首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This study was carried out to investigate the effect of water‐soluble polysaccharides extract of algae Ulva rigida (WPU) as dietary supplement on growth performance, antioxidant enzyme activity, lysozyme and phenoloxidase activity, and resistance of shrimp (Litopenaeus vannamei) subjected to bacterial infection with Photobacterium damselae. Three replicate groups of shrimp (1.0 g) were fed four diets containing four levels, 0 or control, 0.5, 1 and 1.5 g/kg of WPU for 8 weeks over the growth trial. Thereafter, 30 shrimps from each dietary treatment were infected with bacteria P. damselae to evaluate disease resistance of infected shrimp. The results of this study showed that WPU was effective as a growth promoter for L. vannamei. The best growth rate was observed in shrimp fed 1.5 g/kg of WPU diet. Regarding antioxidant defences, the diets supplemented with three levels of WPU stimulated glutathione peroxidase and catalase activates in experimental shrimps. MDA content of L. vannamei‐fed diet containing WPU 1.5 and WPU 1.0 was lower than WPU 0 and WPU 0. 5 diets. Also, lysozyme and phenoloxidase activities of shrimp receiving WPU at 1.0 and 1.5 level were significantly higher than those fed WPU 0 and WPU 0.5 diets. In addition, using WPU extract in all diets decreased mortality in L. vannamei in a dose‐dependent manner after challenge with P. damselae. These results suggest that incorporation of water‐soluble polysaccharides from green algae U. rigida at 1.5 g/kg doses improves growth and antioxidant activity and enhances the immune responses in shrimp L. vannamei.  相似文献   

2.
A 3‐hr experiment was conducted to investigate the effects of dietary myo‐inositol (MI) supplementation on survival, immune response and antioxidant abilities in Litopenaeus vannamei under acute hypoxia stress. Six practical diets were formulated with supplementation of graded levels (control group 0, 0.1, 0.2, 0.4, 0.8 and 1.6 g/kg dry diet) of MI and were randomly assigned to triplicate groups of L. vannamei (mean weight 0.40 ± 0.00 g) for 8 weeks. Ten healthy shrimp (final mean weight approximately 11–14 g) randomly selected from each tank were exposed to hypoxia stress after feeding trial. After 3‐hr acute hypoxia stress, survival of shrimp fed MI‐supplemented diets (except 0.1 and 0.4 g/kg diets) was significantly increased compared with the control group. Shrimp fed control diet had lower activities of alkaline phosphatase (AKP), acid phosphatase (ACP), total antioxidant capacity (T‐AOC) and glutathione peroxidase (GPX), and higher malondialdehyde (MDA) and protein carbonyl (PC) contents in hepatopancreas than those fed the MI‐supplemented diets. In addition, mRNA expression levels of heat shock protein 70 (Hsp70), catalase (CAT) and penaeidin were significantly differentially regulated in hepatopancreas. In summary, dietary MI supplementation may have a positive effect on improving resistance to acute hypoxia stress of L. vannamei.  相似文献   

3.
4.
A 10‐week growth trial was run to evaluate effects of myo‐inositol (MI) on growth performance, haematological parameters, antioxidative capacity and salinity stress tolerance of Litopenaeus vannamei. Six practical diets supplemented with graded levels of MI (designated as MI0, MI600, MI1200, MI2400, MI 3600 and MI4800 for 448.8, 974.2, 1568.0, 2810.6, 3835.5 and 4893.6 mg/kg diet, respectively) were fed to six replicate groups of L. vannamei (mean initial body weight 0.63 ± 0.00 g). The results showed that significant increment of growth performance was observed in shrimp fed MI600 diet than those fed MI1200 diet. Lipid concentration in whole body of the shrimp fed MI600 diet was significantly increased. Shrimp fed MI0 diet had lower total protein (TP) as compared to shrimp fed the MI‐supplemented diets (except MI4800 diet). In general, lower activities of antioxidant enzymes and higher malondialdehyde (MDA) content in haemolymph and hepatopancreas were recorded in shrimp fed MI0 diet, compared to those fed the MI‐supplemented diets. Reduced survival after 7‐h salinity stress was present in shrimp fed MI0 diet as compared to those fed MI4800 diet. Dietary MI requirement for glutathione peroxidase activity of L. vannamei was 2705 mg/kg diet.  相似文献   

