data (e.g. speed and depth), four behavioral patterns could be distinguished: (i) 'active' swimming; (ii) burying patterns; (iii) 'inactive' gliding; and (iv) lying on the bottom. Tail beat frequency ranged from 1.65 ± 0.47 to 2.04 ± 0.25 Hz (mean ± SD; n  = 4). Using the relationship between tail beat frequency and swimming speed, the 'preferred' swimming speed of the fish was estimated to be between 0.6 and 1.2 body lengths (BL)/s. Additionally, fish rarely swam faster than 1.2 BL/s. This study shows that the acceleration data-loggers represent a useful and reliable system for accurately recording the tail beat of free-ranging fish and estimating flatfish behavior.  相似文献   

19.
为探索鱼类在自发性运动和强迫式运动模式下的游泳特性,以鲢(Hypophthalmichthys molitrix)幼鱼为研究对象,采用船闸式水槽鱼类呼吸装置和环形水槽实验装置,Loli Track软件对游泳行为进行视频分析,解析不同运动模式下鲢幼鱼游泳特性变化情况。结果表明,在自发性运动模式下,鲢幼鱼的耗氧率随游泳速度、加速度、旋转角度和摆尾频率增加而增大。通过逐步回归拟合出多因素能量模型,得出游泳速度对耗氧率变化的影响最大。在两种运动模式中,唯一相同的相对游泳速度为0.5 BL·s~(-1)[BL为体长(cm)]下,能量消耗利用率为2.35。研究还发现在不同运动模式下鲢幼鱼的最优游泳速度大小差异性显著,但呼吸耗氧率差异性不显著。表明鲢幼鱼运动过程中相比于最优游泳速度,存在表征能量利用率最高且与游泳模式无关的最优耗氧率。  相似文献   

20.
There are various techniques for identifying fish species, including the multi-frequency method, in situ target strength characteristics, and digital image processing methods. Acoustic Doppler current profilers (ADCPs) are able to determine multiple current fields simultaneously and have been used to observe the swimming speed and behavior patterns of shoals of pelagic fish under natural conditions. In this study, we evaluated a classification method that can be used to determine the swimming velocity of both the sound-scattering layer and pelagic fish shoals using an ADCP (153.6 kHz) and a scientific echosounder (38, 200 kHz). To calculate the actual swimming speed of the fish shoals, the mean swimming velocity vectors of each stratified bin must be compared with the mean surrounding three-dimensional (3D) current velocity vectors. We found the average 3D swimming velocity of the sound-scattering layer to be characterized by a deviation of >5.3 cm/s from the surrounding current field. The average 3D swimming velocity of Pacific saury Cololabis saira was calculated to be 91.3 cm/s, while that of lanternfish Diaphus theta was 28.1 cm/s. These swimming speeds correspond to 4.19- and 4.26-fold the body length, respectively. Thus, the use of ADCP swimming velocity data can be expected to be a valuable species identification method for various fishes distributed in a given survey area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号