首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the environmental factors that regulate fish recruitment is essential for effective management of fisheries. Generally, first‐year survival, and therefore recruitment, is inherently less consistent in systems with high intra‐ and interannual variability. Irrigation reservoirs display sporadic patterns of annual drawdown, which can pose a substantial challenge to recruitment of fishes. We developed species‐specific models using an 18‐year data set compiled from state and federal agencies to investigate variables that regulate the recruitment of walleye Sander vitreus and white bass Morone chrysops in irrigation reservoirs in south‐west Nebraska, USA. The candidate model set for walleye included only abiotic variables (water‐level elevation, minimum daily air temperature during winter prior to hatching, annual precipitation, spring warming rate and May reservoir discharge), and the candidate model set for white bass included primarily biotic variables (catch per unit effort (CPUE) of black crappie Pomoxis nigromaculatus, CPUE of age‐0 walleye, CPUE of bluegill Lepomis macrochirus and CPUE of age‐3 and older white bass), each of which had a greater relative importance than the single abiotic variable (minimum daily air temperature during winter after hatching). Our findings improve the understanding of the recruitment of fishes in irrigation reservoirs and the relative roles of abiotic and biotic factors.  相似文献   

2.
We investigated juvenile brown trout migration and mortality in a headwater tributary of the Motueka River, New Zealand, by tracking 1000 young‐of‐the‐year passive integrated transponder (PIT) tagged fish over autumn to summer to (i) partition total loss into emigration and mortality and (ii) determine the influence of season and flow on emigration. Fish were tracked using mobile and fixed PIT tag readers. Of the 1000 fish tagged, 173 remained within the Rainy River; emigration contributed 60% and mortality 29% to loss. Only 11% of fish tagged in autumn were predicted to remain in the upper reaches of the stream by early summer, and this agreed with density data collected in a parallel study. We identified a two‐phase downstream migration pattern with early movement of large young‐of‐the‐year fish in autumn (mainly during floods). This was followed by another substantial period of movement in spring (during floods and lower flows) by fish that were initially smaller at the time of PIT tagging. The management implications for damming and fish screening in headwater tributaries are discussed.  相似文献   

3.
Determining the factors that influence recruitment to sequential ontogenetic stages is critical for understanding recruitment dynamics of fish and for effective management of sportfish, particularly in dynamic and unpredictable environments. We sampled walleye (Sander vitreus) and white bass (Morone chrysops) at 3 ontogenetic stages (age 0 during spring: ‘age‐0 larval’; age 0 during autumn: ‘age‐0 juvenile’; and age 1 during autumn: ‘age‐1 juvenile’) from 3 reservoirs. We developed multiple linear regression models to describe factors influencing age‐0 larval, age‐0 juvenile and age‐1 juvenile walleye and white bass abundance indices. Our models explained 40–80% (68 ± 9%; mean ± SE) and 71%–97% (81 ± 6%) of the variability in catch for walleye and white bass respectively. For walleye, gizzard shad were present in the candidate model sets for all three ontogenetic stages we assessed. For white bass, there was no unifying variable in all three stage‐specific candidate model sets, although walleye abundance was present in two of the three white bass candidate model sets. We were able to determine several factors affecting walleye and white bass year‐class strength at multiple ontogenetic stages; comprehensive analyses of factors influencing recruitment to multiple early ontogenetic stages are seemingly rare in the literature. Our models demonstrate the interdependency among early ontogenetic stages and the complexities involved with sportfish recruitment.  相似文献   

4.
  1. Reservoirs and associated river fragments are novel ecosystems not experienced by fishes in their evolutionary history, yet they are now commonplace across the globe. Understanding how fishes use these novel habitats is vital to conservation efforts in contemporary riverscapes.
  2. Movement patterns of the endangered razorback sucker (Xyrauchen texanus) synthesized from tagging efforts in the upper Colorado River basin, USA, illustrate the applications of tagging technology and data sharing by multiple agencies to better understand the spatial ecology of large river fishes.
  3. Tagging studies between 2014 and 2018 in Lake Powell and its two main tributary rivers, the Colorado (unfragmented) and San Juan (waterfall‐fragmented), were used to quantify movement of razorback sucker within this river–reservoir habitat complex. In addition, facilitated translocations of fish upstream of a waterfall barrier in the San Juan River were assessed in 2016–2017.
  4. Extensive movement of fish occurred within and across river and reservoir habitats. Of 722 fish captured in the Colorado River arm of Lake Powell, 36% of re‐encounters occurred upstream in the Colorado or Green rivers, or fish dispersed through the reservoir and were detected in the San Juan River arm. Fourteen fish moved more than 600 km. In the San Juan arm of the reservoir, 29% and 20% of fish in 2017 and 2018, respectively, had moved ~30–40 km upstream below the waterfall in the San Juan River within a year. In 2016–2017, 303 fish were translocated upstream of the waterfall into the San Juan River, but 80% were re‐encountered downstream of the waterfall within a year.
  5. Long‐distance movements by razorback sucker were common within and among rivers and reservoirs illustrating how large river fish, in general, might maintain population connectivity in highly altered ecosystems.
  相似文献   

