首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed at investigating the physiological responses of Piaractus mesopotamicus exposed to high stocking density and the potential protective role of supplemented diets. Fish were fed with basal, red seaweed (Pyropia columbina) or β‐carotene‐supplemented diets for 90 days. Then, fish were distributed at low (1.5 g/L) and high (22 g/L) stocking densities for 15 days. Fish exposed to the high density showed increased hepatosomatic index, haemoglobin content and mean corpuscular haemoglobin concentration (all diets); decreased haematocrit, mean corpuscular volume (basal and seaweed) and white blood cells count (all diets) were observed. High density‐exposed fish showed decreased plasmatic metabolites as well as the hepatic lipids content in basal and seaweed diets. Regarding oxidative stress, increased activity of glutathione S‐transferase in high density‐exposed fish muscle (all diets), and lower lipid peroxidation in liver (basal and β‐carotene) and intestine (basal and seaweed) were evidenced. Interactions between diet and stocking density were recorded regarding the triglycerides (decrease in fish exposed to high density fed with basal and seaweed) and hepatic lipids (decrease in fish exposed to high density fed with basal). The major changes occurred in haematologic and metabolic parameters as strategies to cope with overcrowding stress. Fish response to stocking density was not affected by diets.  相似文献   

2.
A feeding trial was conducted to evaluate the effect of dietary β‐carotene level on the growth and liver vitamin A concentrations in soft‐shelled turtles, Pelodiscus sinensis, fed a vitamin A‐free diet. Soft‐shelled turtles were fed diets containing 0, 14.5, 26.5, 47.5, 87.3, 112.8 and 163.8 mg β‐carotene kg?1 for 10 weeks. Although it was not statistically significant due to high deviation within each group, mean weight gain of soft‐shelled turtles fed the diet without β‐carotene supplementation was the lowest among all test groups. Vitamin A concentrations in liver of turtles significantly (P<0.05) increased when dietary β‐carotene level reached 47.5 mg kg?1 indicating that soft‐shelled turtles were capable of converting β‐carotene to vitamin A. Analysed by regression modelling, dietary β‐carotene levels for optimal growth and maximal liver vitamin A contents of juvenile soft‐shelled turtles fed the vitamin A‐free diets were 49.1 and 88.7 mg kg?1 respectively.  相似文献   

3.
The current study aimed to investigate the effects of dietary soybean β‐conglycinin on growth performance and intestine apoptosis in juvenile grass carp (Ctenopharyngodon idella). For fish fed with the 80 g β‐conglycinin/kg diet for 7 weeks, the specific growth rate and feed intake were decreased. In the proximal intestine, dietary β‐conglycinin did not induce DNA fragmentation, tended to decrease the reactive oxygen species (ROS) content, and decreased ROS‐generating enzyme (NADPH oxidase [NOX]) activity. Subsequently, in the mid‐intestine, dietary β‐conglycinin caused DNA fragmentation, tended to increase the ROS content, increased caspase‐3, caspase‐8 and caspase‐9 activities, upregulated the mRNA levels of proapoptotic molecules (apoptotic protease‐activating factor‐1 [Apaf1] and Bcl‐2‐associated X protein [BAX]) and mitogen‐activated protein kinase (MAPK)‐related signal molecules (Jun N‐terminal kinase (JNK) and p38 MAPK) and increased the protein levels of p38 MAPK and phospho‐p38 MAPK. Moreover, in the distal intestine, dietary β‐conglycinin induced DNA fragmentation, elevated NOX activity and the ROS content and increased caspase‐3, caspase‐8 and caspase‐9 activities, death ligand (TNF‐α) mRNA expression level, and p38 MAPK and phospho‐p38 MAPK protein levels. In summary, dietary soybean β‐conglycinin suppressed fish growth and inconsistently caused apoptosis among the different intestinal segments which was partially associated with ROS‐mediated MAPK signalling.  相似文献   

