首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 151 毫秒
1.
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中  相似文献   

2.
硝化细菌的分离和鉴定   总被引:9,自引:0,他引:9       下载免费PDF全文
黄珏 《水产科技情报》2004,31(3):130-134
水体中的氨氮和亚硝酸盐是水产养殖过程中的产物,对生物体有毒,亚硝酸盐还是强烈的致癌物质.如何降解这两种物质,是水产科技工作者一直所关注的研究课题.硝化细菌是一类具有硝化作用的自养菌,包括硝化菌和亚硝化菌两个生理菌群,其主要特性是生长速率低,具有好氧性、依附性和产酸性等,可通过NH4+·NO2-·NO3-这一过程将NH4+转化为NO3-,从而降低水中氨氮及亚硝酸氮的含量.因此,它对水产养殖业及环境保护具有重要意义.  相似文献   

3.
为探讨适宜大型海藻芋根江蓠(Gracilaria blodgettii)栽培的生态条件,分别测定了在不同总无机氮浓度(48μmol·L^-1、96μmol·L^-1、144μmol·L^-1、192μmol·L^-1、240μmol·L^-1、288μmol·L^-1和336μmol·L^-1)和不同氮磷比(N/P)(1/1、5/1、10/1、50/1和100/1)的培养条件下,芋根江蓠藻体的相对生长速率(RGR)和生化组分的变化。结果表明,最适总无机氮浓度为192μmol·L^-1,最适N/P为10/1。芋根江蓠适宜在氨氯(NH4^+-N)比例较高的海水中生长,3种无机氮最适合质量比值是m[硝氮(NO3^--N)]∶m(NH4^+-N)∶m[亚硝氮(NO-2-N)]=1∶10∶5和m(NO3^--N)∶m(NH4^+-N)∶m(NO-2-N)=5∶10∶1。在最适宜的营养盐因子环境条件下,芋根江蓠在生化组分(光合色素及可溶性蛋白)和抗氧化能力等方面都表现较好;而在海水总无机氮浓度过低、N/P过高以及NH4^+-N在总无机氮中所占比例较低等条件下,都不利于藻体正常生长,会导致藻体营养不良、生长缓慢。  相似文献   

4.
基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究   总被引:2,自引:0,他引:2  
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中,斜生栅藻对NO3--N的吸收速率[0.12~1.00μmol/(g·min)]显著低于NO3--N作为唯一氮源的单一组[0.78~1.23μmol/(g·min)],表明NH4+-N的存在对藻类吸收NO3--N有抑制作用。在14NO3--N和15NO3--N同时存在时,斜生栅藻优先吸收14NO3--N,产生同位素分馏效应,但不同形态氮对藻类氮吸收的影响远远大于同位素的影响。  相似文献   

5.
NH3-N的处理方法较多。根据不同水环境以及后续处理方式或效果而采用不同方法,例如生物法的生物包,微生态制亚硝化细菌剂,沸石粉等,有的能够将水中NH3-N转化,有的能将NH3和NH4 转化。由于它们或占用水体空间,或不可再生重复,对于海水工厂化养殖的水处理要求来说,有一定的局限性  相似文献   

6.
应用沉淀、藻类净化、消毒和过滤等水处理技术,因地制宜地设计了河口水预处理工艺,其流程为:原水→-级沉淀→二级沉淀→藻类净化→氯化消毒→三级沉淀→砂滤→出水。试验结果表明:该工艺对降低浑浊度作用显著,出水的浑浊度仅1NTU左右,降低了99.7%;对营养盐的去除效果明显,NH3-N1、NO2^- -N.NO3^- -N和PO4^3- -P的去除率分别为56.3%、86.4%、77、2%和189.9%;经处理后的河口水用于罗氏沼虾育苗生产,取得了良好的生产效果和经济效益。  相似文献   

7.
养殖水体中“富氮”的危害及防治方法   总被引:1,自引:0,他引:1  
李贵雄 《内陆水产》2006,31(6):20-21
氮在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。其中游离氨和离子铵被合称为氨氮。水体中只有以NH4^+、NH2^-和NO3^-形式存在的氮才能被植物所利用.其他形式的氮不能被浮游生物所利用,并且会对池鱼产生危害。  相似文献   