5.
Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.  相似文献   

6.
Abstract –  We studied the migratory behaviour of armado, Pterodoras granulosus , in the Paraná River Basin of Brazil, Paraguay and Argentina, during 1997–2005. This species invaded the Upper Paraná River after upstream dispersal was facilitated when Itaipu Reservoir inundated a natural barrier. Fish were tagged ( N  = 8051) in the mainstems of the Yacyreta and Itaipu reservoirs, bays of major tributaries, the Paraná River floodplain above Itaipu Reservoir, and below dams. In all, 420 fish were recaptured of which 61% moved away from the release area. Fish moved a maximum of 215 km (mean 42), and at a maximum rate of 9.4 km·day−1 (mean 0.6). Of the 256 armados that moved away from the release site, 145 moved upstream towards unimpounded stretches of the Paraná River and 111 moved downstream into the reservoir and bays of its tributaries (maximum 150 km). Based on the observed migratory movements, we suspect that most of the reproductive output originates in tributaries to the reservoirs. The ability of this species to expand its range presents a conundrum by pitting fishery management interests against conservation needs. Maintenance of the important armado fisheries depends on the ability of the species to migrate freely to use spawning and nursery areas in reservoir tributaries and floodplains. However, its ability to migrate long distances can allow this non-native species the opportunity to invade most of the Upper Paraná River.  相似文献   

7.
Recruitment overfishing occurs when stocks are fished to a level where recruitment declines proportionally with adult abundance. Although typically considered a commercial fishery problem, recruitment overfishing can also occur in freshwater recreational fisheries. This study developed an age‐structured model to determine if minimum‐length limits can prevent recruitment overfishing in black crappie, Pomoxis nigromaculatus (LeSueur), and walleye, Sander vitreus (Mitchill) fisheries considering angling effort response to changes in fish abundance. Simulations showed that minimum‐length limits prevented recruitment overfishing of black crappie and walleye, but larger minimum‐length limits were required if angler effort showed only weak responses to changes in fish abundance. Low angler‐effort responsiveness caused fishing mortality rates to remain high when stock abundance declined. By contrast, at high effort responsiveness, anglers left the fishery in response to stock declines and allowed stocks to recover. Angler effort for black crappie and walleye fisheries suggested that angler effort could be highly responsive for some fisheries and relatively stable for others, thereby increasing the risk of recruitment overfishing in real fisheries. Recruitment overfishing should be considered seriously in freshwater recreational fisheries, and more studies are needed to evaluate the responsiveness of angler effort to changes in fish abundance.  相似文献   

8.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

9.
10.
Information on the annual variability in abundance and growth of juvenile groundfish can be useful for predicting fisheries stocks, but is often poorly known owing to difficulties in sampling fish in their first year of life. In the Western Gulf of Alaska (WGoA) and Eastern Bering Sea (EBS) ecosystems, three species of puffin (tufted and horned puffin, Fratercula cirrhata, Fratercula corniculata, and rhinoceros auklet, Cerorhinca monocerata, Alcidae), regularly prey upon (i.e., “sample”) age-0 groundfish, including walleye pollock (Gadus chalcogramma, Gadidae) and Pacific cod (Gadus microcephalus, Gadidae). Here, we test the hypothesis that integrating puffin dietary data with walleye pollock stock assessment data provides information useful for fisheries management, including indices of interannual variation in age-0 abundance and growth. To test this hypothesis, we conducted cross-correlation and regression analyses of puffin-based indices and spawning stock biomass (SSB) for the WGoA and EBS walleye pollock stocks. For the WGoA, SSB leads the abundance of age-0 fish in the puffin diet, indicating that puffins sample the downstream production of the WGoA spawning stock. By contrast, the abundance and growth of age-0 fish sampled by puffins lead SSB for the EBS stock by 1–3 years, indicating that the puffin diet proxies incoming year class strength for this stock. Our study indicates connectivity between the WGoA and EBS walleye pollock stocks. Integration of non-traditional data sources, such as seabird diet data, with stock assessment data appears useful to inform information gaps important for managing US fisheries in the North Pacific.  相似文献   

