首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the effects of graded butyrate glyceride (BG) supplementation levels in high soybean meal diet on juvenile black sea bream. Three hundred and sixty fish were fed diets containing 199 g/kg fishmeal and 450 g/kg soybean meal, with increasing levels of BG at 0, 2, 4, 6, 8 or 16 g/kg for eight weeks. The growth performance of the fish increased with increasing dietary BG supplementation up to 6 g BG/kg, beyond which growth rate reduced significantly (p < .05). Dietary BG supplementation increased the intestinal protease activity, but had no significant (p > .05) effect on lipase and amylase activities. Fish fed the basal diet exhibited villus shortening with a decrease in the number of goblet cells and a reduction in absorptive and digestive epithelial surface, while fish fed ≥4 g BG/kg diets showed a well‐integrated gut, with large absorptive and digestive epithelial surface. Dietary BG supplementation also improved antioxidative capacity by increasing superoxide dismutase and glutathione peroxidase activities while decreasing malondialdehyde content. The inclusion of BG in high soybean meal diets can improve growth performance, maintain healthy gut morphology and enhance antioxidative capacity of black sea bream.  相似文献   

2.
In this study, we evaluated different dietary fishmeal and protein levels on growth performance, intestinal structure and intestinal microbial community of juvenile channel catfish, Ictalurus punctatus. A total of 1800 fish distributed into 36 tanks were fed with nine different diets containing three protein levels (300, 330 and 360 g/kg) with three fishmeal (FM) levels (0, 30 and 60 g/kg) for 90 days. The results showed that significant interactions between the protein level and FM level were observed in final weight (FW), weight gain (WG), Na+, K+‐ATPase and alkaline phosphatase (AKP) activities. The significant lowest FW, WG, Na+, K+‐ATPase and AKP activities were observed in fish fed with no fishmeal and 300 g/kg protein dietary while the highest were shown in 60 g/kg fishmeal and 330 g/kg protein treatment. Additionally, the microvillar length of the mid‐intestine in catfish was significantly affected by the interaction between dietary protein level and fishmeal level. The intestinal samples were dominated by three major phyla, Firmicutes, Proteobacteria and Fusobacteria. Genera Romboutsia and Turicibacter accounted for probably 800 g/kg of the phylum Firmicutes; meanwhile, genus Cetobacterium represented more than 900 g/kg of the phylum Fusobacteria. In conclusion, this study indicated that channel catfish juveniles can be fed with a practical diet without fishmeal as long as the protein level increased to 360 g/kg; however, if the percentage of dietary protein was 300 g/kg, it seemed that fishmeal need to be supplied as a protein source.  相似文献   

3.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

4.
A 60‐day feeding experiment was conducted to evaluate the effects of fishmeal (FM) replacement with cottonseed meal protein hydrolysate (CPH) on growth, digestion and intestinal histology of juvenile Chinese soft‐shelled turtle (Pelodiscus sinensis). Five diets were formulated to replace 0, 50, 100, and 150 g/kg fishmeal protein by CPH (CPH0, CPH5, CPH10, CPH15) and CPH15L (CPH15 with micro capsule‐L‐lysine). Weight gain, feed conversion rate and protein efficiency ratio showed no significant differences compared to control group (> .05). The highest feed intake indicated in CPH15 (< .05). The composition of whole‐body varied slightly in each groups (> .05). The trypsin activity significantly elevated when dietary fishmeal protein was replaced by CPH at 30–90 g/kg (< .05). A significantly higher lipase activities in CPH5 than control group (< .05). The CPH5‐10 groups showed higher villus height than the other groups (< .05). The microvillus length in turtles with CPH showed a significant increasing length (< .05). The results indicated that replacing up to 90 g/kg of dietary fishmeal protein with CPH did not hamper growth or reduce feed intake of turtles. Moreover, CPH replaced 60 g/kg FMP can increase intestine digestive enzymes activities and improve intestinal development.  相似文献   

