首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeasts used as a probiotic in fish diets could stimulate fish resistance against bacterial infection and could enhance the activities of digestive enzymes in fish guts. In addition to yeast importance, dietary protein is another important part in fish diets that should be carefully optimized to meet fish requirement. It is proposed that the yeast supplementation may enhance the dietary protein turnover and reduce the protein requirement for fish. Therefore, the interactive effects of dietary protein and yeast levels on the growth performance of Nile tilapia, Oreochromis niloticus (L.) fry and their challenge against Aeromonas hydrophila infection was evaluated. In the present study, ten experimental diets were formulated to contain either 35% or 45% crude protein (CP). For each protein level treatment, bakery yeast (Saccharomyces cerevisiae) was supplemented at 0.0, 0.50, 1.0, 2.0, or 5.0 g/kg diet. Fish (0.25–0.48 g) were distributed at a rate of 25 fish per 140-L aquarium. For each diet, triplicate aquaria were fed twice a day, 5 days a week for 12 weeks. Fish growth and feed utilization were significantly affected by either dietary protein or yeast levels alone, while no significant effect of their interaction was observed. The highest fish growth was obtained at 1.0–5.0 g yeast/kg diet at both protein levels; however, the fish performance at 45% CP was better than that fed on 35% CP diets. The optimum feed conversion ratio (FCR) was obtained when fish fed on 1.0–5.0 and 2.0–5.0 g yeast/kg diet at 35 and 45% CP, respectively. The cumulative fish mortality, after interperitoneal injection with A. hydrophila for 10 days, and bactericidal activity was significantly higher in fish fed 35% CP diets than those fed 45% CP diets. Both variables decreased significantly with the increase in yeast levels. The lowest bacterial count and bactericidal activity were obtained in fish fed 5.0 g yeast/kg diet irrespective to dietary protein levels. It could be concluded that the inclusion of live bakery yeast in practical diets could improve the growth performances, feed utilization, and physiological status of Nile tilapia fry and their challenge against A. hydrophila infection. Moreover, fish performance when fed 45% CP diet was better than those fed 35% CP diet. Based on these results, the most suitable yeast level for maximum Nile tilapia growth was determined to be 2.0 g yeast/kg diet with 45% CP diet; however, this level was recommended to stimulate their productive performance and enhances their resistance against A. hydrophila infection.  相似文献   

2.
This study was conducted to evaluate the use of gambusia, Gambusia affinis, fish meal (GFM) in practical diets for fry Nile tilapia, Oreochromis niloticus (2.11 ± 0.11 g). Six isonitrogenous diets (35%) were formulated in which GFM replaced 0.0, 10, 25, 50, 75, or 100% of the protein supplied by herring fish meal (HFM). Fish were fed one of the test diets at a feeding rate of 4% of the fish body weight 6 d a week, 2 times a day for 13 wk. Results demonstrated that fish growth increased with increasing GFM up to 75%, which produced the highest growth of the treatments. The lowest fish growth was obtained at 100% GFM. Feed intake (FI), protein efficiency ratio (PER), and apparent protein utilization (APU) increased significantly, while feed conversion ratio (FCR) decreased significantly with increasing GFM up to 75%. FI, PER, and APU decreased significantly, while FCR increased significantly for diets containing 100% GFM. There were no significant differences in moisture, protein, lipid, or ash contents in final fish body following inclusion of GFM in fish diet. There was no significant difference in the digestibility coefficient of dry matter. The digestibility coefficients of protein and gross energy for diets containing 100% GFM replacement were the lowest as compared with other GFM levels. The present study recommended that GFM is a suitable protein source in practical diets for fry Nile tilapia and could replace HFM up to 75%.  相似文献   

3.
为研究饲料中不同蛋白质含量对美洲鲥幼鱼生长的影响,设置了蛋白质含量分别为35%、40%和45%的3组实验,经过41d的试验得出:蛋白质含量为40%的饲料组,幼鱼的增重率、特定生长率最高(P<0.05);蛋白质含量为40%组和45%组的蛋白质效率和饲料转化率无显著差异(P>0.05),但均高于35%组(P<0.05)。  相似文献   

