首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

2.
A single factorial experiment was conducted to investigate the effects of Chinese herbal medicines mixture (CHMM) on growth performance, digestive enzyme activity and immune response of Japanese seabass, Lateolabrax japonicus (initial weight 5.01 ± 0.32 g). The fish were fed diets containing six levels of CHMM (0, 4, 8, 12, 16 and 20 g/kg) for 4 weeks. The results showed that the weight gain rate and specific growth rate (SGR) enhanced significantly in fish fed diet containing 8 g/kg CHMM (< .05), while the feed conversion ratio (FCR) in the 4 and 8 g/kg CHMM groups reduced significantly compared with the control (< .05). The body crude protein levels in 8 and 16 g/kg groups were significantly higher than the control (< .05). The pepsin, amylase and lipase activities elevated significantly in the stomach of fish fed 8 g/kg CHMM, while the erepsin and lipase in the intestine of fish in 12 and 16 g/kg groups were higher significantly than the control (p < .05). The lysozyme, alkaline phosphatase, acid phosphatase (ACP), total antioxidative capacity activities in serum of fish fed 12 g/kg CHMM were higher significantly than those in the control (p < .05), while the total superoxide dismutase (SOD), total antioxidative capacity, catalase, alkaline phosphatase (AKP) and ACP activities in hepatopancreas of fish in 12 g/kg group were all significantly higher than those in the control (p < .05). Regression analysis showed that the relationships between dietary CHMM levels and either FCR, SGR, erepsin, pepsin or lysozyme activities were best expressed by quadratic or cubic regression equations, and the optimal inclusion levels are 11.4, 10.7, 10.7, 8.4 and 10.5 g/kg for maximum FCR, SGR, erepsin, pepsin and lysozyme activities, respectively. Under the present experimental condition, the optimal supplementary level of CHMM in the diet of Japanese seabass is 8–12 g/kg.  相似文献   

3.
A 56‐day feeding trial was conducted to investigate the effects of replacing fish meal with cottonseed protein concentrate (CPC) (free gossypol < 7.9 mg/kg) in the diets on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Six diets were designed: fishmeal diets (FM) which contained 340 g/kg fishmeal, as well as five CPC diets, each with differing CPC concentrations (120, 240, 360, 480 and 600 g/kg) to replace the fish meal. The weight gain rate (WGR) and specific growth rate (SGR) showed no significant difference among groups (p > .05) with the dietary CPC level ranged from 0 to 360 g/kg. Serum cholesterol (CHO) of C36 and triglyceride (TG) levels of C36 and C12 were significantly higher than the FM (p < .05). Total protein (TP) levels of C12 were significantly lower than the FM (p < .05). Among the treatments, C36 had higher glutathione peroxidase (GSH‐PX) and total superoxide dismutase (T‐SOD) than FM (p < .05). From the data analysis of 16s sequencing, with increasing CPC concentration, the proportion of harmful microbial taxa (Proteobacteria and Vibrio) increased. The results of this study support that CPC products are acceptable in practical diets for golden pompano. And the optimal dietary CPC replacement of golden pompano was estimated to be 259.3 g/kg.  相似文献   

4.
A 57‐day growth experiment was conducted with juvenile gibel carp (13.48 ± 0.10 g) in a flow‐through system to study the effect of dietary phosphorus on growth performance, body composition, nutrition utilization, phosphorus loading and enzymes activities. Seven semipurifed diets were formulated to contain 0.07 (the basal), 2.27, 5.32, 8.10, 12.06, 15.24 and 19.48 g available phosphorus/kg diet. The results showed that specific growth rate, body length and feed efficiency significantly increased in the fish fed diets containing 0.07 to 15.24 g available P/kg diet (< .05). Ash and P content increased in fish fed diets containing 0.07–12.06 P g/kg (< .05) and then levelled off, while moisture, crude protein and lipid had no significant difference (> .05). The protein retention efficiency increased in the fish fed with diets 0.07–5.32 g/kg P (< .05) and then reached a plateau. The P content in faeces was higher in fish fed diets containing 15.24 and 19.48 g available P/kg. Total P concentration in tank water increased in fish fed 0.07–12.06 g available P per kg diet (< .05). The plasma P was higher in the fish fed with 15.24 g available P/kg diet (< .05), triglycerides was lower in the fish fed diet containing 15.24 and 19.48 g available P/kg (< .05), no significant differences were observed in plasma Ca, plasma glucose and calcitonin (> .05). Based on SGR, whole body P content and FE, dietary available P requirement for juvenile gibel carp were 13.37, 13.97 g/kg and 15.06 respectively.  相似文献   