8.
在褐菖鲉(Sebastiscusmarmoratus)室内养殖条件下,以不换水作为对照组,设置2个石莼(Ulva lactuca)养殖密度梯度,研究了石莼对褐菖鲉养殖水体的生态作用。试验结果表明,石莼对褐菖鲉养殖水体中氮、磷营养盐的清除效果明显。在褐菖鲉养殖水体中分别加入石莼534和801g·m13共9d不换水,与对照组相比,养殖密度为534g·m-3的石莼组对硝态氮(NO3-N)、氨态氮(NH4-N)和无机磷(PO4-P)的清除率分别为83.7%、90.7%和86.5%;养殖密度为801g·m^-3的石莼组对NO3-N、NH4-N和PO4-P的清除率分别为90.1%、96.9%和92.7%。  相似文献   

9.
水样中氮磷营养盐含量的稳定性及保存方法比较研究   总被引:6,自引:0,他引:6  
对淡水和海水水样4个氮磷营养盐参数(NH3-N、NO2-N、NO3-N、PO4-P)的6种保存方法进行了对比研究。试验结果显示,对于淡水水样的NH3-N、PO4-P和海水水样的NH3-N、NO3-N在各保存时间的变化幅度,6种方法间有显著差异;在10d内,4℃加5ml/L氯仿处理,在针对氮磷营养盐测定的水样的保存上是有效的方法。  相似文献   

10.
真江蓠对氨氮去除效率与吸收动力学研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以真江蓠(Gracilaria asiatica)为实验材料,在实验室水平上测定了真江蓠培养密度对NH4-N去除效率和吸收速率的影响,比较了真江蓠在氮半饥饿和氮饱和状态下的氨氮吸收动力学特征以及不同起始浓度NH4-N对其吸收速率的影响.结果表明:真江蓠密度为2~24 g·L-1时,5 h内随着藻体密度增大和实验时间延长,真江蓠去氨氮能力也增强.当藻体密度为24g·L-1时,真江蓠在5 h内去除氨氮效率最高,达到99.77%.各种藻体密度在起始阶段保持较高吸收速率(30~41 μmol·g-1·h-1),随后藻体密度与吸收速率呈反比关系,其最低藻体密度组(2 g·L-1)在3 h和5 h吸收速率最大,分别为28.33 μmol·g-1·h-1和18.85μmol·g-1·h-1.在起始浓度梯度实验中,氮半饥饿和氮饱和真江蓠吸收氨氮的最大吸收速率和半饱和常数在1 h均达到最高值,分别为116.47、159.40μmol·g-1·h-1和439.70、913.61 μmol·g-1·h-1.之后随着培养时间的延长而降低.氮半饥饿和氮饱和真江蓠对NH4-N的吸收差别不显著;当氨氮浓度为300~500μmol·L-1时,氮半饥饿的真江蓠在起始1 h内有一个快速吸收阶段(40.7~102.1μmol·g-1·h-1),吸收速率与NH4-N浓度几乎成正比,此时不符合米氏动力学饱和方程,而在低N浓度下(100~200μmol·L-1),藻体对NH4-N的吸收则没有出现这种现象;随着培养时间延长,直到NH4-N浓度达到一定限度时,吸收速率可达到一极大值而符合米氏动力学饱和方程.该研究结果为大规模栽培真江蓠净化水体和生态修复提供了理论依据.  相似文献   

11.
通过模拟培养试验,比较不同浓度非离子态氨(NH3-N)条件下,富营养化湖泊———太湖竺山湾水体及沉积物中硝化作用2个过程,即氨氧化和亚硝酸盐氧化的发生情况。结果表明,在试验设置的NH3-N浓度范围内,水体和沉积物中氨氧化速率都随着NH3-N浓度的升高显著增加(LSD检验,P<0.05),亚硝酸盐氧化速率却呈阶段性变化。水体中NH3-N浓度大于0.35 mg/L时,亚硝酸盐氧化速率开始显著降低(LSD检验,P<0.05),而氨氧化速率与亚硝酸盐氧化速率的比值从NH3-N浓度为0.15 mg/L开始随着NH3-N浓度的升高而显著增加,说明水体中亚硝酸盐氧化过程在NH3-N浓度为0.15 mg/L时已受到部分抑制;沉积物中亚硝酸盐氧化速率在NH3-N浓度大于0.65 mg/L时开始降低(LSD检验,P>0.05),而氨氧化速率与亚硝酸盐氧化速率的比值从NH3-N浓度为0.35 mg/L开始随着NH3-N浓度的升高而显著增加,说明沉积物中亚硝酸盐氧化过程在NH3-N浓度为0.35 mg/L时已受到部分抑制。太湖竺山湾水体中的NH3-N浓度为0.19 mg/L,已达到对亚硝酸盐氧化过程的抑制范围;沉积物间隙水中NH3-N浓度为0.16 mg/L,还未对亚硝酸盐氧化过程产生抑制效果。  相似文献   