11.
The anadromous, or sea‐going, life history form of brown trout, or sea trout ( Salmo trutta), may lead to potential mixing of populations while foraging at sea. In this article, we assess the potential that multiple populations are using common semi‐enclosed estuaries and quantify the potential levels of straying (i.e. dispersal) of foreign‐produced individuals into populations by using otolith chemical signatures as natural ‘tags’. To do so, we created a database of juvenile fish otolith chemistry (a marker of freshwater production) from four rivers and compared the chemistry of harvested fish in two estuaries important to anglers, the Renews River and Chance Cove Brook, to the database. A discriminant function analysis revealed significant differences in the otolith chemistry of juvenile fish inhabiting the four rivers with a 97% cross‐validated accuracy when classifying individual juveniles to their natal river, indicating our baseline was robust. When assigning adults caught over 3 years (2007–2009) in the recreational fishery in the Renews River estuary, it was determined that over 95% of the fish caught each year originated from Renews River. In contrast, harvested fish in Chance Cove during 2009 were disproportionately comprised of fish produced in Renews River, suggesting the potential for source‐sink population dynamics in Newfoundland. Taken as a whole, these results indicate limited population mixing in nearshore estuaries of this region, but also highlight the potential for some populations to subsidise the harvest by anglers in different areas.  相似文献   

12.
The recent reform of the Common Fisheries Policy (CFP) in Europe highlights the need for improvements in both species and size selectivity. Regarding size selectivity, shifting selectivity towards older/larger fish avoids both growth and recruitment overfishing and reduces unwanted catches. However, the benefits to fish stocks and fishery yields from increasing age/size‐at‐selection are still being challenged and the relative importance of selectivity compared to that of exploitation rate remains unclear. Consequently, exploitation rate regulations continue to dominate management. Here, an age‐structured population model parameterized for a wide range of stocks is used to investigate the effects of selectivity on spawning stock biomass (SSB) and yield. The generic effect of selectivity on SSB and yield over a wide range of stocks is compared to the respective relative effects of exploitation rate and several biological parameters. We show that yield is mainly driven by biological parameters, while SSB is mostly affected by the exploitation regime (i.e. exploitation rate and selectivity). Our analysis highlights the importance of selectivity for fisheries sustainability. Catching fish a year or more after they mature combined with an intermediate exploitation rate (F ≈ 0.3) promotes high sustainable yields at low levels of stock depletion. Examination of the empirical exploitation regimes of 31 NE Atlantic stocks illustrates the unfulfilled potential of most stocks for higher sustainable yields due to high juvenile selection, thus underscoring the importance of protecting juveniles. Explicitly incorporating selectivity scenarios in fisheries advice would allow the identification of optimal exploitation regimes and benefit results‐based management.  相似文献   

13.
Rising temperatures caused by climate change are likely to affect cool‐water and warm‐water fishes differently. Yet, forecasts of anticipated temperature effects on fishes of different thermal guilds are lacking, especially in freshwater ecosystems. Towards this end, we used spatially explicit, growth rate potential (GRP) models to project changes in seasonal habitat quality for a warm‐water piscivore (largemouth bass Micropterus salmoides), a cool‐water piscivore (walleye Sander vitreus) and a hybrid piscivore (saugeye S. vitreus × S. canadensis) in two Midwestern reservoirs. We assessed habitat quality for two periods (early and middle 21st century) under two realistic greenhouse gas emission scenarios (a mid‐century emissions peak and a rapid continuous increase in emissions). Largemouth bass were projected to experience enhanced or slightly reduced habitat during all seasons, and throughout the mid‐21st century. By contrast, walleye habitat was projected to decline with anticipated warming, except during the spring in the smaller of our two study reservoirs and during the fall in the larger of our two study reservoirs. Saugeye habitat was projected to either increase modestly or decline slightly during the spring and fall and declines in habitat quality and quantity that were smaller than those for walleye were identified during summer. Collectively, our findings indicate that climate warming will differentially alter habitat suitability for reservoir piscivores, favouring warm‐water species over cool‐water species. We expect these changes in habitat quality to impact the dynamics of reservoir fish populations to varying degrees necessitating the consideration of climate when making future management decisions.  相似文献   