4.
To evaluate isolated pea protein as feed ingredient for tilapia (Oreochromis niloticus) juveniles, triplicate groups were fed with four isonitrogenous [crude protein: 421.1–427.5 g kg−1 in dry matter (d.m.)] and isoenergetic (gross energy: 20.46–21.06 MJ kg−1 d.m.) diets with varying protein sources for 8 weeks. Fish meal-based protein content of diets was substituted with 0% (diet 100/0=control group), 30% (diet 70/30), 45% (diet 55/45) and 60% (diet 40/60) isolated pea protein. Tilapia juveniles with an initial body weight of 2.23–2.27 g were fed in average at a level of 5% of their body weight per day. Highest individual weight gain (WG: 21.39 g) and specific growth rate (SGR: 4.21% day−1) and best feed conversion ratio (FCR: 0.90) were observed in tilapia fed diet 100/0, followed by fish-fed diet 70/30 (WG: 19.09 g; SGR: 4.03% day−1; FCR: 0.98), diet 55/45 (WG: 16.69 g; SGR: 3.80% day−1; FCR: 1.06) and diet 40/60 (WG: 16.18 g; SGR: 3.74% day−1; FCR: 1.06). Although fish fed diet 100/0 showed the best performance, inclusion of 30% protein derived from pea protein isolate resulted in a growth performance (in terms of WG and SGR) that did not differ significantly from diet 100/0 in contrast to fish fed diet 55/45 and 40/60. Crude ash content in the final body composition of the experimental fish decreased with increasing dietary pea protein content, while crude protein and lipid content remained equal between the groups. Significant decreasing growth performance and body ash incorporation of tilapia at higher inclusion levels seem to be mainly related to the dietary amino acid profile and phytic acid contents.  相似文献   

5.
Six-week-old Nile tilapia (Oreochromis niloticus) fry with an average weight (SD) of 0.51(0.2) g were reared for 140 days on five formulated, isocaloric diets of different protein levels (25, 30, 40 and 45% by dry weight). Fish fed diets of higher protein levels (40 and 45%) showed better growth and feed conversion ratio than those on lower protein levels. Fast-growing fish matured earlier. Maturation rate was affected by the dietary protein levels. Males matured earlier than females: the first mature males were recorded when they were 14 weeks old, whereas the females matured after 18 weeks. In both sexes, mean percentage of mature fish rose with increasing dietary protein level, the percentage of mature males being higher than that of the females. Similarly, the percentage of mature fish rose with the increasing age of fish, with more than 50% males and females mature at the age of 22 and 24 weeks, respectively, the exception being the 25% protein diet fed fish, where the percentage of mature fish was below 50%. In all treatments, spawning was initiated when the fish were 22 weeks old. Smallest size at spawning of males and females was 9.2 cm (13.1 g) and 8.1 cm (8.9 g), respectively, and dietary protein levels influenced the size of fish at first maturity. For both sexes, no difference was found in the gonado-somatic index (GSI) among different treatments. Fecundity increased with increasing dietary protein levels, but significant differences were found only between 40–45% and 25–35% dietary protein levels. The relative fecundity (eggs g–1 female) was higher at the lower dietary protein levels (25–35%) than at the higher dietary protein levels (40–45%). The dietary protein levels did not have any significant influence on the size and weight of mature eggs. The chemical composition of fish and mature ovaries was significantly influenced by the dietary protein level.  相似文献   