12.
在封闭循环水养殖条件下,半滑舌鳎(Cynoglossus semilaevis Günther)的平均养殖密度(15.07±0.22)kg/m3,观测半滑舌鳎的呼吸频率,检测养殖水体中溶氧、氨氮、亚硝酸氮等24 h内摄食和代谢的变化规律。结果表明:(1)半滑舌鳎摄食前、后的呼吸频率平均值分别为27.3次/min和34.7次/min,摄食后的呼吸频率显著高于摄食前;(2)投喂前、后2.5 h内,水中溶氧一直处于下降趋势,在摄食2.5 h后,水中溶氧处于稳定的上升趋势;(3)投喂后,氨氮、亚硝酸氮浓度显著增高,2.5 h后达到峰值,随后缓慢降低,在下次投喂前0.5 h达到最低值。说明半滑舌鳎摄食活动对循环水养殖水质的影响呈现规律性,也说明循环水养殖模式可以满足半滑舌鳎对水质的基本要求。  相似文献   

13.
以沉水植物穗花狐尾藻(Myriophyllum spicatum L.)、伊乐藻(Elodea canadensis Michx)和金鱼藻(Ceratophyllum demersum L.)为试验对象,研究水体中不同硝态氮(NO_3~-N)和铵态氮(NH_4~+-N)浓度比对植物碳氮(C-N)代谢的影响。2015年春季栽培3种沉水植物;7月,截取长约10 cm的植物顶端于1 L的玻璃烧杯预培养,光暗比为14 L∶10 D,温度控制为光周期25℃,暗周期15℃,光照强度为110μmol/(m~2·s),预培养7 d后截取植物顶端1 g左右转入250 m L的锥形瓶,设计培养液总氮浓度为2 mg/L,按照NH_4~+-N与NO_3~-N的浓度比设置2∶1、1∶1、1∶2、2∶0、0∶2共计5个处理,以预培养液为对照,每个处理设置3个重复。结果表明:(1)与对照相比,氨氮添加显著提高了3种植物组织内游离氨基酸(FAA)的含量,且在氨氮浓度2 mg/L时FAA达最大;(2)植物体内可溶性糖含量(SC)存在显著的种间差异,二元方差分析显示处理间SC的差异,种间差异的贡献值为69%;(3)硝态氮完全替代氨态氮时,3种植物组织中的SC/FAA显著升高,二元方差分析显示处理间SC/FAA的差异主要源于氮源形态组成(56%);(4)伊乐藻体内FAA和SC含量均大于穗花狐尾藻和金鱼藻。这可能是它在富营养水体中更有优势的重要原因之一。  相似文献   

14.
为探讨聚丙烯塑料发泡材料(EPP)、悬浮球填料和海绵填料对集装箱循环水养殖废水中细菌吸附性能的差异,以及3种填料挂膜启动和挂膜成熟后对氨氮(NH_4~+-N)、亚硝酸盐氮(NO_2~--N)和硝酸盐氮(NO_3~--N)的净水效果,以集装箱循环水养殖废水为研究对象,采用自然挂膜的方式进行了为期3个月的试验,并对相关指标进行测定。结果显示:EPP填料对养殖废水中细菌的吸附能力最好,另外两种填料对细菌的吸附能力次之并且差异不显著(P0.05);3种填料自然挂膜成熟的时间分别为21 d、26 d和30 d;各填料挂膜成熟后处理高浓度NH_4~+-N养殖废水时,NH_4~+-N浓度与NO_2~--N浓度之间的关系可以用多项式y=ax~2+bx+c进行拟合,NH_4~+-N浓度与NO_3~--N浓度之间的关系可以用对数式y=aln(x)+b进行拟合。研究表明:EPP填料、悬浮球填料和海绵填料均可作为生物填料用于集装箱循环水养殖系统。  相似文献   