5.
A 25‐day experiment was conducted to evaluate the optimal lipid level for postlarval Litopenaeus vannamei. Shrimp (1.7 mg) were fed five isonitrogenous diets containing grade levels of lipid (96.6, 114.3, 128.5, 136.5 and 154.5 g/kg diet, respectively). Each diet was assigned to four tanks (500 shrimp), and shrimp were fed six times a day. Weight gain was increased with the increasing dietary lipid levels, and the highest weight gain was observed in shrimp fed diet with 154.5 g/kg lipid (p < 0.05). On the contrary, the survival was lowest in shrimp fed the L15.45 and highest in shrimp fed the L11.43. Triglyceride in hepatopancreas was increased, and cholesterol was decreased with the increasing dietary lipid. Pyruvate kinase and AMPK mRNA expression were highest in shrimp fed the L12.85. Malondialdehyde in whole body was positively correlated with the dietary lipid levels. The mRNA expression of SOD and Caspase 3 was highest in shrimp fed the L12.85. After hypoxia stress, shrimp fed the L12.85 showed highest survival. The mRNA expression of superoxide dismutase and Akirin was highest in shrimp fed the L11.43 and L15.45, respectively. Based on the survival after 25‐day feeding trail and after the hypoxia stress, the optimal dietary lipid for postlarval L. vannamei should be 118–124 g/kg.  相似文献   

6.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

7.
8.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

9.
An eight‐week feeding trial was conducted to evaluate the contribution of biofloc on dietary lipid requirement in whiteleg shrimp Litopenaeus vannamei. Five diets with graded levels of dietary lipid (45, 60, 90, 120 and 150 g/kg) were fed to juvenile shrimp. Final weight, weight gain and specific growth rate of shrimp fed diets with 60, 90 and 120 g/kg lipid levels were significantly higher than those of shrimp fed diets with lipid levels 45 and 150 g/kg (p < .05). Feed efficiency and protein efficiency ratio of shrimp fed 60, 90 and 120 g/kg were higher than those fed 150 g/kg diet. Plasma total cholesterol and triglyceride levels were lower in shrimp fed 45 g/kg compared with those fed the 90 g/kg (p < .05). Also, lysozyme activity for 90 g/kg group was higher than the 15 g/kg group. Hepatopancreas lipase and amylase activities of shrimp fed 90 and 120 g/kg diets were significantly higher than those of shrimp fed 45 and 150 g/kg diets. Broken‐line regression analysis for weight gain indicated that the dietary lipid requirement of whiteleg shrimp juveniles reared in a biofloc system was estimated to be higher than 56 g/kg but <60 g/kg.  相似文献   

10.
The marine flagellated Chlorophyta Tetraselmis suecica is among the most important live food species in marine aquaculture. In the present study, the effects of dietary supplementation of dried marine microalgae, Tetraselmis suecica, on growth performance; feed utilization; chemical composition; gene expression of superoxide dismutase (SOD), glutathione peroxidase (GPx) and insulin‐like growth factor 2 (IGF‐II) gene of Pacific white shrimp, Litopenaeus vannamei; muscle protein polymorphism; and microbial count were assessed and evaluated. Three hundred and sixty L. vannamei (postlarvae) Pls (0.124 ± 0.002 g) were randomly stocked into 40‐L glass aquaria (30 shrimp/aquarium) and fed three times daily four tested diets: a basal diet (control), diet incorporated with 2.5 g kg?1 dried T. suecica (T1), 5 g kg?1 dried T. suecica (T2) and 7.5 g kg?1 dried T. suecica (T3) in triplicates, for 90 days. At the end of the trial, the survival rate (SR) of L. vannamei fed diets supplemented with different levels of T. suecica was significantly (p < .05) higher than the control diet. The highest weight gain and specific growth rate and the best feed conversion ratio were recorded on L. vannamei fed a diet supplemented with a 7.5 g/kg dried T. suecica. The highest protein, lipid and ash contents were obtained in L. vannamei fed the diet containing 7.5 g/kg T. suecica, when compared with the remaining tested diets. The gene expression of antioxidant genes SOD and GPx was the lowest in the T3 group in comparison with the control group. Meanwhile, expression level of IGF‐II was higher in the T2 group. The total heterotrophic bacterial count was significantly (p < .05) increased with the cumulative T. suecica level, while no significant (p > .05) differences were found in the total Vibrio count among treatments. Overall, the present results have shown that the diet supplemented with the highest inclusion level of dried T. suecica resulted in improved growth and nutrient utilization.  相似文献   