4.
This study was conducted to investigate the effects of dietary β‐conglycinin on the growth performance, digestion, gut morphology and immune responses of juvenile turbot (Scophthalmus maximus L.). Four diets were formulated to contain 0%, 2%, 4% and 8% purified β‐conglycinin. Triplicate groups of 30 fish were fed to apparent satiation twice daily for 12 weeks. Fish fed 4% and 8% dietary β‐conglycinin showed significantly reduced specific growth rate, feed efficiency ratio, apparent digestibility coefficient of nutrients and whole‐body lipid contents, as well as a profound infiltration of mixed leucocytes in the lamina propria and a significant decrease in the absorptive surface of distal intestine. The expression of pro‐inflammatory cytokines, TNF‐α and IL‐1β, in the distal intestine was significantly upregulated by 4% dietary β‐conglycinin, whereas a significantly lower expression level of IgM and anti‐inflammatory cytokine TGF‐β1 was observed in fish fed 8% dietary β‐conglycinin. Serum lysozyme and alternative complement pathway activity were first significantly enhanced by 2% dietary β‐conglycinin and then rapidly declined by 4% and 8% dietary β‐conglycinin. Respiratory burst activity of head kidney macrophages and serum superoxide dismutase activity were significantly suppressed by 4% and 8% dietary β‐conglycinin. Dietary β‐conglycinin (2–8%) significantly increased the level of specific antibody against β‐conglycinin in serum. Collectively, these results suggested that higher levels of dietary β‐conglycinin (4–8%) induced a variety of non‐specific and specific immune responses and intestinal mucosal lesions in turbot, resulting in inferior feed utilization and poor growth performance.  相似文献   

5.
This study was performed to evaluate the effect of dietary natural carotenoid sources on skin colour enhancement of false clownfish Amphiprion ocellaris. The juvenile fish (initial body wt. 0.30 g) were fed with four experimental diets including (a) commercial feed (reference diet), (b) moist feed, (c) sweet potato (potato diet) and (d) dried gut weed Enteromorpha sp. (gut weed diet). Sweet potato and gut weed were used to boost up β‐carotene levels in the diets. There was no significant difference in final weight (0.51 ± 0.02 – 0.61 ± 0.01 g) and length (2.80 ± 0.02 cm) of fishes among treatments (p > 0.05) after 8 weeks. The survival rate of the fish in all dietary treatment was greater than 89%. Principal component analysis results showed that fish fed potato and gut weed diets performed brighter colour in skin with more orangeness, body and accumulated β‐carotene levels were higher than those fish fed with reference diet. Indicator a* value for the redness of fish fed potato diet (16.18 ± 0.59) and gut weed (14.36 ± 2.14) was also higher than fish fed reference diet (10.92 ± 0.82). The result of this study provided key information for developing dietary colour enhancement of ornamental fish by using cost‐effective feed ingredients (potato and gut weed) as natural supplemental carotenoid sources.  相似文献   

6.
The objective of this study was conducted to research the effects of β‐conglycinin in the diets on the growth performance, immunity function, antioxidant capacity and intestinal health of juvenile golden crucian carp (Carassius auratus). Five diets contained respectively (0, 20, 40, 60 and 80 g/kg) β‐conglycinin, and were used to feed juvenile golden crucian carp for 56 days. Final weight, weight gain and specific growth rate were significantly reduced by dietary β‐conglycinin (20–80 g/kg). Feed efficiency and protein efficiency were significantly reduced by dietary β‐conglycinin (40–80 g/kg). In hepatopancreas, the activities of T‐SOD, ACP, ALT and T‐AOC were significantly suppressed by dietary β‐conglycinin (20–80 g/kg). The activities of LZM, AKP, CAT and GPx were significantly reduced by dietary β‐conglycinin (40–80 g/kg). The activities of protease were significantly reduced and the content of MDA was significantly increased by dietary β‐conglycinin (60–80 g/kg). In proximal intestines, the activities of protease and CAT were significantly decreased by dietary β‐conglycinin (40–80 g/kg). In mid and distal intestines, the activities of protease and CAT were significantly inhibited by dietary β‐conglycinin (20–80 g/kg). In intestines, T‐AOC and GPx were significantly declined by dietary β‐conglycinin (20–80 g/kg). In proximal and mid intestines, the content of MDA were significantly increased by dietary β‐conglycinin (40–80 g/kg). In distal intestines, the content of MDA was significantly increased by dietary β‐conglycinin (20–80 g/kg). The expression of IGF‐I was significantly decreased and the expression of IL‐1β and TNF‐α was significantly increased by dietary β‐conglycinin (20–80 g/kg). The structural integrity of intestinal tissues were damaged by dietary β‐conglycinin (20–80 g/kg), the part of intestinal villus were shed, the part of epithelial cells were separated from lamina propria. Ultimately, these results suggested dietary β‐conglycinin should be <20 g/kg in formula feed of golden crucian carp.  相似文献   