14.
水库运行导致河流水文条件发生改变,对鱼类洄游及其性腺发育产生显著负面影响。为了探究丹江口水库运行对汉江草鱼(Ctenopharyngodon idella)洄游的影响,利用三维水动力模型EFDC模拟水库不同运行情景下的库区和下泄口水动力条件,建立带有外源输入的非线性自回归神经网络(NARX)模型预测下游水动力条件;通过室内试验获取草鱼洄游与水文条件响应关系,并建立草鱼洄游适宜度计算公式,评价丹江口水库上游、库区和下游的洄游适宜性。结果表明,时间上,由于4月水温升温较慢,且流速较低,草鱼洄游状况劣于5-7月;空间上,无论是水库下游还是库区,鱼类洄游状况都劣于未受丹江口水库影响的上游区域。库区极低的流速是影响草鱼上溯的限制因素,而下游降低的流速和水温对草鱼上溯和性腺发育都造成了阻碍。在鱼类洄游期间,降低库区水位、增大下泄量有利于提升库区及下游的流速和水温,改善洄游的外部环境条件。根据已有水库下泄方案(初始水位153 m),如果初始水位降至142 m、下泄增大20%,库区平均洄游适宜度可提高6.5%,下游可提高22.0%。  相似文献   

15.
Electronic tags have become a common tool in fish research, enhancing our understanding of how fish interact with their environment and move among different habitats, for estimating mortality and recording internal physiological states. An often‐untested assumption of electronic tagging studies is that tagged fish are representative of untagged conspecifics and thus show ‘normal’ behaviour (e.g. movement rates, swimming activity, feeding). Here, we use a unique data set for potamadromous walleye (Sander vitreus) in Lake Huron and Lake Erie tributaries to assess whether the lack of appropriate controls in electronic tagging could seriously affect behavioural data. We used fish tagged in previous years and compared their migratory behaviour during the spawning season to fish tagged in a current year at the same location. The objective of the study was to determine whether intracoelomic acoustic tag implantation altered downstream movement of walleye after spawning. Fish tagged in a given season travelled slower downstream from two river spawning sites than fish tagged in previous years. Fish tagged one or two years earlier showed no differences between each other in downstream travel time, in contrast to fish tagged in a given year. Our results support notions that standard collection and intracoelomic tagging procedures can alter short‐term behaviour (i.e. days, weeks, months), and as such, researchers should use caution when interpreting data collected over such time periods. Further, whenever possible, researchers should also explicitly evaluate post‐tagging effects on behaviour as part of their experimental objectives.  相似文献   

16.
The inland fisheries of Sri Lanka are essentially artisanal on most of the reservoirs in the country. The annual inland fish production declined dramatically after 1990, when state patronage for the development of the inland fisheries was discontinued for 4 years. This decline was shown to be a result of growth overfishing of the two dominant cichlid species which accounted for over 90% of landings. This was a result of using small mesh ( < 6.9 cm) gillnets in the absence of the State-sponsored monitoring procedure in the fishery after 1990. This indicates that it is necessary to monitor inland fisheries management in Sri Lanka through a centralized authority in the current situation. However, in some Sri Lankan reservoirs, fishing communities can be categorized as 'organized' because they collectively make decisions to define procedures for the rational exploitation of the fishery resources. In reservoirs with 'organized' fishing, the communities themselves have developed mechanisms to regulate the landing sizes of dominant cichlid fish species through community-based fisheries management strategies. In such reservoirs, over-exploitation of fish stocks was not evident, even after 1990, when state-sponsored monitoring procedures were suspended. Based on these observations, an alternative approach is recommended for the management of Sri Lankan reservoir capture fisheries in which the Government and resource-users have equal responsibilities in the management of the resources.  相似文献   

17.
The Tonle Sap River and Lake (TSRL) is South‐East Asia's largest tropical flood pulse with a flow‐reversal system that supports one of the world's largest freshwater fisheries. However, among the world's tropical floodplains, the resources of the TSRL have received little ecological research. Here, we described the spatiotemporal TSRL fish diversity and community variation using daily records from 2012 to 2015 on fish abundance from six sites covering the TSRL system. We found that high fish diversity occurred in sites located in the middle of Tonle Sap Lake, and the lowest diversity was observed in the southern section. The spatial abundance distribution patterns displayed a river–lake gradient, with three fish assemblages that were clustered based on their composition similarities and were characterised by 96 indicator species. In the southern section, fish assemblages were characterised by longitudinal migratory fishes; in contrast, in the middle system, fish assemblages were represented by species with combined ecological attributes (i.e. longitudinal and lateral migratory species and floodplain residents). Towards the northern section, fish assemblages were composed of lateral migratory and floodplain resident species. Species richness and abundance peaked at approximately 2–2.5 and 4 months, respectively, after the peak flow in early October, during which Tonle Sap River resumes its normal flow direction (outflow). This suggests that seasonal flood pulses (i.e. rising and falling water levels) play a pivotal role in structuring spatiotemporal variation in the TSRL fish assemblages. Our study has implications for fisheries monitoring and conservation initiatives.  相似文献   