11.
Two growth trials were designed to evaluate the utilization of dried fermented biomass (DFB) in commercial type feed formulation for Pacific white shrimp, Litopenaeus vannamei. In trial 1, four experimental diets were formulated to utilize increasing levels (0, 25, 50 and 100 g/kg) of spray‐dried fermented biomass (SDFB) as a replacement of fish meal (FM). Results indicated that SDFB can be utilized up to 50 g/kg as a substitution for FM without causing growth depression in shrimp. However, dietary SDFB supplementation at 100 g/kg significantly reduced the weight gain (WG) of shrimp and increased feed conversion ratio (FCR). This reduction in performance is likely due to palatability or nutrient imbalances of the feed. In trial 2, nine experimental diets were formulated with increasing levels (0, 20, 40, 60 and 120 g/kg) of spray‐dried (S) or granular (G) DFB to replace soy protein concentrate (SPC) or SPC + corn protein concentrate (CPC). This allowed the comparison between spray‐dried and ring‐dried products. Ring drying produced a granular product, reducing dust and increasing product particle size. Shrimp fed with diet containing 20 g/kg GDFB performed the best in terms of final mean weight, WG and FCR. Significantly reduced growth and increased FCR were observed in shrimp fed diets containing 60 and 120 g/kg SDFB. Lipid content of whole body was significantly reduced when GDFB was incorporated at 120 g/kg. No significant differences were detected in survival, protein retention efficiency as well as protein and ash contents of the whole shrimp. Results from analysis of covariance indicated that the processing method (covariant) had a significant effect on final mean weight, WG and FCR. In general, shrimp fed with diet containing granular product performed better as compared to those fed with diets utilizing spray‐dried product. GDFB can be utilized in the diets up to 120 g/kg in practical shrimp feeds as a substitute for SPC and CPC without compromising the growth of shrimp. However, a significant reduction in WG was observed in the diets containing 60 and 120 g/kg SDFB. The results in the current study demonstrate that processing changes to produce a granular product produced an improved feed ingredient for shrimp.  相似文献   

12.
The effects of fructooligosaccharide (FOS) on growth performance, immunity and predominant autochthonous intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal (FM) partially replaced by soybean meal (SBM) were evaluated. After acclimation, shrimps (1.82 ± 0.01 g/kg) were allocated into 15 tanks (25 shrimps per tank) and fed five different diets including positive control diet (C0, containing 250 g/kg FM and 285 g/kg SBM), control diet (C, containing 125 g/kg FM, 439 g/kg SBM) and three experimental diets supplemented with 1.0 g/kg FOS (T1), 2.0 g/kg FOS (T2) and 4.0 g/kg FOS (T3) to control diet (C) respectively. Shrimps were fed diets to apparent satiation three times per day, and 15 shrimps from each aquarium were randomly sampled and analysed at the end of the 6‐week feeding trial. The results showed that FBW, WGR, SGR and SR decreased, while FCR and FI increased significantly in control (C) compared with positive control (C0). Besides, significantly decreased trypsase and lipase activities, and SOD, AKP and ACP activities were recorded in control (C) compared with positive control (C0). On the other hand, significantly improved SGR and decreased FCR were observed in groups T1, T2 and T3 compared with control (C). Moreover, lipase and amylase activities enhanced significantly in group T3 compared with the control (C), while GOT and GPT activities dropped significantly with the increment supplementation of FOS in diets. Compared with the control (C), SOD activity enhanced significantly and MDA level decreased significantly in groups T2 and T3, and improved AKP and ACP activities were observed in group T3. In addition, dietary FOS improved the microbial diversity, and suppressed several potential pathogens, such as Vibrio tubiashii, Vibrio parahaemolyticus and Photobacterium damselae‐like strains in the intestine of shrimp. Overall, these results proved FOS could relieve the side effects induced by SBM and supported the use of 2.0–4.0 g/kg FOS in shrimp diets with FM partially replaced by SBM.  相似文献   

13.
Pacific white shrimp Litopenaeus vannamei (1050 individuals with initial weight of 1.01 ± 0.001 g) were fed either control diet or one of six dietary astaxanthin (AX) concentration (25, 50, 75, 100, 125 and 150 mg kg−1) diets for 56 days in 35 tanks (30 shrimp per tank). After 56 days of culture, shrimp‐fed AX125 and AX150 diets had higher (< 0.05) weight gain, specific growth rate, total antioxidant status and lower (< 0.05) superoxide dismutase (SOD), catalase (CAT) than shrimp fed control diet. After low dissolved oxygen stress for 1 h, survival rate of shrimp fed AX75, AX100, AX125 and AX150 diets was higher (< 0.05) than that of shrimp fed control diet. Hypoxia inducible factor‐1α (HIF‐1α), cytosolic manganese superoxide dismutase (cMnSOD) and CAT mRNA expression levels of shrimp fed seven diets were significantly down‐regulated under hypoxia than under normoxia, but their expression levels were higher under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet. About 70‐kDa heat‐shock protein (Hsp70) mRNA expression level of shrimp fed seven diets was significantly up‐regulated under hypoxia than under normoxia, but its expression level was lower under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet.  相似文献   