7.
An 84‐day feeding trial was conducted to evaluate the addition of bovine plasma protein concentrate (BPP) as a full replacement of fish meal (FM) in extruded aquafeeds for the fish Piaractus mesopotamicus at two fattening stages. Fish with an initial body weight of 105.55 ± 13.48 g (1st fattening stage) and 564.50 ± 88.02 g (2nd fattening stage) received two iso‐nitrogenous and isocaloric diets with 130 g/kg of FM (FM diet—FMD) or with 130 g/kg of BPP (BPP diet—BPPD). No significant difference in growth performance was detected between dietary treatments. Fish from the 2nd fattening stage showed decreased intestinal pH and increased haemoglobin content. At the 1st fattening stage, fish fed with BPPD presented higher levels of plasma triglycerides and cholesterol, and hepatic and whole‐body lipid content, while plasma glucose and muscular glycogen were lower at the 2nd fattening stage compared with FMD‐fed fish. Fish fed with FMD showed an increase in the thiobarbituric acid reactive substances in liver at the 1st fattening stage and intestine at the 2nd one, accompanied by higher levels of hepatic catalase at the 1st fattening stage. Results suggest BPP could completely replace FM in diets for P. mesopotamicus without affecting growth performance, when FM represents 13% of the diet.  相似文献   

8.
An 8‐week feeding trial was implemented to evaluate the effects of replacing fish meal (FM) with mussel (Cristaria plicata) meat (MM) on growth, digestive ability, antioxidant capacity and hepatic insulin‐like growth factor I (IGF‐I) gene expression of juvenile Ussuri catfish (Pseudobagrus ussuriensis). Three isonitrogenous and isolipidic diets were formulated to include 0, 177.5 and 355.1 g/kg of MM, accordingly, replacing 0% (M0, control), 50% (M1) and 100% (M2) of FM protein, respectively. The results showed that the final body weight, weight gain, specific growth rate and feed intake were gradually decreased with dietary MM protein levels increased, but there were no significant difference between M0 and M1 groups (p > 0.05). The protein efficiency ratio was increased significantly with dietary MM inclusion (p < 0.05). The apparent digestibility coefficient of dry matter, crude lipid and gross energy gradually increased with increasing dietary MM protein levels, but the apparent digestibility coefficient of crude protein was not significantly affected by MM protein supplementation (p > 0.05). Fish fed diet, M0 and M1 remained unaffected significantly on activities of alpha‐amylase and pepsin (> 0.05), but fish fed diet M2 had the highest activities of alpha‐amylase and pepsin. Fish fed diet M1 or M2 had significantly lower hepatic total antioxidant capacity, superoxide dismutase and the higher malondialdehyde level compared to fish fed diet M0. In addition, no significant difference was observed in hepatic IGF‐I gene expression level for fish fed diet M0 and diet M1, and fish fed diet M2 showed significantly lower hepatic IGF‐I gene expression level. Therefore, we can conclude that MM protein can successfully substitute 50% of FM protein without significantly negative effect on growth, nutrient utilization, and hepatic IGF‐I gene expression for juvenile Ussuri catfish, but the antioxidant capacity was negatively affected in the present study, what is more, the total replacement of FM by MM in diet may result in the inhibition of the growth and antioxidant capacity of fish.  相似文献   