5.
A 60‐day feeding trial was conducted to determine the effects of copper nanoparticles (Cu‐NPs) and vitamin C (VC) on red sea bream. Besides the control diet (D1), six diets were supplemented with Cu‐NPs and VC [0/800 (D2), 0/1,000 (D3), 0/1,200 (D4), 2/800 (D5), 2/1,000 (D6) and 2/1,200 (D7) mg Cu‐NPs/VC per kg]. Cu‐NP was a significant factor on final weight (FBW), weight gain (WG) and specific growth rate (SGR), feed intake (FI), feed (FER) and protein efficiency ratios (PER), protein gain (PG) and protein retention (PR), body protein and lipid contents, protease (PA) and bactericidal activities (BA) and tolerance against stress (LT50%) (< .05). In addition, BA and LT50% were significantly affected by either Cu‐NPs or VC (< .05). Fish fed Cu‐NPs or/and VC‐supplemented diets showed higher FBW, WG, SGR, PG, PR, FI, PA, LA and BA values when compared with the control group (< .05). FER, PER and body lipid content were significantly enhanced in D4, D5, D6 and D7 groups; meanwhile, body protein and LT50% were significantly enhanced in D5, D6 and D7 groups when compared with D1 group (< .05). In conclusion, dietary Cu‐NPs or/and VC improved growth and health of red sea bream.  相似文献   

6.
This study investigated the effects of glutamate (Glu) in low‐phosphorus diets on growth performance, haematological indices, antioxidant enzyme activity, immune‐related gene expression and resistance to Aeromonas hydrophila in juvenile mirror carp (Cyprinus carpio) (5.07 ± 0.02 g). Fish were fed either graded levels of Glu (0 g/kg, 5 g/kg,  10 g/kg and 20 g/kg, named G0, G0.5, G1 and G2, respectively) in a low‐phosphorus diet (15 g/kg NaH2PO4, 0.49), or a normal phosphorus diet ( 20 g/kg NaH2PO4, 0.61) without added Glu (C), for 8 weeks. At the end of the feeding trial, the fish were challenged with A. hydrophila. Compared with G0 group, 10 g/kg and 20 g/kg Glu supplementation of the low‐phosphorus diet significantly improved the final weight, WGR, SGR and PER, and decreased FCR (p < .05). Glu supplementation of the low‐phosphorus diet significantly enhanced the T‐AOC, SOD activity and GSH content in intestine (p < .05). Glu supplementation significantly reduced MDA content in foregut and midgut and increased CAT activity in midgut and hindgut (p < .05). Regarding immune‐related gene expression, Glu supplementation significantly diminished the up‐regulation of intestinal TNF‐α, IL‐1β and IL‐8 mRNA levels induced by phosphorus deficiency (p < .05). The survival rate of the G1 group was significantly higher than that of the G0 group (p < .05). In conclusion, 10 g/kg Glu supplementation in low‐phosphorus diets can improve the growth performance, enhance the activity of intestinal antioxidant enzymes and strengthen the immune function of juvenile mirror carp.  相似文献   

7.
An 8‐week feeding trial was conducted to estimate the optimum dietary manganese (Mn) requirement for juvenile hybrid grouper, Epinephelus lanceolatus × E. fuscoguttatus. The basal diet was formulated to contain 520 g/kg crude protein from casein and fishmeal. Manganese methionine was added to the basal diet at 0 (control group), 2.5, 5, 10, 20 and 40 mg Mn/kg diet providing 7.48, 10.34, 13.76, 19.72, 31.00 and 53.91 mg Mn/kg diet, respectively. Each diet was randomly fed to triplicate groups of juveniles, and each tank was stocked with 20 fish (initial weight, 60.06 ± 0.68 g). The manganese content in rearing water was monitored and kept below 0.01 mg/L. Results showed that the weight gain ratio (WGR), protein efficiency ratio (PER), specific growth rate (SGR), Mn contents in whole body, liver and vertebra, and activities of hepatic Mn superoxide dismutase (Mn‐SOD), total SOD (T‐SOD) and glutathione peroxidase (GSH‐PX) were significantly improved by dietary Mn supplementation (< .05). However, dietary Mn did not affect arginase (DArg) activity. The highest feed conversion ratio (FCR) was observed in fish fed the basal diet (< .05). No significant differences were found on the Cu and Zn contents in whole body by supplementing dietary Mn. Supplemented Mn in diets had significantly effect on liver and vertebral trace element deposition (< .05). Fish fed the basal diet had the highest Fe and Zn contents in vertebra (< .05). There were no significant differences on hepatic pyruvate decarboxylase (PDC) activity with supplemented Mn levels below 13.76 mg/kg. As biomarker of oxidative stress, malondialdehyde (MDA) content in liver was significantly higher in fish fed the basal diet (< .05). Using the broken‐line models based on SGR, dietary Mn requirement of the juvenile hybrid grouper was estimated to be 12.70 mg/kg diet.  相似文献   