5.
An 8‐week feeding trial was conducted to evaluate the effects of dietary nucleotide (NT)‐rich yeast supplementation on growth, innate immunity and intestinal morphology in Pacific white shrimp (Litopenaeus vannamei). Four isonitrogenous and isolipidic practical diets were formulated to contain 0 (control), 10, 30 and 50 g/kg of NT‐rich yeast, respectively. A total of 480 shrimp with an average initial body weight of 1.86 ± 0.02 g were randomly allocated into four groups, with four replicates per group and 30 shrimp each replicate. The results indicated that shrimp fed the diet containing 50 g/kg NT‐rich yeast had significantly higher weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) than those fed the control diet, and the lowest feed conversion ratio (FCR) was observed in the shrimp fed the 50 g/kg NT‐rich yeast supplemental diet. However, there was no significant difference in survival among all treatments. The crude protein of whole shrimp in the 50 g/kg NT‐rich yeast group was higher than that in the control group. Total protein, triglyceride concentrations, the activities of aspartate aminotransferase and alanine aminotransferase in serum were significantly influenced by the dietary NT‐rich yeast supplementation. The activities of serum phenoloxidase (PO) and lysozyme (LZM) of shrimp fed the diet containing 50 g/kg NT‐rich yeast were higher than those in shrimp fed the other diets. Relative expressions of alp and lzm significantly upregulated in the 30 g/kg NT‐rich yeast group compared to the control group. The intestinal fold height and fold width in the 30 g/kg NT‐rich yeast group were significantly higher than those fed the control diet; and the highest microvillus height occurred in the shrimp fed the 50 g/kg NT‐rich yeast diet. In summary, dietary 30–50 g/kg NT‐rich yeast supplementation promotes growth performance, enhances innate immunity and improves intestinal morphology of Litopenaeus vannamei.  相似文献   

6.
The effects of taurine supplementation on the growth and intestinal immune function in young grass carp (Ctenopharyngodon idella) were investigated in this study. A total of 540 fish (initial average weights of 255.74 ± 0.65 g) were fed one fishmeal diet and five all‐plant protein source‐based diets with graded levels of taurine (0 to 1.98g/kg diet) for 60 days, and then challenged with Aeromonas hydrophila for 14 days. First, the results showed that the taurine supplementation improved growth (PWG, TGC, FI and FE), enteritis resistance, intestinal antimicrobial compounds (LZ, ACP, C3, C4, IgM, hepcidin, LEAP‐2A, LEAP‐2B, β‐defensin‐1 and MUC2) and attenuated intestinal inflammation in young grass carp under the all‐plant protein source‐based diet. Second, the taurine supplementation attenuated intestinal inflammation partially referring to nuclear factor kappa B (NF‐κB) and target of rapamycin (TOR) signallings. Finally, under the all‐plant protein source‐based diet, the comparable level of taurine supplementation based on growth and ability against enteritis relative to fishmeal diet was established as 0.50 g/kg diet, and the optimal levels of taurine supplementation based on thermal‐unit growth coefficient (TGC), ability against enteritis and acid phosphatase (ACP) activity were established as 0.97, 1.08 and 1.21 g/kg diet, respectively.  相似文献   

7.
The goal of this study was to investigate the effects of dietary supplementation with β‐glucan and microencapsulated probiotics (Bacillus subtilis or Pediococcus acidilactici) on growth performance, body composition, haemolymph constituents, and intestinal morphology and microbiota of the Pacific white shrimp Litopenaeus vannamei. Four treatment diets [basal diet (C), β‐glucan‐containing diet (β‐glu), β‐glucan plus B. subtilis‐containing diet (β‐glu+Bs), and β‐glucan plus P. acidilactici‐containing diet (β‐glu+Pa)] were fed to L. vannamei for 90 days. Shrimp fed the β‐glu and β‐glu+Pa diets exhibited similar growth performance and body protein content, which were significantly higher than those of shrimp fed the control diet (P < 0.05). No significant differences in haemolymph triglyceride, cholesterol, protein, haemolymph urea nitrogen or chloride were detected among the experimental diets. However, dietary β‐glucan alone increased the haemolymph glucose level and osmolarity (P < 0.05). Synbiotic supplementation had greater effects on intestinal microbiota and morphology than dietary β‐glucan alone. For example, β‐glu+Bs increased the number of intestinal lactic acid bacteria and decreased the number of Vibrio spp. (P < 0.05), and β‐glu+Pa increased the height of intestinal villi.  相似文献   