9.
The goal of this study was to investigate the effects of dietary supplementation with β‐glucan and microencapsulated probiotics (Bacillus subtilis or Pediococcus acidilactici) on growth performance, body composition, haemolymph constituents, and intestinal morphology and microbiota of the Pacific white shrimp Litopenaeus vannamei. Four treatment diets [basal diet (C), β‐glucan‐containing diet (β‐glu), β‐glucan plus B. subtilis‐containing diet (β‐glu+Bs), and β‐glucan plus P. acidilactici‐containing diet (β‐glu+Pa)] were fed to L. vannamei for 90 days. Shrimp fed the β‐glu and β‐glu+Pa diets exhibited similar growth performance and body protein content, which were significantly higher than those of shrimp fed the control diet (P < 0.05). No significant differences in haemolymph triglyceride, cholesterol, protein, haemolymph urea nitrogen or chloride were detected among the experimental diets. However, dietary β‐glucan alone increased the haemolymph glucose level and osmolarity (P < 0.05). Synbiotic supplementation had greater effects on intestinal microbiota and morphology than dietary β‐glucan alone. For example, β‐glu+Bs increased the number of intestinal lactic acid bacteria and decreased the number of Vibrio spp. (P < 0.05), and β‐glu+Pa increased the height of intestinal villi.  相似文献   

10.
11.
An 8‐week feeding trial was conducted to evaluate the dietary arginine requirement of juvenile hybrid sturgeon. Seven isonitrogenous and isolipidic diets were formulated to contain graded levels of dietary arginine ranging from 1.74% to 3.54% (dry weight). The results indicated that the fish fed with 1.76% arginine diet had lower specific growth rate (SGR) and feed efficiency ratio (FER) than the fish fed the 2.64% to 3.24% arginine diets (< .05), and the fish fed the 2.64% arginine diet presented the highest SGR. The fish fed with 1.76% arginine diet had lower whole‐body crude protein content than the fish fed the 2.64% or 2.93% arginine diets (< .05). Compared with the 1.76% arginine diet, 2.36% to 2.93% arginine diets significantly increased the total amino acid (TAA) concentration and total nonessential amino acid (TNEAA) of carcasses. The fish fed with 1.76% arginine diet had lower activity of nitric oxide synthase (T‐NOS) and content of nitric oxide (NO) than the fish fed the 2.05% to 2.93% arginine diets in the liver. The fish fed with 1.76%, 2.05% or 2.36% arginine diets had lower gene expression of growth hormone (GH) and insulin‐like growth factor I (IGF‐I) in the liver than the fish fed the 2.64% to 3.53% arginine diets in the liver (< .05). A broken‐line analysis between SGR against the dietary arginine levels provided estimates for the optimal dietary arginine requirement of 2.47% corresponding to 6.18% of the dietary protein on a dry weight basis.  相似文献   

12.
A six‐week growth trial was conducted to evaluate the optimum dietary isoleucine requirement of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Seven isoenergetic (3,400 kcal/kg of dry matter), isoproteic (496 g/kg of dry matter) and isolipidic (70 g/kg of dry matter) diets were formulated to contain graded Ile levels (7.3, 11.3, 15.7, 19.6, 23.5, 26.8 and 30.8 g/kg, dry‐matter basis). Each experimental diet was fed to triplicate groups of 12 hybrid grouper juveniles (average initial body weight: 6.00 ± 0.01 g/fish). Experimental fish were randomly distributed into 21 glass tanks (L 60 × W 45 × H 50 cm) connected to mechanical and biological water filters as a recycling system. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. After the sampling of the growth trial, the remaining fish in each group were fed their corresponding diets for 2 d and then exposed to 4 mg Cu2+ · L?1 water for 24 hr. Results showed that growth performance and feed utilization were significantly affected by different dietary Ile levels (p < .05). Weight gain percentage (WG%), protein productive value (PPV), protein efficiency ratio (PER) and feed efficiency (FE) were increased as dietary Ile level increased, reaching a peak value at 19.6 g/kg dietary Ile, and thereafter, these four parameters declined as dietary Ile level continued to increase. Daily feed intake (DFI) showed an opposite tendency of variations as FE. The quadratic regression analysis of WG%, PPV, PER and FE against dietary Ile levels indicated that the optimum dietary Ile requirement for hybrid grouper was estimated to be 19.8, 20.8, 19.4 and 19.1 g/kg dry matter, respectively. Among all experimental treatments, fish fed 19.6 g/kg dietary Ile had the highest expression of growth and protein synthesis‐related genes, including growth hormone (GH) in pituitary, insulin‐like growth factor 1 (IGF‐1), growth hormone receptor 1 (GHR1), target of rapamycin (TOR) and S6‐kinase 1 (S6K1) in liver. Gut micromorphology was significantly influenced by dietary Ile levels. After the exposure to 4 mg Cu2+ · L?1 water for 24 hr, fish fed 19.6 g/kg dietary Ile had the highest survival and the best immunologic manifestation among all experimental treatments. Generally, the optimum dietary Ile requirement for maximum growth of hybrid grouper was estimated to be 19.8 g/kg dry matter, corresponding to 39.9 g/kg dietary protein.  相似文献   