6.
A nutrition trial was conducted to investigate the effects of dietary lipid levels and supplemental Ulva meal on growth performance, feed efficiency, nutrient utilization, and body composition of juvenile Nile tilapia, Oreochromis niloticus. Four isonitrogenous (CP 40%) diets containing 0% and 5% Ulva meal were formulated to contain 10% (low-lipid; LL) and 20% (high-lipid; HL) crude lipid. Triplicate groups of fish (~10 g) were fed to apparent satiation three times daily for 16 weeks. Fish fed 5% Ulva meal showed an increased growth performance (P < 0.05) compared with fish fed non-Ulva supplemented diets, irrespective of dietary lipid level. In particular, the incorporation of Ulva meal improved specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER). Feeding fish 5% Ulva meal diets resulted in significantly lower carcass lipid content. The results indicate that 5% inclusion of Ulva meal at both dietary lipid levels improves growth performance, feed efficiency, nutrient utilization, and body composition of Nile tilapia.  相似文献   

7.
Growth, feed conversion, and nutrient retention efficiencies of African catfish fingerling, Clarias gariepinus (5.22 ± .07 cm; 8.22 ± 0.03 g), fed diets with varying levels of protein were assessed by feeding seven casein/gelatin based isocaloric (17.62 kJ/g GE) experimental diets with graded levels of dietary protein (20%, 25%, 30%, 35%, 40%, 45%, and 50% of the diet) to triplicate groups of fish to apparent satiation for eight weeks. Effects of feeding these diets on live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), protein retention efficiency (PRE%), and energy retention efficiency (ERE%) were assessed. Maximum LWG% (867%), PER (2.01), highest PRE (32%), ERE (69%), best FCR (1.39), and maximum body protein were recorded in fish fed diet containing 35% protein. On the basis of the second-degree polynomial regression analysis of the above response variables, it is recommended that the inclusion of protein in the range of 34.4%–39.6% is optimum for maximizing growth potential, feed conversion, and nutrient retention in African catfish fingerling, Clarias gariepinus.  相似文献   

8.
The study was designed to investigate the influence of fermented soybean meal (FSBM) on the growth and feed utilization of juvenile Chinese sucker, Myxocyprinus asiaticus. Seven isonitrogenous and isolipidic diets were formulated with 0%, 15%, 25%, 35%, 45%, 55% or 65% replacement of fish meal with FSBM on a protein basis. Each diet was fed to three replicate groups of fish with an initial weight 4.59 ± 0.2 g for 8 weeks. Weight gain (WG) and specific growth rate (SGR) was significantly lower when FSBM inclusion was 391 g kg?1 or greater, replacing more than 45% fish meal protein. A significant negative relationship was observed between growth response and the level of fish meal protein replacement with FSBM. Methionine and Lysine content decreased as FSBM inclusion levels increased, consequently compromising growth performance. Feed intake (FI) were unaffected by dietary FSBM levels. The feed conversion ratio (FCR) of fish fed D‐0, D‐15, D‐25 and D‐35 diets was significantly lower than those fed other diets. The protein efficiency ratio (PER) was highest at the lowest FSBM inclusion level. Experimental diets D‐0, D‐15, D‐25 and D‐35 had apparent dry matter digestibility ranging from 71.2% to 72.6% and apparent protein digestibility (ADPs) from 89.1% to 90.1%, while the diets with higher FSBM inclusion (D‐45 to D‐65) had a significantly lower apparent dry matter digestibility range (69.7–70.3%) and ADPs range (88.5–88.9%). It is concluded that FSBM is an acceptable alternative plant protein source that can replace up to 35% of fish meal protein in diets without significant adverse effects on growth, survival, FCR, PER and body composition.  相似文献   