8.
This study investigates the effects of inclusion of low levels of dietary short chain fructooligosacchairde (sc‐FOS) on physiological response and intestinal microbiota of carp (Cyprinus carpio) larvae. After acclimation, fish (550 ± 20 mg) were allocated into nine tanks (40 fish per tank) and triplicate groups were fed a control diet (0%) or diets containing 0.5% and 1% sc‐FOS for 7 weeks. At the end of the experiment, the growth performance parameters (final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR) and condition factor (CF), survival rate as well as digestive enzyme activities (amylase, lipase and protease), total viable counts of heterotrophic aerobic bacteria (TVC) and lactic acid bacteria (LAB) level in intestinal microbiota were measured. Our results revealed no significant (P > 0.05) effects of sc‐FOS on growth performance and TVC when compared with the control group. However, administration of low levels of dietary sc‐FOS significantly increased digestive enzyme activities (lipase and amylase) and LAB levels (P < 0.05). Also, survival rate was significantly elevated in sc‐FOS fed carp. These results revealed that administration of low levels of sc‐FOS can be considered as a beneficial dietary supplement for larval stage of common carp.  相似文献   

9.
A feeding trial was conducted to assess the effects of dietary Schizochytrium meal supplementation on survival, growth performance, activities of digestive enzymes and fatty acid composition in Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Four isonitrogenous and isolipidic diets were formulated to contain graded levels of Schizochytrium meal: 0% (S0, the control diet), 2% (S2), 4% (S4) and 6% dry matter (S6). Results showed that there was no significant difference in survival of shrimps among dietary treatments (> 0.05). Shrimps fed diets with 2% and 4% microalgae meal had significantly higher specific growth rate (SGR) than that of shrimps fed diets with 0% and 6% microalgae meal, and no significant differences were observed between shrimps fed diets with 2% and 4% microalgae meal (> 0.05). Activity of trypsin in the pancreatic and intestinal segments, and activity of amylase in the pancreatic segments were not significantly affected by dietary microalgae meal levels (> 0.05). Specific activities of both alkaline phosphatase and leucine‐aminopeptidase in intestine and purified brush border membrane of intestine were significantly higher in shrimps fed diet with 2% microalgae meal (< 0.05). There were no significant differences in C18:2n‐6, n‐3 fatty acids, n‐6fatty acids, PUFA and n‐3/n‐6 in muscle samples among dietary treatments. C16:1n‐7, C18:1n‐9, MUFA, C18:3n‐3 and C20:5n‐3 decreased, however, C20:4n‐6 increased in the muscle as dietary microalgae meal level increased. In conclusion, 4% Schizochytrium meal in microdiets of shrimps can improve growth performance and may be a valuable additive in the microdiets of shrimps.  相似文献   

10.
The effects of fructooligosaccharide (FOS) on growth performance, immunity and predominant autochthonous intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal (FM) partially replaced by soybean meal (SBM) were evaluated. After acclimation, shrimps (1.82 ± 0.01 g/kg) were allocated into 15 tanks (25 shrimps per tank) and fed five different diets including positive control diet (C0, containing 250 g/kg FM and 285 g/kg SBM), control diet (C, containing 125 g/kg FM, 439 g/kg SBM) and three experimental diets supplemented with 1.0 g/kg FOS (T1), 2.0 g/kg FOS (T2) and 4.0 g/kg FOS (T3) to control diet (C) respectively. Shrimps were fed diets to apparent satiation three times per day, and 15 shrimps from each aquarium were randomly sampled and analysed at the end of the 6‐week feeding trial. The results showed that FBW, WGR, SGR and SR decreased, while FCR and FI increased significantly in control (C) compared with positive control (C0). Besides, significantly decreased trypsase and lipase activities, and SOD, AKP and ACP activities were recorded in control (C) compared with positive control (C0). On the other hand, significantly improved SGR and decreased FCR were observed in groups T1, T2 and T3 compared with control (C). Moreover, lipase and amylase activities enhanced significantly in group T3 compared with the control (C), while GOT and GPT activities dropped significantly with the increment supplementation of FOS in diets. Compared with the control (C), SOD activity enhanced significantly and MDA level decreased significantly in groups T2 and T3, and improved AKP and ACP activities were observed in group T3. In addition, dietary FOS improved the microbial diversity, and suppressed several potential pathogens, such as Vibrio tubiashii, Vibrio parahaemolyticus and Photobacterium damselae‐like strains in the intestine of shrimp. Overall, these results proved FOS could relieve the side effects induced by SBM and supported the use of 2.0–4.0 g/kg FOS in shrimp diets with FM partially replaced by SBM.  相似文献   