14.
Two feeding trials were conducted to investigate the effect of replacing fishmeal with a combination of soy and corn protein concentrate (1:1 ratio) on growth performance of the Pacific white shrimp (Litopenaeus vannamei). A basal diet containing 200 g/kg fishmeal was systematically reduced (200, 150, 100, 50 and 0 g/kg) with protein concentrate on an isonitrogenous basis. Additionally, two diets containing 0 or 50 g/kg fishmeal were supplemented with lysine and methionine to evaluate possible limitations in EAAs. Each diet was randomly fed to five replicate tanks (15 shrimp per 75 L aquaria) reared in an indoor clear water system (Trial 1), or four replicate circular tanks (100 shrimp per 800 L) reared in outdoor green water system (Trial 2). In trial 1, results indicated a slight decrease in shrimp performance as fishmeal was replaced at the highest levels. Meanwhile, the supplementation of lysine and methionine to the diets did not result in shifts in survival, growth or FCR. In trial 2, there were no significant differences in growth performance across the tested diets. This study demonstrated that plant‐based protein concentrates can be used to replace fishmeal in practical shrimp diet in clear and green water under high stocking density.  相似文献   

15.
Hypersalinity culture of marine shrimp can lead to poor growth and feed efficiency. This study evaluated the effect of dietary supplementation of three oil sources (krill, fish and soybean) on the growth of Litopenaeus vannamei reared under high salinity. Shrimp of 2.79 ± 0.60 g were reared for 64 days under isosmotic (ISO, 23 ± 1.2 g/L) and hyperosmotic (HOS, 44 ± 2.0 g/L) conditions. Diets varied in their fatty acid composition: Control, 35 g/kg of the diet (as fed basis) soybean oil; Fish, 27 g/kg fish oil and 10 g/kg soybean oil; Krill, 48 g/kg krill oil and 4 g/kg soybean oil; Krill‐, 15 g/kg krill oil and 21 g/kg soybean oil; Krill+, 55 g/kg krill oil and 4 g/kg soybean oil. At harvest, Krill diet promoted the fastest shrimp growth (1.01 ± 0.01 g/week) and body weight (11.97 ± 2.01 g), regardless of water salinity. There were no significant differences in shrimp survival (93.4 ± 5.07%) and yield (554 ± 68.5 g/m2) among different diets. Shrimp fed Fish, Krill and Krill+ had higher concentrations of PUFA compared to those fed Control and Krill‐ diets.  相似文献   

16.
The goal of this study was to investigate the effects of dietary supplementation with β‐glucan and microencapsulated probiotics (Bacillus subtilis or Pediococcus acidilactici) on growth performance, body composition, haemolymph constituents, and intestinal morphology and microbiota of the Pacific white shrimp Litopenaeus vannamei. Four treatment diets [basal diet (C), β‐glucan‐containing diet (β‐glu), β‐glucan plus B. subtilis‐containing diet (β‐glu+Bs), and β‐glucan plus P. acidilactici‐containing diet (β‐glu+Pa)] were fed to L. vannamei for 90 days. Shrimp fed the β‐glu and β‐glu+Pa diets exhibited similar growth performance and body protein content, which were significantly higher than those of shrimp fed the control diet (P < 0.05). No significant differences in haemolymph triglyceride, cholesterol, protein, haemolymph urea nitrogen or chloride were detected among the experimental diets. However, dietary β‐glucan alone increased the haemolymph glucose level and osmolarity (P < 0.05). Synbiotic supplementation had greater effects on intestinal microbiota and morphology than dietary β‐glucan alone. For example, β‐glu+Bs increased the number of intestinal lactic acid bacteria and decreased the number of Vibrio spp. (P < 0.05), and β‐glu+Pa increased the height of intestinal villi.  相似文献   