8.
An 88‐day experiment was conducted in a flowing system to evaluate the effects of dietary vitamin C on growth, body composition, antioxidant and gonad development of on‐growing gibel carp. Triplicate tanks of gibel carp (77.2 ± 0.1 g) were randomly fed with one of seven experimental diets containing l ‐ascorbic acid of 0, 101.1, 188.5, 313.1, 444.1, 582.1 and 747.0 mg/kg, respectively. The results showed that specific growth rate (SGR) and feed efficiency (FE) of fish were not affected by dietary l ‐ascorbic acid. Dietary l ‐ascorbic acid of 444.1 mg/kg diet led to low levels (p < .05) of gonadosomatic index (GSI) and hypothalamic gonadotropin‐releasing hormone (GnRH) in on‐growing fish, as well as the early ovarian stages (Developing stages) compared with fish (Maturing stages) from the other groups. Dietary l ‐ascorbic acid supplementation increased (p < .05) the dorsal muscle collagen content, but did not affect the protein or lipid content of dorsal muscle in gibel carp. Plasma total antioxidant capacity (T‐AOC) and superoxide dismutase (SOD) activity increased (p < .05) and then remained unchanged with the increase in dietary l ‐ascorbic acid levels. Dietary l ‐ascorbic acid of 101.1 mg/kg diet improved (p < .05) plasma lysozyme activity of the fish. Broken‐line regression indicated that dietary l ‐ascorbic acid requirement of 77 g gibel carp was 223.3 or 225.0 mg/kg diet based on plasma T‐AOC or SOD activity, which was a little higher than that based on plasma l ‐ascorbic acid concentration (193.2 mg/kg).  相似文献   

9.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

10.
A 60‐day feeding experiment was conducted to evaluate the effects of fishmeal (FM) replacement with cottonseed meal protein hydrolysate (CPH) on growth, digestion and intestinal histology of juvenile Chinese soft‐shelled turtle (Pelodiscus sinensis). Five diets were formulated to replace 0, 50, 100, and 150 g/kg fishmeal protein by CPH (CPH0, CPH5, CPH10, CPH15) and CPH15L (CPH15 with micro capsule‐L‐lysine). Weight gain, feed conversion rate and protein efficiency ratio showed no significant differences compared to control group (> .05). The highest feed intake indicated in CPH15 (< .05). The composition of whole‐body varied slightly in each groups (> .05). The trypsin activity significantly elevated when dietary fishmeal protein was replaced by CPH at 30–90 g/kg (< .05). A significantly higher lipase activities in CPH5 than control group (< .05). The CPH5‐10 groups showed higher villus height than the other groups (< .05). The microvillus length in turtles with CPH showed a significant increasing length (< .05). The results indicated that replacing up to 90 g/kg of dietary fishmeal protein with CPH did not hamper growth or reduce feed intake of turtles. Moreover, CPH replaced 60 g/kg FMP can increase intestine digestive enzymes activities and improve intestinal development.  相似文献   

11.
An 8‐week growth trial was conducted to investigate the effects of dietary fish meal replacement with a vegetable mixture of soybean meal and rapeseed meal (1:1) on growth of juvenile red swamp crayfish. Nine isonitrogenous diets were designed: V0, V34, V50, V65, V73 and V81 with six levels of vegetable proteins, and VA48, VA63 and VA78 by further adding crystalline lysine and methionine into V50, V65 and V81. Compared with V0, V34 significantly improved the specific growth rate (SGR), while V65, V73, V81 and VA78 depressed the SGR (< .05). Feeding rate showed a decreasing trend as dietary vegetable protein level increased (< .05), except that in VA48 group. Significantly lower FCR and higher PER were observed in V34 group, whereas all vegetable protein diets depressed the feed utilization of crayfish (< .05). Crayfish fed with diets containing vegetable proteins showed significantly lower hepatosomatic indices and higher condition factors than the control (< .05). Muscle lipid content was significantly (< .05) lowered in V81 group, but not in VA78 group. The results suggested that 338 g/kg vegetable protein improved growth performance of crayfish. Excessive vegetable protein depressed the growth of crayfish, which could be prevented by lysine and methionine supplementation except for the all vegetable protein diets.  相似文献   