13.
l ‐carnitine (LC) is required for transporting long‐chain fatty acids into the mitochondria, where β‐oxidation takes place, and it works as an antioxidant molecule against reactive oxygen species. This study evaluated the effects of LC on the growth and antioxidant function of Amur minnow (Phoxinus lagowskii Dybowskii). Five isonitrogenous (380.4 g/kg) and isoenergetic (17.63 MJ/kg) diets were supplemented with five LC levels: control level (0 mg/kg) and treatment levels (50, 400, 750, or 1,100 mg/kg) were fed to fish (18.19 ± 0.56 g) for 120 days. The results showed that the growth performance of fish fed a diet containing 400 mg/kg of LC was significantly higher than that of the control and those fed other LC level treatments. Similarly, the 400 mg/kg treatment had the best feed efficiency. Further, the levels of total antioxidant capacity and total glutathione in the serum and hepatopancreas of fish fed a diet containing 750 mg/kg of LC were significantly increased; however, malondialdehyde levels were significantly reduced compared to those of the control group. The activities of antioxidant enzymes of 750 mg/kg treatments in the serum and hepatopancreas were significantly higher than those of the control group, including total superoxide dismutase, catalase, glutathione peroxidase and gamma‐glutamyl‐cysteine synthetase. Finally, 750 mg/kg treatment significantly upregulated the mRNA relative expression of antioxidant enzymes and nuclear factor erythroid‐2‐related factor 2 and inhibited the mRNA level of kelch‐like ECH‐associated protein 1 in the hepatopancreas. In conclusion, the dietary LC level of 400–750 mg/kg could improve the growth performance, feed utilization and antioxidant defense system of Amur minnow under the culture conditions.  相似文献   

14.
A 60‐day indoor feeding trial was conducted to evaluate the effects of dietary tryptophan supplementation on growth performances, whole‐body chemical composition, expression of muscle growth‐related genes (MyoD, myogenin and myostatin), and haematological and biochemical responses of juvenile genetically improved farmed tilapia (GIFT). Five corn–soy‐based isonitrogenous and isoenergetic diets were formulated to contain graded levels of dietary tryptophan (2.6, 3.2, 3.7, 4.2 and 4.8 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 fish (5.3 ± 0.1 g) per experimental unit, which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances and feed utilization were observed in fish fed tryptophan at 3.7 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acid profile by dietary tryptophan supplementation. However, significant (p < .05) differences were observed in plasma metabolites and the mRNA expression of MyoD, myogenin and myostatin. Serum cortisol level was found significantly lowest in fish fed tryptophan at 3.7 g/kg of diet. Second‐order polynomial regression analysis of weight gain and nitrogen gain against dietary tryptophan levels indicated that the optimum dietary tryptophan requirement for maximum growth and feed utilization of juvenile GIFT tilapia was 3.8 g/kg of diet.  相似文献   