9.
A feeding trial was conducted to study the effect of six iso‐energetic diets containing 25, 30, 35, 40, 45 and 50% crude protein (CP) on growth, survival and feed conversion ratio (FCR) as well as the protein requirement of an endangered cyprinid, Tor putitora. Triplicate groups of fingerlings with initial total length of 10.0–11.0 cm and weight of 12.0–12.5 g were reared in earthen ponds and fed diets at 5% of body weight for 120 days. Performance was evaluated on the basis of total length gain, body weight gain, survival rate, feed efficiency, FCR, protein efficiency ratio, specific growth rate, energy retention, gross and net yield in kg ha?1. Whole‐body carcass composition of fish was analysed at the start and the end of the experiment. Growth and FCR were influenced significantly (P<0.05) by dietary CP contents; higher growth and lower FCRs were obtained with increasing dietary protein. Dietary protein also influenced the whole‐body carcass composition of the fish. Higher protein and ash, and lower moisture and lipid in the whole body were observed with increasing dietary protein. Broken‐line regression analysis indicated that the optimum dietary protein level for maximal growth of mahseer lies between 45% and 50% (45.3%). Overall feed utilization and growth performance of the fish is comparable to that of other aquaculture species and the fish offers high potential for commercial aquaculture.  相似文献   

10.
An 8-week growth trial was conducted to assess the effect of dietary protein on growth, feed utilization, protein retention efficiency, and body composition of young Heteropneustes fossilis (10.02 ± 0.09 g; 9.93 ± 0.07 cm). Isocaloric (4.15 kcal g−1, GE) diets with varying levels of protein (25, 30, 35, 40, 45, and 50% of the diet) were fed near to satiation to triplicate groups of fish. Optimum dietary protein was determined by analyzing live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR%), and protein retention efficiency (PRE%) data. Maximum LWG% (167), best FCR (1.42), PER (1.75), SGR (1.76), and PRE (31.7%) were evident in fish fed 40% protein diet (Diet 4). Body protein data also supported the above level. However, second-degree polynomial regression analysis of the above data indicated that inclusion of dietary protein in the range of 40–43% is optimum for the growth of young H. fossilis.  相似文献   

11.
An 8‐week feeding experiment was conducted in a water flow‐through system (26–28 °C) to determine the dietary threonine requirement of fingerling Labeo rohita (3.90±0.03 cm; 0.58±0.02 g). Growth, feed utilization and body composition of fish fed test diets (40% crude protein; 17.9 kJ g?1 gross energy) with graded levels of l ‐threonine (0.75%, 1.0%, 1.25%, 1.50%, 1.75% and 2.0% dry diet) to apparent satiation were response variables used to assess threonine adequacy. Diets were made isonitrogenous and isoenergetic by adjusting the levels of glycine and dextrin. The amino acid profiles of the test diets were formulated to that of 40% whole chicken egg protein except for threonine. The performance of fish fed experimental diets was evaluated using calculated values for weight gain (g fish?1), feed conversion ratio (FCR), protein efficiency ratio (PER) and protein productive value (PPV) data. Maximum weight gain (g fish?1) (1.79), lowest FCR (1.39), highest PER (1.76) and PPV (0.33) were recorded at 1.50 g per 100 g dietary threonine. Statistical analysis of weight gain, FCR, PER and PPV data reflected significant differences (P<0.05) among treatments. Except for reduced growth performance in fish fed threonine‐deficient diets, no deficiency signs were noted. Weight gain, FCR, PER and PPV data were also analysed using second‐degree polynomial regression analysis to obtain a more accurate threonine requirement estimate, which was found, using each response variable, to be at 1.70, 1.63, 1.65 and 1.51 g per 100 g of dry diet, corresponding to 4.2, 4.07, 4.12 and 3.77 g per 100 g of dietary protein respectively. Based on the second‐degree polynomial regression analysis of the live weight gain, FCR, PER and PPV data, the optimum dietary level of threonine for fingerling L. rohita was found to be in the range of 1.51–1.70 g per 100 g of the dry diet, corresponding to 3.77–4.2 g per 100 g of dietary protein.  相似文献   