15.
三种水质改良剂对水中三态氮降解效果初步测试   总被引:1,自引:0,他引:1  
对水质改良剂对降低养殖水体中的三态氮浓度及有机物耗氧量进行了探讨,选出效果显著的,并找出水质改良剂加入水体中的最适浓度,以便在生产中改善水质,促进渔业生产。  相似文献   

16.
为研究藤壶壳作为生物滤料应用于对虾养殖尾水处理的可行性,通过比较陶瓷环组、聚乙烯(PE)组、藤壶壳组和藤壶壳+PE组4个不同滤料组合的生物挂膜效果,初步评价藤壶壳作为生物滤料的应用价值;通过设定藤壶壳的不同填充率(滤料体积∶尾水体积),研究填充率对对虾塘养殖尾水处理效果的影响。结果显示:藤壶壳组挂膜成功时间较早,水处理效果好;藤壶壳不同填充率对水处理中悬浮物、氨氮(NH_4~+-N)、亚硝酸盐氮(NO_2~--N)的处理效果有显著影响,A、B、C、D各组悬浮物在6 h时的去除率分别达(68.7±4.3)%、(74.5±7.0)%、(80.9±4.2)%和(82.1±3.8)%,其中B、C、D组去除率显著高于A组(P0.05);4组的氨氮最终去除率都在92.1%以上,以0.1 mg/L为基准,A组氨氮降至此质量浓度以下需要时间5 d,B、C组4 d,D组3 d,降解速率为D组C组B组A组;4组的亚硝酸盐氮最终去除率都在98.0%以上,以0.1 mg/L为基准,A组的亚硝酸盐氮降至此质量浓度以下需要时间为6 d,B、C、D组需要5 d,降解速率为D组C组B组A组。研究表明:藤虎壳作为生物滤料应用于对虾养殖尾水处理,效果良好,且随着填充率的增大,处理效率增强;但考虑到经济成本和应用实际,建议藤壶壳填充率为2∶9。  相似文献   

17.
根据2002和2003年对山东荣成桑沟湾栉孔扇贝养殖海区的水温、盐度、pH、氨氮浓度、亚硝氮浓度等环境因子和扇贝血清中的蛋白浓度、酸性磷酸酶活力、碱性磷酸酶活力、超氧化物歧化酶活力和过氧化氢酶活力等免疫学指标及栉孔扇贝养殖密度和死亡率的监测数据,运用人工神经网络(ANN)的原理和误差反相传播(BP)网络的方法,利用MATLAB软件初步建立养殖栉孔扇贝夏季大规模死亡的BP人工神经网络预测模型。预测模型经过300次的学习训练,误差平方和由67.46下降至0.0091。该预测模型对未参与模型构建的样本预测的结果与实际监测结果的符合率达到87.5%。本研究首次将人工神经网络与水产动物病害死亡的预测相结合,建立的预测模型具有对数据适应能力强,可适时学习,预测结果准确等突出优点,为水产养殖动物病害死亡程度的预测提供了一个新的研究方法。  相似文献   

18.
溶解无机氮加富对海带养殖水体无机碳体系的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过室内模拟实验,研究了在海带养殖水体中添加不同浓度的无机氮(NO-3-N和NH+4-N)对海水无机碳体系的影响。结果表明,无机碳体系各组分的变化趋势与无机氮添加浓度和无机氮形态有关。当NO-3-N和NH+4-N浓度范围分别在(4.73~52.78)μmol/L和(2.56~34.66)μmol/L时,DIC、HCO-3和pCO2均随着营养盐浓度的增加呈下降趋势,其中以NO-3-3和NH+4-3组变化最为明显,均达到最低值,分别为2 054、2 112μmol/L,1 776、1 869μmol/L,86、114μatm;而当NO-3-N和NH+4-N浓度范围分别为(52.78~427.29)μmol/L、(34.66~268.33)μmol/L时,DIC、HCO-3和pCO2随着营养盐浓度的增加,其下降幅度逐渐减弱,但实验结束时DIC、HCO-3和pCO2仍低于对照组。NO-3-N对海带养殖水体无机碳体系的影响较NH+4-N明显,加NO-3-N组对水体的固碳能力显著高于加NH+4-N组。当NO-3-N和NH+4-N浓度分别为52.78μmol/L、34.66μmol/L时,海带的光合固碳能力达到最大,过高或者过低均会降低海带对水体无机碳的吸收固定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号