12.
In this experiment, a feeding trial was performed to determine the effects of fructooligosaccharide (FOS) on growth performance, digestive enzyme activity and immune response of Japanese sea bass, Lateolabrax japonicus juveniles (initial weight 38.3 ± 0.5 g), and the fish were examined following feeding with six levels of FOS (0, 0.5, 1, 2, 4 and 6 g/kg) for 28 days. Significant enhancement of weight gain (WG) and specific growth rate (SGR) was found in fish fed 1 g/kg FOS incorporated diets (p < .05), while the feed conversion ratio (FCR) in the 1, 2 g/kg FOS groups reduced significantly compared with the control (p < .05). Besides, the crude lipid in the 4, 6 g/kg FOS groups increased significantly compared with the control (p < .05). On the other hand, the erepsin and lipase activities significantly elevated in intestine of fish fed 2 g/kg FOS (p < .05) and the lysozyme activity in serum of fish fed 2 g/kg FOS were significantly higher than that in the control (p < .05). Moreover, the alkaline phosphatase activities in serum of fish fed 0.5, 1, 2 g/kg FOS were significantly higher than in control (p < .05). Regression analysis showed that the relationships between dietary FOS levels and either SGR, FCR, erepsin or lysozyme activities were best expressed by regression equations, and the optimal inclusion levels are 1.37, 1.80, 3.06, 3.11, 1.93 and 1.80 g/kg for SGR, FCR, erepsin, lipase, lysozyme and total superoxide dismutase activities, respectively. Overall, this study revealed that FOS incorporated diets could beneficial for L. japonicus culture in terms of increasing the growth, digestion and immune activities. Under the present experimental condition, the optimal supplementary level of FOS in the diet of L. japonicus is 1–3 g/kg.  相似文献   

13.
A feeding trial was conducted to evaluate the potential of dietary supplementation of autolysed brewer's yeast (AY) on African catfish. The catfish (22.5 ± 1.15 g/fish, 20 fish 33 L/tank) were fed with either of diets (390 g/kg crude protein, 140 g/kg lipid) supplemented with 0, 3, 6 or 10 g/kg AY (n = 3). After 49 days of feeding, the final body weight and metabolic growth rate of the catfish fed 3 g/kg AY (3‐AY) diet were higher than those fed the control diet (p < .05). The lowest level (p < .05) of alanine transaminase was detected in the blood of the catfish fed 3‐AY diet. The mid‐intestinal histology of the catfish revealed no significant difference (p > .05) in intestinal perimeter ratio. However, an elevated (p < .05) abundance of goblet cells and intraepithelial leucocytes were found in the intestine of catfish fed 3, 6 and 10 g/kg AY diets, with the highest level of abundance recorded in the mid‐intestine of the catfish fed 3‐AY diet. The results suggest that dietary 3 g/kg autolysed brewer's yeast supplementation improves growth performance of African catfish without deleterious effect on liver functionality and gut morphology.  相似文献   

14.
Six diets were designed to investigate the effects of dietary docosahexaenoic acid (22:6n‐3; DHA) levels (0.5, 1.3, 2.3, 4.2, 8.1 and 15.9 g/kg diets) on growth performance, fatty acid profile and expression of some lipogenesis‐related genes of blunt snout bream (Megalobrama amblycephala). Fish (average weight: 26.40 ± 0.11 g) were randomly fed one of six diets for 8 weeks. Results indicated that the final body weight (FBW) and specific growth rate (SGR) of fish fed 1.3 g/kg DHA were significantly higher than other groups except for the 2.3 g/kg DHA (p < .05). Compared with other groups, the number of lipid droplet clusters of the liver stained with oil red O in the 2.3 g/kg DHA group was the highest, which was consistent with the lipid contents of whole body and liver. The DHA proportion in liver and muscle significantly increased with the increasing dietary DHA levels (p < .05), which reflected fatty acid profiles of diets. The highest mRNA expressions of acetyl‐CoA carboxylase α (ACCα), fatty acid synthase (FAS) and sterol regulatory element‐binding protein‐1 (SREBP‐1) occurred in the 1.3 g/kg DHA group, followed by 2.3 g/kg DHA. In summary, the supplementation of 1.3–2.3 g/kg DHA could improve growth performance and lipogenesis, and the dietary DHA could improve DHA and PUFA proportion in liver and muscle.  相似文献   

