首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6919篇
  免费   348篇
  国内免费   6篇
林业   487篇
农学   145篇
基础科学   36篇
  1285篇
综合类   1224篇
农作物   210篇
水产渔业   555篇
畜牧兽医   2658篇
园艺   197篇
植物保护   476篇
  2023年   58篇
  2022年   45篇
  2021年   138篇
  2020年   151篇
  2019年   177篇
  2018年   181篇
  2017年   150篇
  2016年   177篇
  2015年   162篇
  2014年   185篇
  2013年   265篇
  2012年   476篇
  2011年   599篇
  2010年   296篇
  2009年   240篇
  2008年   494篇
  2007年   522篇
  2006年   462篇
  2005年   431篇
  2004年   407篇
  2003年   378篇
  2002年   385篇
  2001年   61篇
  2000年   38篇
  1999年   50篇
  1998年   42篇
  1997年   44篇
  1996年   30篇
  1995年   47篇
  1994年   43篇
  1993年   43篇
  1992年   30篇
  1991年   34篇
  1990年   31篇
  1989年   34篇
  1988年   28篇
  1987年   26篇
  1986年   24篇
  1985年   35篇
  1984年   26篇
  1983年   27篇
  1982年   20篇
  1981年   15篇
  1980年   23篇
  1979年   23篇
  1978年   14篇
  1977年   15篇
  1975年   11篇
  1974年   11篇
  1973年   17篇
排序方式: 共有7273条查询结果,搜索用时 31 毫秒
1.
Barley/cereal yellow dwarf viruses (YDVs) cause yellow dwarf disease (YDD), which is a continuous risk to cereals production worldwide. These viruses cause leaf yellowing and stunting, resulting in yield reductions of up to 80%. YDVs have been a consistent but low‐level problem in European cereal cultivation for the last three decades, mostly due to the availability of several effective insecticides (largely pyrethroids and more recently neonicotinoids) against aphid vectors. However, this has changed recently, with many insecticides being lost, culminating in a recent European Union (EU) regulation prohibiting outdoor use of the neonicotinoid‐insecticide compounds. This change is coupled with the growing challenge of insecticide‐resistant aphids, the lack of genetic resources against YDVs, and a knowledge deficit around the parameters responsible for the emergence and spread of YDD. This means that economic sustainability of cereal cultivation in several European countries including France and United Kingdom is now again threatened by this aphid‐vectored viral disease. In this review, we summarize the current knowledge on the YDV pathosystem, describe management options against YDD, analyse the impacts of the neonicotinoid ban in Europe, and consider future strategies to control YDV. © 2020 Society of Chemical Industry  相似文献   
2.
3.
4.
New Forests - Native trees from the Caribbean were tested for seed desiccation responses, by adapting the “100-seed test” protocol. Ninety-seven seed lots of 91 species were collected...  相似文献   
5.
6.
Uromyces viciae-fabae, rust of faba bean, parasitizes other legume crops such as lentils (Lens culinaris) and field peas (Pisum sativum) in some environments. In this study we examined the host range of two Australian isolates of U. viciae-fabae collected and purified from a faba bean crop and classified as U. viciae-fabae ex V. faba. Field pea (P. sativum), chickpea (Cicer arientinum), lupin (Lupinus spp.), lentil (L. culinaris), and mung bean (Vigna radiata) genotypes were tested with these isolates, as well as resistant and susceptible genotypes of the faba bean host. Race specificity for these two pathogen isolates was observed on Vicia faba, with two faba bean genotypes showing partial resistance. Both U. viciae-fabae isolates also colonized field pea seedlings and successfully produced uredinia under glasshouse conditions, despite this fungus not being known as a pathogen of Australian field pea crops. No sporulation of either isolate of U. viciae-fabae ex V. faba was observed on any of the remaining legume species tested. However, obvious differences in fungal growth were observed, ranging from small infection sites with very rare haustorium formation in mung bean to more extensive growth and the development of potential uredinial structures in chickpea. These observations are discussed in relation to the phylogenetic relationship of these host and nonhost species.  相似文献   
7.
Winter canola (Brassica napus L.) is highly sensitive to increasing temperatures during the reproductive and pod-filling stages. Although the impact of high day-time temperature stress on yield and quality has been documented in canola, similar information under high night-time temperature (HNT) stress is not available. Using six hybrids and four open-pollinated cultivars, we observed a marked shift in peak flowering towards earlier, cooler hours of the morning under HNT. Averaged across two independent experiments, the photochemical efficiency of photosystem II was significantly decreased (3%), with a significant increase in thylakoid membrane damage (13%) in the leaves of susceptible cultivars under HNT stress. Similarly, the susceptible cultivars also recorded significant reduction in biomass (34%), pod number (22%), pod weight (37%) and total seed weight (40%) per plant while the same set of agronomic traits were not affected among the tolerant cultivars. Quantitative impact of heat stress was confirmed with increased sensitivity to HNT exposure from gametogenesis until maturity resulting in a significantly higher yield loss compared to stress exposure from post-flowering till maturity. HNT significantly decreased oil concentration, but increased protein concentration and saturated fatty acid levels in seeds of the susceptible cultivars. However, HNT had no impact on the unsaturated fatty acids in both hybrids and the open-pollinated cultivars. Breeding targets based on fatty acid composition for enhancing canola seed quality may not be easily amenable due to the inconsistency documented with the compositional changes under heat stress. In summary, our findings conclude that canola hybrids are better suited to regions experiencing heat stress, compared to open-pollinated cultivars, indicating the possibility of a complete shift to hybrid canola cultivation under predicted hotter climates in the future.  相似文献   
8.
Photosynthesis is one of the most important biological reactions and forms the basis of crop productivity and yield on which a growing global population relies. However, to develop improved plant cultivars that are capable of increased productivity, methods that can accurately and quickly quantify photosynthetic efficiency in large numbers of genotypes under field conditions are needed. Chlorophyll fluorescence imaging is a rapid, non-destructive measurement that can provide insight into the efficiency of the light-dependent reactions of photosynthesis. To test and validate a field-deployed fluorescence imaging system on the TERRA-REF field scanalyzer, leaves of potted sorghum plants were treated with a photosystem II inhibitor, DCMU, to reduce photochemical efficiency (FV/FM). The ability of the fluorescence imaging system to detect changes in fluorescence was determined by comparing the image-derived values with a handheld fluorometer. This study demonstrated that the imaging system was able to accurately measure photochemical efficiency (FV/FM) and was highly correlated (r = 0.92) with the handheld fluorometer values. Additionally, the fluorescence imaging system was able to track the decrease in photochemical efficiency due to treatment of DCMU over a 7 day period. The system’s ability to capture the temporal dynamics of the plants’ response to this induced stress, which has comparable dynamics to abiotic and biotic stressors found in field environments, indicates the system is operating correctly. With the validation of the fluorescence imaging system, physiological and genetic studies can be undertaken that leverage the fluorescence imaging capabilities and throughput of the field scanalyzer.  相似文献   
9.
Wang  Hai  Ta  Na  Jin  Ke  Ji  Baoming  Schellenberg  Michael P.  Wei  Zhijun  Wang  Zhen 《Journal of Soils and Sediments》2020,20(3):1344-1356
Journal of Soils and Sediments - Fungi play an essential role in regulating the functioning of terrestrial ecosystems and are sensitive to climate change factors. Climate change incidents, such as...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号