17.
The objective of the study was to examine the effects of biofloc technology on the muscle proteome of Litopenaeus vannamei. Two biofloc treatments and one control were compared: biofloc‐based tanks under zero‐water exchange fed with 150 g/kg crude protein (BF15), or with 250 g/kg crude protein (BF25) diets, and clear water tanks with 50% of daily water exchange stocked with shrimp fed with similar amount of a 250 g/kg crude protein diet, referred to as control. The shrimp (5.28 ± 0.42 g) were divided into the 300‐L fibreglass tanks (water volume of 200 L) at a density of 35 shrimp per tank and were cultured for 35 days. The biofloc groups displayed better growth and survival compared to the control. The muscle tissue from the control and BF25 groups was subjected to proteomic analysis. Lactate dehydrogenase, enolase, arginine kinase, mitochondrial ATP synthase subunit alpha, mitochondrial ATPase inhibitor factor 1 precursor, serpin 3 and myeloid differentiation factor 88 had an increased abundance in the BF25 group, while myosin heavy chain type 1 and myosin heavy chain type 2 showed a decreased abundance. The results indicate that biofloc technology could alter the expression of proteins involved in structure, metabolism and immune status of cultured shrimp.  相似文献   

18.
Three isonitrogenous diets containing 60 g kg–1, 90 g kg–1 or 120 g kg–1 lipid were formulated and fed to the Litopenaeus vannamei (2.00 ± 0.08 g) under two salinities (25 or 3 psu) in triplicate for 8 weeks. Shrimp fed 90 g kg–1 lipid had higher weight gain and specific growth rate than shrimp fed the other two diets regardless of salinity, and the hepatosomatic index increased with increasing dietary lipid at both salinities. The shrimp at 3 psu had significantly lower survival and ash content, higher condition factor, weight gain and specific growth rate than the shrimp at 25 psu. Increasing dietary lipid level induced the accumulation of serum MDA regardless of salinity, and at 3 psu, it reduced the serum GOT and GPT activities and the mRNA expression of TNF‐α in intestine and gill of L. vannamei. The hepatopancreatic triacylglycerol lipase (TGL) and CPT‐1 mRNA expression showed the highest value in shrimp fed 90 g kg–1 lipid diet at 3 psu. This study indicates that 120 g kg–1 dietary lipid may negatively affect the growth and induce oxidative damage in shrimp, but can improve immune defence at low salinity; 60 g kg–1 dietary lipid cannot afford the growth and either has no positive impact on the immunology for L. vannamei at 3 psu.  相似文献   

19.
Commercial de‐fatted groundnut oil cake (GNC) fermented with the fungus Aspergillus niger was evaluated as a fishmeal alternative in the diet of Penaeus vannamei. A 45‐day growth trail was performed using nine iso‐nitrogenous and iso‐lipidic diets. Untreated/fermented GNC was included at the rate of 0 (control), 25, 50, 75 and 100 g/kg by replacing fishmeal (w/w). Each diet was randomly assigned to triplicate group of 20 shrimps (initial weight of 3.09 ± 0.03 g). Results revealed that shrimp fed with diets having untreated GNC up to 50 g/kg has no significant difference in growth, whereas the inclusion level was enhanced to 100 g/kg with fermented GNC with no deleterious effect. The negative linear trend was found for SGR with increasing the inclusion of both untreated and fermented GNC. The feed and protein efficiency measures, viz. feed conversion ratio, protein efficiency ratio and apparent protein utilization, were better in shrimps fed with diets having fermented GNC than those fed the respective level of untreated GNC. The broken‐line analysis indicated that the inclusion of 72.5 g/kg fermented GNC showed the best FCR. No significant difference was observed in survival (86.67%–96.67%) between the dietary treatments. There was a significant difference in ether extract of shrimp between the treatments, whereas other parameters were not affected. Haemolymph indices showed a significant difference in total protein, glucose, cholesterol and triglycerides between control and test diets. The results conclude fermented GNC, which can be better than untreated one in the diet of shrimp.  相似文献   

20.
The effects of fulvic acid (FA) on survival and immune‐related gene expression were investigated in Litopenaeus vannamei challenged with Vibrio parahaemolyticus by immersion. Shrimp were fed with different dietary FA concentrations (1, 2, 4 and 6 g/kg feed) for 20 days (first bioassay) or 8 days (second bioassay, 2 g/kg feed of FA added every 2 days) and then challenged with V. parahaemolyticus. In a third bioassay, the expression of three immune‐related genes (translationally controlled tumour protein [TCTP], superoxide dismutase [SOD] and heat‐shock protein 70 [HSP70]) in haemocytes or hepatopancreas of experimental shrimp was measured by real‐time quantitative PCR at 0, 6, 12, 24, 48, 72 and 96 hr after FA (2 g/kg feed) administration. Fulvic acid increased survival at a concentration of 2 g/kg feed supplied every two days. Interestingly, TCTP gene expression was upregulated, whereas gene expression of SOD and HSP70 was downregulated. In conclusion, dietary fulvic acid improves survival in white shrimp challenged with V. parahaemolyticus and modulates the immune response. Therefore, FA merits further evaluation as prophylactic treatment in commercial shrimp farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号