15.
This study was conducted to investigate the effects of dietary geniposidic acid (GA) on growth performance, flesh quality and collagen gene expression of grass carp (Ctenopharyngodon idella). The fish with an initial body weight of 47.1 ± 0.8 g were fed one of the seven diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g/kg) and GA‐supplemented diets (200, 400, 600, 800 and 1,000 mg/kg GA) for 75 days. The growth performance and muscle proximate composition showed no difference among groups (> .05). Dietary GA (200–1,000 mg/kg) increased the contents of total collagen and alkaline‐insoluble collagen in skin (p < .05), and high supplementation of GA (600–1,000 mg/kg GA) and EU increased the contents of total collagen, alkaline‐insoluble collagen and total amino acids (p < .05), but reduced the lipid level in muscle (p < .05). In collagen gene expression, EU and 200–1,000 mg/kg GA increased COL1A1 expression in muscle and skin (p < .05), but the expression of COL1A2 was increased only by high supplementation of GA (1,000 mg/kg, or 800–1,000 mg/kg) (p < .05). In conclusion, dietary GA improved the flesh quality of grass carp, and the supplementation level was estimated to be 600 mg/kg diet.  相似文献   

16.
The objective of this study was to assess the effects of fishmeal (FM) replacement with 0, 350 or 700 g/kg soybean meal (SBM) in combination with the supplementation of lactic acid (LA; 0, 10 or 20 g/kg) in the diets of juvenile beluga sturgeon (Huso huso; 700 ± 30 g). Nine isonitrogenous (400 g/kg protein) and isoenergetic (18 MJ/kg) diets were fed to beluga ad libitum, three times a day, for 60 days. The results showed that replacing FM with SBM without LA significantly reduced fish growth; on the other hand, LA supplementation had positive effects on fish fed diets that FM was replaced by SBM (< .05). Increasing SBM in the diet altered the fatty acid profiles of the fish, reducing long‐chain polyunsaturated fatty acids and the n‐3/n‐6 fatty acids. High amounts of SBM (700 g/kg) caused reductions in the haematocrit, glucose and cholesterol levels in the blood (< .05). In addition, the digestibility of protein, fat, dry matter and phosphorus was reduced when replacing FM with SBM, however, adding LA to the diets increased fish performance (< .05), and this improvement was sharper in 2% LA groups. The number of LA bacteria increased significantly with the dietary supplementation of LA (< .05). Based on these results, replacing 350 g/kg of FM with SBM and adding 20 g/kg LA to their feed do not negatively affect the biological and physiological indices of beluga.  相似文献   

17.
Two experiments were conducted to determine the optimum level of dietary available phosphorus from monocalcium phosphate for juvenile Ussuri catfish Pseudobagrus ussuriensis. Experiment 1 was conducted to estimate phosphorus digestibility from monocalcium phosphate for juvenile Ussuri catfish. The apparent digestibility coefficient of phosphorus from monocalcium phosphate was 86.3%. In the experiment 2, triplicate groups of juvenile Ussuri catfish were fed diets containing graded levels of monocalcium phosphate (MCP: 0 g/kg, 8.2 g/kg, 16.4 g/kg, 24.6 g/kg, 32.8 g/kg and 41.0 g/kg) for 8 weeks. Fish fed the diet containing 16.4 g/kg MCP with available phosphorus of 4.8 g/kg showed the best weight gain (171.5%), feed conversion ratio (1.08) and protein efficiency ratio (2.06). No significant difference was observed in fish survival among the treatments. The best result in terms of phosphorus retention efficiency (46.10%) was observed in fish fed the diet containing 8.2 g/kg MCP with available phosphorus of 3.0 g/kg, which was not different (> .05) from those fed the diet containing up to 24.6 g/kg MCP, and the highest vertebrae phosphorus content (58.2 g/kg) was observed in fish fed the diet containing 24.6 g/kg MCP with available P of 6.6 g/kg. The whole‐body lipid and protein, as well as phosphorus contents, were significantly affected by dietary available phosphorus (< .05). Viscerosomatic index (VSI) and condition factor (CF) were inversely correlated with dietary phosphorus levels (< .05). Quadratic regression analysis based on specific growth rate (SGR) against dietary available phosphorus levels indicated that the optimum available phosphorus requirement for the maximal growth of juvenile Ussuri catfish was 5.9 g/kg, and broken‐line analysis based on vertebrae phosphorus content against dietary available phosphorus levels indicated that a dietary level of 6.0 g/kg available phosphorus will provide optimum vertebrae phosphorus content.  相似文献   