18.
Walleye Sander vitreus Mitchill have been progressively raised in hatcheries to larger sizes under the paradigm that larger stocked fish have higher survival. However, extended time in hatcheries may result in domestication, with stocked individuals lacking behaviours that promote survival. The objective of this study was to evaluate behaviour and survival of wild versus stocked fingerling (>200 mm) walleye in two Iowa reservoirs. Radio telemetry was used to evaluate walleye movement rates, depth use, home range size, habitat selection and apparent survival. Depth use increased with days since stocking and varied between lake‐years but was similar between walleye groups. Daily movement rates varied by the interaction between group and day, with rates declining through time. Home ranges did not differ between groups but were significantly greater in Big Creek than Brushy Creek. Walleye in both lakes generally used habitat in proportion to availability, with few differences between groups detected. Weekly apparent survival ranged from 0.948 to 1.000, varied across lakes, years and seasons, and was higher for stocked than wild walleye in Big Creek but not Brushy Creek. The results indicate that hatchery‐reared fingerling walleye behave similar to but can have higher survival than wild fish, suggesting that domestication may not be occurring and that stocking autumn fingerling walleye may help supplement year‐class strength.  相似文献   

19.
Long‐whiskered catfish, Sperata aor (Hamilton 1822), is commercially important in food, ornamental and sport fisheries. The fish is mainly caught from the wild populations because its aquaculture practices are not commercialised. Inland fishery in the Ganga basin is mostly unorganised; hence, no published report is available on the trend of S. aor production from the selected habitat. In India, S. aor has been categorised vulnerable mainly due to natural and anthropogenic threats. Otolith chemistry shows variation with changing physico‐chemical conditions of the fish habitat. Therefore, the present study was conducted with the objective to analyse spatio‐temporal variations in water chemistry in relation to environmental factors; relationship between water and otolith chemistry; and spatio‐temporal variations in otolith chemistry to discriminate the stocks of S. aor inhabiting the River Ganga. Most of the element: Ca ratios in water samples did not show significant correlations with environmental factors, viz. temperature and conductivity. Only few element: Ca concentrations in otoliths were positively correlated to their corresponding ratios in the ambient water. In the selected study area, the S. aor populations were discriminated into four stocks possibly because of heterogeneous water chemistry at the sampling sites, and physical barriers. In the present study, otolith chemistry showed relatively low temporal variability as compared to spatial variability; thus, the classification accuracy of individuals to their original populations remained consistent over the selected time period. The findings could be useful in devising scientifically sound management strategies and/or any conservation plans for the vulnerable S. aor populations inhabiting the River Ganga.  相似文献   

20.
  1. Pelagic spawning riverine fish (pelagophils) spawn in free‐flowing river habitats with downstream drift of eggs and larvae but the spatial scale is often unknown, and this constitutes a major ecological knowledge gap.
  2. In the arid Darling River in south‐eastern Australia, the present objectives were: (i) to determine the potential downstream dispersal distance of young golden perch (Macquaria ambigua); and (ii) to evaluate whether provision of environmental water enhanced dispersal of young fish from Menindee Lakes to the lower Darling River (LDR) while also cueing further spawning in downstream lotic reaches.
  3. Golden perch spawned in unregulated lotic tributaries on a flood pulse and larvae drifted or dispersed >1,600 km downstream and entered large ephemeral productive floodplain lake nursery habitats as fully scaled fingerlings.
  4. Planned releases of environmental water cued golden perch spawning in the LDR and enabled juvenile fish to disperse downstream from the Menindee Lakes nursery into receiving populations in the LDR, Great Darling Anabranch, and southern Murray River, with some fish potentially completing an active migration of >2,100 km by age 1 year.
  5. The Darling River case study highlights the need for a system‐scale approach to the conservation management of pelagophilic fish, along with multi‐year perennial flow strategies to improve ecosystem integrity in large rivers globally.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号