12.
A 16‐week feeding experiment was conducted to study the feasibility of using broad bean meal (BBM) as a replacement for fish meal (FM) for Nile tilapia Oreochromis niloticus fry, initial average weight 1.9±0.18 g. FM (50% of the diet) was used as sole sources of animal protein in the control diet 1. The replacement levels of BBM in diets (2–5) were 25%, 50%, 75% and 100% of the FM. Methionine (1%) and lysine (0.5%) were added to each diet except the control diet. Three groups of fish were fed each of five isonitrogenous (31.2% CP) and isocaloric (20.1 kJ g?1), and performance was compared against a nutritionally balanced control diet at the end of the experiment. Nile tilapia fed the diet containing 50% BBM exhibited comparable growth with those fed the FM‐based control diet. Digestibility of protein, energy and lipid decreased with increasing levels of BBM above 50% of total replacement FM into the diet. Incorporation of BBM in the diets significantly affected the moisture, fat and energy of whole fish body. These results suggest that BBM can replace 50% of the FM in diet for Nile tilapia fry, without adverse effects on fish performance.  相似文献   

13.
Aquaculture development in Ghana is currently limited by inadequate supply of fingerlings and prohibitive cost of commercial feeds among other challenges. This study tested the feasibility of using low‐cost feeds containing soybean meal instead of fishmeal for nursing Nile tilapia (Oreochromis niloticus) fry. Three isonitrogenous (~48% crude protein) and isoenergetic (~17 kJ/g) diets with increasing inclusions of soybean meal as partial replacements for fishmeal were formulated. A commercial fishmeal‐based fry feed served as the control diet. Triplicate groups of 225 fish per tank (average initial weight: 2.09 ± 0.14 g) were stocked in a recirculating aquaculture system and fed the experimental diets for 21 days. Afterwards, we investigated the postprandial metabolism, nutrient digestibility, growth and gut histology in Nile tilapia fry. Simple economic analyses were also conducted to assess the cost‐effectiveness of the diets used in the feed trial. The dietary inclusions of the soybean meal significantly reduced feed cost by ~43% relative to the control diet. The growth performance and feed utilization parameters did not vary significantly among the different treatments. The soybean diets elicited significant reductions in villi heights and goblet cell numbers, which corresponded with increasing dietary levels of soybean meal. This study confirms the potential of soybean meal as a partial replacement for fishmeal in Nile tilapia fry diets in terms of lower feed costs, fish growth performance, nutrient digestibility and postprandial nitrogenous excretions. The inclusion of soybean, however, affected negatively the gut integrity of the fry.  相似文献   

14.
Animal by-product meals (ABM) were substituted for fish meal in five experimental diets for Nile tilapia fry, Oreochromis niloticus (L), with 25%, 50%, 75% and 100% substitution. Two diets with 100% ABM were tested, one with 50:50 animal lipid:soybean oil, and the other with 100% fish oil as attractant. In general, the best growth and feeding performance was obtained with a control diet based on fish meal as the sole protein, but the results were not statistically different from those obtained with 75% and 100% ABM with soybean oil. A simple cost analysis suggested better economic efficiency when tilapia were fed with 100% ABM. It was concluded that animal by-product meal can be used as a sole protein source in commercial diets for Nile tilapia fry, without affecting growth and food utilization of the fish, improving the economics of feeding in comparison with fish meal.  相似文献   

15.
Growth performance and body composition of tilapia Oreochromis niloticus (L.), fed isonitrogenous and isoenergetic diets containing different grain sources (maize, wheat, barley, sorghum and rice) at a level of 25% were studied for a period of 62 days. Fish fed a diet containing sorghum showed the maximum weight grain, highest specific growth rate (SGR, 2.23), the best feed conversion (FCR, 1.07) and protein efficiency ratio (PER, 2.42) in comparison with all other diets. The diets containing maize, wheat and rice did not show any significant (P < 0.05) differences between each other. The barley diet showed the poorest values (SGR, 2.05; FCR. 1.34; PER, 1.98: and NPR, 30.65) in comparison with others. Although the diet containing sorghum showed the best net protein retention (NPR, 36.21) values, the results did not differ (P > 0.05) among maize, wheat and sorghum diets. The sorghum diet produced fish with lower moisture but higher body fat contents as compared to others. The fish fed diets containing maize, wheat, barley and rice did not show any significant difference (P > 0.05) in their body moisture and fat contents. The source of grain in the diet did not affect the crude protein and ash contents of fish (P > 0.05). It is suggested that cereal grains at the 25% level can efficiently be utilized in tilapia diets, sorghum being the best.  相似文献   