11.
Five diets (D1, D2, D3, D4 and D5) containing 0, 50, 100, 150 and 200 g starch per kg diet were formulated to investigate the effects of starch level on largemouth bass, Micropterus salmoides. Fish (initial weight: 22.00 ± 0.02 g) were fed the five diets for 90 days. Results indicated that weight gain, specific growth rate and survival of fish fed higher dietary starch level (200 g/kg) were lower than those of fish fed the lower dietary starch levels (0–50 g/kg). Higher dietary starch levels (150–200 g/kg) have a negative effect on antioxidant ability (total superoxide dismutase: T‐SOD; malonyldialdehyde: MDA; total antioxidant capacity: T‐AOC; glutathione peroxidase: GSH‐Px) and liver health (cellular contents leaked, nucleus deformed, endoplasmic reticulum and golgi body disappeared) of largemouth bass. Lower dietary starch levels (0–50 g/kg) modified intestinal microbiota of largemouth bass represented by increasing the relative abundance of beneficial bacterial such as Bacilli, Lactobacillales and Bacteroidales. These results indicated that dietary starch level above 50 g/kg had a negative effect on growth performance and antioxidant status of largemouth bass. Moreover, high dietary starch levels are potentially associated with negative alterations in liver structure and function, and decrease of beneficial gut microbes.  相似文献   

12.
This study investigated the effects of dietary orange peel (OP) on growth performance, feed utilization, antioxidant activity, intestinal microbiota and liver histology of Gilthead sea bream (Sparus aurata) larvae (0.32 ± 0.01 g/fish) (mean ± SD). Fish fed iso‐nitrogenous (480 g/kg protein) and iso‐energetic (23 MJ/kg) diets supplemented with OP at concentrations of 0, 1, 3 or 5 g/kg diet, for 60 days. Growth performance and feed utilization parameters were significantly improved by the elevation of dietary OP level, and the optimum level was 5 g/kg diet. The maximum activity of the total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, alkaline phosphatase enzyme and malondialdehyde in the liver was found at 5.5, 4.6, 3.4, 2.9, 3.7 and 3.8 g OP/kg diet, respectively. All tested bacteria (Staphylococcus spp., Vibrio spp. and Salmonela spp) and total bacterial count decreased significantly in the gut of fish fed high levels of OP (3.0 or 5.0 g/kg). No differences were found in the liver histo‐architecture among treatments after 60 days feeding on OP diets. In summary, dietary OP improved growth rate, antioxidant activity and intestinal microbiota of S. aurata larvae with an optimum range from 2.9 to 5.5 g/kg diet.  相似文献   

13.
A feeding trial was conducted to evaluate the potential of dietary supplementation of autolysed brewer's yeast (AY) on African catfish. The catfish (22.5 ± 1.15 g/fish, 20 fish 33 L/tank) were fed with either of diets (390 g/kg crude protein, 140 g/kg lipid) supplemented with 0, 3, 6 or 10 g/kg AY (n = 3). After 49 days of feeding, the final body weight and metabolic growth rate of the catfish fed 3 g/kg AY (3‐AY) diet were higher than those fed the control diet (p < .05). The lowest level (p < .05) of alanine transaminase was detected in the blood of the catfish fed 3‐AY diet. The mid‐intestinal histology of the catfish revealed no significant difference (p > .05) in intestinal perimeter ratio. However, an elevated (p < .05) abundance of goblet cells and intraepithelial leucocytes were found in the intestine of catfish fed 3, 6 and 10 g/kg AY diets, with the highest level of abundance recorded in the mid‐intestine of the catfish fed 3‐AY diet. The results suggest that dietary 3 g/kg autolysed brewer's yeast supplementation improves growth performance of African catfish without deleterious effect on liver functionality and gut morphology.  相似文献   