15.
This study was conducted to determine effects of dietary Fe levels on growth performance, hepatic lipid metabolism and antioxidant response for juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were fed six isonitrogenous and isolipidic diets containing Fe levels of 16.20, 34.80, 54.50, 76.44, 100.42 and 118.25 mg/kg for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased with dietary Fe levels from 16.20 to 54.50 mg/kg diet and then plateaued over the level. Feed conversion rate (FCR) was highest and protein efficiency rate (PER) was lowest for fish fed the lowest Fe levels of diet. Fe contents in whole body and liver increased with increasing dietary Fe levels. Hepatic lipid content was lowest, but mRNA levels of carnitine palmitoyltransferase (CPT‐1) and peroxisome proliferator‐activated receptor α (PPARα) were highest for fish fed 54.50 mg Fe/kg diet. Fish fed adequate dietary Fe levels reduced hepatic malondialdehyde (MDA) level and increased activities of antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT) and GS. Based on the broken‐line regression analysis of WG against dietary Fe levels, optimal dietary Fe requirement for yellow catfish was 55.73 mg Fe/kg diets. Fe‐induced changes in MDA levels and antioxidant enzymatic activities paralleled with the change in hepatic lipid content, suggesting the potential relationship between oxidative stress and hepatic lipid accumulation in yellow catfish.  相似文献   

16.
An 8‐week feeding trial was conducted with extruded practical diets containing 320 g/kg of crude protein from plant‐based sources to determine the effects of L‐lysine on growth performances, muscle‐growth‐related gene (myoD, myogenine and myostatin) expression and haemato‐biochemical responses in juvenile genetically improved farmed tilapia (GIFT). Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of lysine (14.3, 16, 17.5, 19 and 20.5 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.2 ± 0.1 g), which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances were observed in fish fed with lysine at 19 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acids profile by dietary lysine supplementation. Significant (p < .05) changes were observed in relative expression of muscle‐growth‐related genes namely myoD and myogenine and in plasma metabolites by dietary lysine supplementation. In contrast, the relative expression of myostatin was not affected by dietary lysine supplementation. Broken‐line regression analysis and second‐order polynomial regression analysis of weight gain and N gain against dietary lysine levels showed that the dietary lysine requirement for juvenile GIFT tilapia was 18–18.3 g/kg of diet and 19.3–19.5 g/kg of diet, respectively.  相似文献   

17.
An 8‐week feeding trial was conducted to evaluate the effects of a dairy‐yeast prebiotic (Grobiotic®‐A) on growth performance, body composition, antioxidant capacity and immune functions of juvenile starry flounder, Platichtahys stellatus. Three triplicates of starry flounder (average initial weight of 15.05 ± 0.04 g) were fed one of six diets formulated to supplement dairy‐yeast prebiotic at 0%, 0.4%, 0.8%, 1.2%, 1.6% or 2.0% respectively. Results showed that weight gain, daily feed intake, protein efficiency rate and condition factor increased significantly (P < 0.05) whereas feed conversion ratio decreased significantly with the increasing level of the dairy‐yeast prebiotic supplement. Crude lipid content in dorsal muscle and liver decreased significantly (P < 0.05). No significant differences occurred in moisture and crude protein content of dorsal muscle and liver with the increasing level of the dairy‐yeast prebiotic supplement. Compared with fish feed the basal diet, the activity of catalase and total antioxidant capability in serum and liver, as well as total superoxide dismutase in serum all significantly increased with high level of the prebiotic, while the malondialdehyde content in serum and liver decreased significantly. In serum, the activity of alkaline phosphatase, lysozyme, complement and the content of nitric oxide were significantly increased at higher level of prebiotic supplementation while no significant differences were found in total protein, albumin, globulin, albumin to globulin ratio, haemoglobin, acid phosphatase and myeloperoxidase. Based on weight gain response using the quadratic regression, combine the antioxidant and immune indices, the optimum dietary dairy‐yeast prebiotic level for juvenile starry flounder was estimated to be 1.33% under these experimental conditions.  相似文献   