18.
A‐56 days feeding trial was conducted to evaluate the growth performance, feed utilization, biochemical composition, antioxidant status, lipid metabolism and immunity parameters of Chu's croaker Nibea coibor fed diets supplemented with different levels of conjugated linoleic acid (CLA): 0% (control), 0.5%, 1%, 1.5% and 2%. Each diet was randomly assigned to triplicate groups of 25 fish (initial body weight: 12.8 ± 0.1 g) in 15 floating cage. Weight gain (WG) and specific growth rate (SGR) were not significantly affected. 2% of dietary CLA led to significant lower lipid content in both whole body and liver (< .05). Muscle lipid content was significantly lower in fish fed 1.5% and 2% CLA (< .05). Saturated fatty acid (SFA) increased while monounsaturated fatty acid (MUFA) decreased with increasing dietary CLA in tissues (< .05). Increasing CLA significantly promoted hepatic lipase (HL), lipoprotein lipase (LPL), serum lysozyme (LSZ) and immunoglobulin M (IgM) while decreased serum triglyceride (TG) in both liver and serum (< .05). Liver Superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (t‐AOC) increased while malondialdehyde (MDA) decreased (< .05). Our study shown that Chu's croaker can successfully incorporate CLA in tissues up to 2% dietary lipid without growth inhibition, and that CLA increased fish quality due to the increased parameters of lipid metabolism, specific immunity, hepatic antioxidant and CLA accumulation, and the reduction of tissue fat deposition.  相似文献   

19.
This study was undertaken to assess the impacts of dietary astaxanthin supplementation on growth performance, feed utilization, survival, and serum growth hormone (GH) availability of Asian seabass, Lates calcarifer, with special reference to dose–response relationships and variations during different feeding phases (short‐term, medium‐term and long‐term). Fish were fed the following diets in triplicate for 90 days: the control (CD), AX50 (50 mg astaxanthin/kg diet), AX100 (100 mg astaxanthin/kg diet) and AX150 (150 mg astaxanthin/kg diet). The findings revealed that fish exhibited significant linear increments (p < .05) in specific growth rate (SGR), weight gain, feed utilization efficiency and survival when fed various diets with escalating levels of astaxanthin. Supplementation with dietary astaxanthin significantly augmented (p < .05) GH levels in fish. Significant positive associations (p < .05) were observed between circulating serum GH levels and SGR of fish from all groups following three consecutive feeding phases, denoting a robust cause‐and‐effect relationship. Circulating GH concentrations were considered as a sensitive biomarker of growth performance in Asian seabass. This study illustrated that supplemental astaxanthin could be administered in culture protocols to improve the growth rate and commercial hatchery production of Asian seabass, and possibly other teleost species.  相似文献   

20.
A 18‐week feeding trial was carried out under controlled conditions to compare the effects of onion powder (OP) at six levels (5, 10, 20, 30, 40 and 50 g/kg) on the growth performance, nutritional efficiency indices, hemolymph indices and fillet organoleptic properties of juvenile (5.62 ± 0.39 g) crayfish. The significantly (< .05) highest values of final weight (71.30 g) and SGR (2.02% per day) and the lowest FCR (1.03) were observed in the juvenile crayfish fed the diet containing 40 g OP/kg. The juvenile crayfish fed the diet containing 40 g OP/kg had the significantly (< .05) highest THC (105.27 × 105 cell/ml), HC (98.33 × 105 cell/ml), SGC (38.54 × 105 cell/ml) and LGC (49.51 × 105 cell/ml). The crayfish fed the levels of dietary OP higher than 30 g/kg showed the significantly (< .05) higher values of SOD (4.07–4.30 U/min) and LYZ (6.73–7.20 U/min) compared with those fed 5, 10, 20 and 30 g of dietary OP/kg and control. Polynomial regression of SGR, FCR, PPV and PER suggested that the optimum dietary OP level could be higher than 30 and <50 mg/kg in crayfish reared in culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号