14.
To evaluate the effects of dietary cork, protease and guar gum on growth, intestinal health and faecal floatability of tilapia, fine or coarse particle cork (0.45–0.60 mm, 0.60–0.83 mm) was included in diets at 0 (control), 20 g/kg, 30 g/kg and 40 g/kg, and then, 0.175 g/kg protease (P) and 3 g/kg guar gum (G) were supplemented to the 40 g/kg coarse particle diet individually or in combination (P + G). Tilapia with an initial body weight of 15.0 ± 0.5 g were fed one of the 10 diets for 60 days. The results showed that weight gain (WG), apparent digestibility coefficient (ADC) of dry matter (DM) and crude protein (CP), intestinal evacuation ratio, intestinal digestive enzyme activity (IDE) and villus height decreased, and floating faeces ratio increased with the increasing cork level in diets. At the same supplementation level, coarse particle groups showed significantly higher floating faecal ratio than fine particle groups (p < .05). Dietary protease increased the WG, ADC of DM, IDE and villus height (p < .05), and guar gum increased floating faecal ratio when compared to 40 g/kg coarse particle group (p < .05). However, the ADC of DM, IDE and villus height of protease group were still inferior to those of control group (p < .05). In conclusion, dietary cork increased the floating faeces ratio, and the coarse particles produced more floating faeces than fine particles. Moreover, the supplementation of guar gum in cork‐supplemented diet further increased the floating faeces ratio. However, dietary cork negatively affected the growth performance of tilapia, which could be partially alleviated by the supplementation of protease.  相似文献   

15.
This study investigated the effects of dietary inulin and Jerusalem artichoke (JA) on intestinal microbiota and morphometry of Nile tilapia fingerlings. Five treatment diets were designed to supplement inulin at 0 (basal diet), 2.5 and 5.0 g/kg, and JA at 5.0 and 10.0 g/kg. Nile tilapia larvae were fed experimental diets from the first feeding through the fingerling stage (84 days). The cultivation‐dependent technique showed that dietary inulin at 5.0 g/kg and JA (at both levels) increased lactic acid bacteria and Bifidobacterium spp., but decreased Vibrio spp. (p < .05). PCR‐DGGE targeting 16S ribosomal RNA gene revealed that dietary inulin and JA generated different profiles of microbial community compared with fish fed a basal diet. Compared with fish fed the basal diet, a greater intestinal villi height was observed in fish fed 5.0 g/kg inulin and JA at both levels (p < .05). A larger relative goblet cell number were observed in the anterior intestine of fish fed 5.0 g/kg inulin or JA (p < .05). Overall, dietary inulin (5.0 g/kg) and JA (5 and 10.0 g/kg) since the first feeding had effects on modulating the intestinal microbiota and morphology of Nile tilapia fingerlings.  相似文献   

16.
Dried distiller's grain (DDG) is considered as an alternative ingredient of dietary feed due to its high contents of protein, fibre and fat. In this study, 60 g kg‐1 of DDG was used to feed grass carp (Ctenopharyngodon idella), bluntnose black bream (Megalobrama amblycephala), gibel carp (Carassius gibelio) and black carp (Mylopharyngodon piceus) for 8 weeks, and its effect on fish production and gut allochthonous microbiota was investigated for the development of a suitable fish feed high in nutrients and low in cost for polyculture freshwater fish. DDG supplementation resulted in the less weight gain and higher feed conversion ratio of black carp (< 0.05), but had no significant effects on other fish or parameters. PCR–denaturing gradient gel electrophoresis (DGGE) analysis indicated that all four fish species had some common and unique bacteria in their digestive tracts, and the gut microbiota of bluntnose black and gibel carp fed the control diet and DDG diets were very similar (Cs > 91%); of them, the total counts of intestinal bacteria studied by qPCR increased in grass carp (< 0.05) and depressed in black carp (< 0.05) when fed dietary DDG. Thus, we assumed that dietary DDG modulated production and gut microbiota of fish in a host‐specific way.  相似文献   

17.
An 8‐week feeding trial was conducted with extruded practical diets containing 320 g/kg of crude protein from plant‐based sources to determine the effects of L‐lysine on growth performances, muscle‐growth‐related gene (myoD, myogenine and myostatin) expression and haemato‐biochemical responses in juvenile genetically improved farmed tilapia (GIFT). Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of lysine (14.3, 16, 17.5, 19 and 20.5 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.2 ± 0.1 g), which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances were observed in fish fed with lysine at 19 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acids profile by dietary lysine supplementation. Significant (p < .05) changes were observed in relative expression of muscle‐growth‐related genes namely myoD and myogenine and in plasma metabolites by dietary lysine supplementation. In contrast, the relative expression of myostatin was not affected by dietary lysine supplementation. Broken‐line regression analysis and second‐order polynomial regression analysis of weight gain and N gain against dietary lysine levels showed that the dietary lysine requirement for juvenile GIFT tilapia was 18–18.3 g/kg of diet and 19.3–19.5 g/kg of diet, respectively.  相似文献   