16.
There are several estimates of the optimal dietary crude protein concentration for juvenile tilapia fed high quality animal proteins or mixtures of animal and plant derived feedstuffs. In the present study, the optimal dietary crude protein concentration for hybrid tilapia Oreochromis niloticus × O. aureus reared in glass aquaria was determined using diets free of fish meal. Further, initial weight of fish was approximately 21 g, which is the beginning of the growout phase of many commercial operations. The diets contained primarily corn co-products and soybean meal as the sources of amino acids, and were formulated to provide 24, 26, 28, 30, 32 or 34% crude protein. The diets were fed to quadruplicate groups of tilapia for 10 wk. Increasing concentrations of dietary crude protein resulted in proportional improvements in weight gain and feed efficiency up to 30% dietary crude protein. Fish fed 24% dietary crude protein exhibited significantly reduced weight gain compared to fish fed 28–34% dietary crude protein. Protein efficiency ratio (PER) of tilapia was unaffected by dietary crude protein concentration. However, fish fed 28% crude protein exhibited numerically higher PER (2.58) than fish fed other levels of crude protein. Muscle crude protein levels were lower in fish fed diets containing 24–28% crude protein than in fish fed 30% and higher concentrations. Quadratic regression analyses of weight gain and feed efficiency data indicated the optimal dietary crude protein concentration to be 29.65% and 28.33%, respectively, while broken line analyses indicated 27.5 and 27.3%, respectively. Based on weight gain, feed efficiency, PER, and proximate composition data, the authors recommend 28% dietary crude protein as the minimum for hybrid tilapia fed all-plant diets and reared in tanks.  相似文献   

17.
A feeding trial was conducted in aquaria with juvenile hybrid tilapia (Oreochromis niloticus×Oreochromis aureus) to evaluate the use of different protein sources in combination with distillers dried grains with solubles (DDGS). Twelve 110‐L glass aquaria were stocked with 28 juvenile (2.7±0.5‐g) hybrid tilapia per aquarium. Three replicate aquaria were randomly assigned to each of the four dietary treatments. Diets were isonitrogenous and isocaloric. The control diet contained 12% fish meal and 41% soybean meal as the primary protein sources (Diet 1). Each experimental diet contained 30% DDGS by weight, in combination with 8% fish meal and 34% soybean meal (Diet 2), 26% meat and bone meal (MBM), and 16% soybean meal (Diet 3), or 46% soybean meal alone (Diet 4). Fish were fed to apparent satiation twice a day for 10 weeks. There were no significant differences (P>0.05) in average weight gain, specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER) among tilapia fed Diets 1, 2, and 3. Fish fed Diet 4 had significantly lower (P<0.05) average weight gain, SGR, and PER than fish fed Diets 1 and 3. Relative cost per unit weight gain for Diets 1, 2, and 3 were statistically similar (P>0.05), while cost per unit weight gain for Diet 4 was significantly higher (P<0.05) than other diets. Diet 3 represented approximately a 20% cost savings compared with the control diet, with no reduction in growth. This study indicates that diets without fish meal containing 30% DDGS in combination with MBM and soybean meal provide good growth in tilapia. A diet without animal protein did not support acceptable growth.  相似文献   