18.
An 8‐week feeding trial was conducted to investigate the effect of dietary selenium (Se) on feed intake, weight gain and antioxidant activity in juvenile grass carp (11.2 ± 0.03 g). Six Se levels (0.13, 0.41, 0.56, 1.12, 2.18 and 4.31 mg/kg) of semi‐purified diets were assayed in triplicate. The maximum weight gain, specific growth rate and feed intake were obtained in fish fed with 1.12 mg Se/kg diet. Hepatic glutathione peroxidase activity was markedly increased when dietary Se ≤1.12 mg/kg diet and reached a plateau when dietary Se ≥1.12 mg/kg diet. Hepatic superoxide dismutase and serum catalase activities in juvenile grass carp fed with 0.56, 1.12 and 2.18 mg Se/kg diets were all significantly higher than those in the other groups. The malondialdehyde content in liver and serum was firstly decreased and then increased with increasing dietary Se content, and the lowest content was observed in fish fed with 1.12 mg Se/kg diet. With the increase in Se level, the activities of serum alanine aminotransferase and aspartate aminotransferase were reduced. In addition, serum alkaline phosphatase activity and albumin content were highest in fish fed with 1.12 mg Se/kg diet. This study indicated that both the Se deficiency and excess of Se caused negative effect on the oxidative stress in juvenile grass carp and suggested that the health‐giving concentration of dietary inorganic Se was 1.12 mg/kg diet. Moreover, based on the broken‐line regression analysis of weight gain, the optimal concentration of dietary inorganic Se was 0.83 mg/kg for juvenile grass carp.  相似文献   

19.
To investigate the effects of dietary reduced glutathione (GSH) on the growth performance and antioxidant capacity of juvenile Atlantic salmon (Salmo salar), 396 juvenile fish with initial body weight of 143.07 ± 6.56 g were randomly distributed into four groups fed four diets with graded supplementation levels of GSH (0, 100, 200 and 400 mg/kg diet) for 83 days. The results showed that the appropriate GSH supplementation (100 and 200 mg/kg diet) significantly increased the growth performance, activities and gene mRNA expression levels of glutathione peroxidase (GPx) and glutathione transferase (GST), and the content of GSH and total antioxidant capacity (TAOC), whereas it significantly decreased activities and gene mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT), and the content of malondialdehyde (MDA; p < 0.05). However, the excess dietary GSH (400 mg/kg diet) had an adverse effect on the all above indexes. Interestingly, the dietary GSH had the opposite effect on GSH‐related antioxidant enzymes (GPx and GST) and other antioxidant enzymes (SOD and CAT). The results showed that the diet with 200 mg/kg GSH supplementation was optimal for the juvenile Atlantic salmon, which had a measured GSH content of 209.54 mg/kg.  相似文献   

20.
Five isonitrogenous diets were formulated with graded alpha‐linolenic acid (LNA) levels (0, 5, 10, 15 and 20 g/kg) to investigate LNA requirement of juvenile Russian sturgeon Acipenser gueldenstaedtii. Weight gain and specific growth rate of fish fed LNA5 and LNA10 were significantly higher than those in other groups, while the feed conversion ratio of these two groups was lower than others. Dietary LNA increased n‐3 polyunsaturated fatty acid and n‐3/n‐6 ratio, but decreased saturated fatty acid contents in the liver. DHA in the fish tissue also increased with the increased dietary LNA. The superoxide dismutase activity was highest in fish fed LNA5. Fish fed LNA10 showed the highest catalase activity and the highest malondialdehyde content. A 459‐bp fragment of Δ6 fatty acid desaturase and a 474‐bp fragment of elongases of very long chain fatty acids 5 were cloned and analysed. The expressions of these two genes were higher in fish fed LNA15 and LNA20. The highest hepatic lipase activity occurred in fish fed LNA 20, and the malate dehydrogenase activity peaked in the LNA5 group. Based on SGR and FCR, the range of optimum dietary LNA concentration for juvenile Russian sturgeon is recommended at 6.85–10.69 g/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号