18.
Feed training of carnivorous fish is a delicate and stressful process. Thus, feed additives that reduce stress and encourage fish consumption could improve training efficiency. Therefore, the aim of this study was to evaluate monosodium glutamate (MSG) dietary supplementation during pacamã (Lophiosilurus alexandri) feed training through growth performance and intestinal histomorphometry. Fish were trained by the method of gradual diet transition, using five diets with increasing proportions of commercial diet and decreasing proportions of gelatin. A quadruplicate experimental design was performed with seven treatments, consisted in diets supplemented with different levels of MSG (0.0; 2.0; 8.0; 16.0; 29.0; 34.0 and 42.0 g/kg). Pacamã (0.17 ± 0.01 g) were distributed in 28 tanks (30 fish per tank) and trained for 41 days with the experimental diets. There were no effects (p > .05) of MSG on growth performance and feed training indices. However, fish trained with diets supplemented with 42.0 g/kg of MSG presented higher number of goblet cells in the anterior portion of intestine (p < .05). These results demonstrate that MSG did not act on growth performance and feed training efficiency of pacamã, and high levels of MSG can cause dietary stress on fish intestinal mucosa.  相似文献   

19.
Gelatin and carboxymethyl cellulose (CMC) were often used as binders due to their binding ability. To investigate the effects of gelatin and CMC supplementation on feed quality, intestinal ultrastructure and growth performance of gibel carp, six pelleted feed were formulated: control; supplemented with gelatin (10 g/kg, 30 g/kg and 50 g/kg); and supplemented with CMC (10 g/kg and 30 g/kg). Increased gelatin supplementation levels reduced feed solubility and pellet softening (p < .05) and decreased chemical oxygen demand in the surrounding water after pellets were immersed (p < .05). Increased levels of gelatin supplementation enhanced digesta viscosity and reduced intestinal microvilli length and digestive enzymes activities (chymotrypsin and amylase; p < .05) of fish. Fish‐fed diets supplemented with 30 g/kg gelatin had higher levels of plasma total free amino acids and glucose (p < .05) than fish fed 10 g/kg and 50 g/kg gelatin. Feed supplemented with 10 g/kg CMC were softer than those supplemented with 30 g/kg CMC (p < .05); fish‐fed diets supplemented with 10 g/kg CMC had longer intestinal microvilli (p < .05) than fish fed 30 g/kg CMC. Thus, our results indicated that either gelatin or CMC is applicable to supplement in the feed for improving feed quality and without negative effect on growth performance of gibel carp.  相似文献   

20.
This study was conducted to investigate the effects of dietary red seaweed, Gracilaria pygmaea level on growth, antioxidant‐related parameters, digestive enzyme activity and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fry. Five isocaloric and isonitrogenous diets were formulated to contain four G. pygmaea levels (30 (GL‐30), 60 (GL‐60), 90 (GL‐90) and 120 g/kg (GL‐120)), and a control diet was used, without inclusion of seaweed. Results of the feeding trial indicated that final body (FBW: 2.8–3.5 g) and specific growth rate (SGR: 4.8–5.2) were significantly improved when 60 g/kg G. pygmaea was supplemented in the diets. However, there was a significant reduction (< .05) of final body weight (FBW) and specific growth rate (SGR) in fish fed 120 g/kg G. pygmaea. Protease activity was significantly lower in fish fed GL‐120 diet when compared to GL‐30 or control (< .05). Lipase was significantly affected by dietary seaweed regardless its level of supplementation (< .05). The inclusion of the Gracilaria in the diet led to evident changes in the fish antioxidant status with significant reduction of superoxide dismutase, glutathione peroxidase activity and lipid peroxidation products. The histological study demonstrated that all groups of fish displayed normal morphology of anterior intestine and pyloric caeca. Villi absorptive area in the anterior intestine of treatment groups GL‐90 and GL‐120 significantly decreased (< .05). Overall, the results obtained in this study indicate that dietary G. pygmaea supplementation up to 90 g/kg improves growth performance in rainbow trout fry without compromising antioxidant responses and digestive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号