18.
Tilapia, Oreochromis niloticus, is among the fish species with high potential for aquaculture in intensive farming, and Brazil is among the largest producers worldwide. Some of the amino acid requirements in practical diets for tilapia are still unknown. Thus, this study determined the dietary arginine requirements for Nile tilapia juveniles based on growth performance, hematological and biochemical responses, and muscle growth. Three hundred Nile tilapia juveniles (2.95 ± 0.79 g) were distributed into 20–500 L fiberglass aquaria and fed five extruded isoproteic (28% crude protein) and isoenergetic (3160 kcal/kg) diets formulated to contain 0.95, 1.10, 1.25, 1.40, and 1.55% arginine. Based on the quadratic regression analysis, the best results in weight gain, feed conversion, protein efficiency ratio, and protein retention were estimated in fish fed diets containing 1.36, 1.34, 1.36, and 1.37% arginine, respectively. The best amino acid body retention values were estimated in fish fed diets containing 1.31–1.37% arginine. Muscle growth occurred mainly by hyperplasia in fish fed 0.95% arginine, whereas reduction in the hyperplasia time and signs of hypertrophy occurred in fish fed 1.10–1.55% arginine diets. It was concluded that a diet with 1.36% of arginine (with 1.53% lysine in diet) meets the requirements of Nile tilapia juveniles.  相似文献   

19.
A 12 week feeding trial was conducted in a closed recirculating system with Cichlasoma synspilum (Hubbs) fry (280 mg) in order to determine their protein requirements. Six diets containing increasing protein levels (30, 35, 40, 45, 50 and 55%) were formulated using brown fish meal as the protein source. The fish were fed by hand daily at a rate of 6% body weight: at 2-week intervals, the fish were bulkweighed and the feeding rate was adjusted accordingly After 90 days, a direct relationship was observed between dietary protein content and fmal body weight, weight gain, and specific growth rate (P < 0,05), with the best results for diets containing 50,45,40 and 55% of protein: feed intake, food conversion ratio, protein efficiency ratio, carcass nitrogen deposition and apparent N utilization were also statistically higher (P < 0,05) for fish fed diets with 50, 45, 40 and 55% of protein content. The lower performance was obtained in those fish fed diets with 30 and 35% protein content. Applying the broken-line response method with SGR data, the protein requirement of C. sytispilum fry was established as 40.81%.  相似文献   

20.
A feeding trial was conducted in aquaria with juvenile largemouth bass Micropterus salmoides to examine the effects of increasing dietary lipid levels on growth and body composition. Feed‐trained largemouth bass fingerlings were graded to a similar size (16.3 ± 2.4 g) and randomly stocked into 15 113.6‐L glass aquaria at 25 fish/aquarium. Fingerlings were fed twice daily to apparent satiation with one of five isonitrogenous extruded experimental diets based on practical ingredients. Diets contained approximately 40% crude protein and either 0, 5, 10, 15, or 20% added lipid. Due to background lipids in the ingredients, this equated to total lipid levels of 7, 10, 16, 20, and 23%, respectively. These diets had protein to energy ratios of 137, 120, 106, 95, and 86 mg/kcal, respectively. There were three replicate aquaria per dietary treatment. After 12 wk, there were no statistically significant differences (P > 0.05) in average weight (g), specific growth rate (% body weight/d), survival (%), or protein efficiency ratio (PER, %) among fish fed the five diets, which averaged 79.3 ± 5.6, 1.9 ± 0.1, 99.5 ± 1.5, and 2.11 ± 0.19, respectively. Juvenile largemouth bass fed diets containing 15 and 20% added lipid had significantly lower (P± 0.05) feed conversion ratios (FCR) (1.1 ± 0.0 and 1.1 ± 0. 1, respectively) than fish fed diets containing 0, 5, and 10% added lipid (1.4 ± 0.1, 1.3 ± 0. 1, and 1.3 ± 0.2, respectively). Proximate analysis of whole body samples indicated a significantly higher (P ± 0.05) lipid content in fish fed 15 and 20% added lipid compared to fish fed lower lipid levels. While FCR was lowest in fish fed the 15 and 20% added lipid diets, increased whole body lipid deposition may indicate that these levels are above optimal levels for juvenile largemouth bass. It appears that 7–16% total dietary lipid (P/E:137–106 mg/kcal) is sufficient to support efficient growth without impacting body composition in juvenile largemouth bass when fed a diet containing 40% crude protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号