首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract The catch-per-unit-effort (CPUE) and value-of-catch-per-unit-effort (VPUE) of reef-associated fish species from six Fijian native fishing grounds ( qoliqoli ) subject to different fishing intensities were determined using records of fishing activity from a voluntary logbook scheme. Line and spear fishing techniques were used for more than half the total fishing time (h person-1 d-1) in all qoliqoli , and yet the favoured technique in a given qoliqoli was frequently less efficient (lower CPUE) than other techniques. The popularity of relatively ineffective fishing methods implies that fishermen did not always attempt to maximize their catch rates. To compare fishing effort in different qoliqoli , all effort was rescaled on the basis of its recorded efficiency (measured as multispecies CPUE) and expressed as hours equivalent to boat-based spear fishing over coral by day to catch fish for sale. Total fishing intensity in the six qoliqoli ranged from 72 to 4310 h km-2 reef year-1. The relationship between catch and effort was linear at all fishing intensities, suggesting that the qoliqoli were all fished on a sustainable basis. Furthermore, whilst there was a significant difference in CPUE and VPUE between the one or two qoliqoli with lowest fishing intensity and all the others, there were no significant differences between these other qoliqoli in terms of the VPUE of the saleable multispecies boat catch or the CPUE of species from piscivorous and carnivorous genera ( Epinephelus, Lethrinus and Plectropomus ) which the fishermen prefer to catch.  相似文献   

2.
Abstract. Monthly catches of Atlantic salmon, Salmosalar L., and sea trout, Salmo trutta L., by anglers in a west of Ireland fishery were analysed. Data were available for 50 months from the years 1971 to 1981. The most important single determinant of catch was found to be fishing effort measured in boat-days. An additional 10 boat days were found to correspond to a catch of almost 6 salmon and 23 sea trout. The relationship between catch and stock was weaker, though a relatively high catchability of sea trout at low stock levels was recorded. Slock levels, fishing effort and environmental factors accounted for much, but not all, of the variation in catch from month to month and from year to year. Most of the effect of rainfall, sunshine and water level was attributable to variations in fishing effort associated with these factors.  相似文献   

3.
For fisheries management purposes, it is essential to take into account spatial and seasonal characteristics of fishing activities to allow a reliable assessment of fishing impact on resource. This paper presents a novel technique for describing spatial and temporal patterns in fishing effort. The spatial and seasonal fishing activity patterns of the French trawler fleet in the Celtic Sea during the period 1991–1998 were analysed by modelling fishing effort (fishing time) with generalised linear models. The linear model for fishing effort included fixed effects for both spatial (statistical rectangles) and temporal units (months). In addition, spatial correlations in any given month were modelled by an exponentially decreasing function. Temporal correlations were included using the previous month's fishing effort for a given spatial unit as predictor. A method based on cluster analysis of estimated model coefficients of spatial or temporal fixed effects is proposed for identifying groups of similar spatial and temporal units. A contiguity constraint is imposed in the clustering algorithm, ensuring that only neighbouring spatial units or consecutive temporal units are grouped. The cluster analysis identified 22 spatial and 9 temporal groups. Winter and spring months stood out as being more variable than the remaining months. Spatial groups were of varying size, and generally larger offshore. The proposed method is generic and could for example be used to analyse temporal and spatial patterns in catch or catch rate data.  相似文献   

4.
东海带鱼渔获量变动原因分析   总被引:4,自引:0,他引:4  
利用1951~1984年东海带鱼年渔获量和捕捞努力量资料,以及降雨、风速和海表温度等的时间系列,分析了带鱼渔获量年际变化与捕捞努力量及环境因素的关系,并建立了渔获量对捕捞努力量和环境变量的回归模型。带鱼渔获量随捕捞努力量的变化可用Fox模型拟合(R=0·89,P<0·01),1951~1974年期间,渔获量随着捕捞努力量的增长而不断提高,但自1974年后,随着捕捞努力量的持续增长,渔获量开始下降。排除捕捞效应后的带鱼渔获量波动还与环境因素显著相关,分析结果表明,长江流域和东海沿岸地区年降水量、渤海海域年均风速、长江口年均风速、黄海和东海海表温度(2月)、东海中部年平均海表温度及南部冬季月平均海表温度等环境因子都与之显著相关。包含捕捞努力量和环境变量的渔获量模型的回归系数为0·97,其置信水平达到99%以上。运用1951~1984年的回归模型对1985和1986年的渔获量作出了预测,其预测值与实际渔获量的相对误差均小于5%,验证了其可靠性。研究的结果表明,带鱼渔获量变动不仅与捕捞作用有关,同时还受环境因素的影响,是两者综合作用的结果。  相似文献   

5.
Global marine wild‐capture landings have remained relatively stable for >20 years; however, there is a lack of credible fishing capacity and effort information required to assess the sustainability and efficiency of the global fleet. As such, we estimated global fishing capacity and effort from 1950 to 2012 using a relatively comprehensive database developed by the FAO, supplemented by other data sources. Using random sampling techniques, we estimated the uncertainty surrounding many of our estimates enabling the identification of deficiencies and limitations. Global fishing capacity and effort increased rapidly from the late 1970s through to around 2010 before stabilizing. The Asian fleet is more than an order of magnitude larger than any other region in both capacity and effort, and continues to increase. Most other regions have stabilized, and there have been considerable declines in Europe and, to a lesser extent, in North America. Developed nations, as a whole, have decreased in both measures in the recent years and are responsible for the stabilization of the global trend. Developing and undeveloped countries are still increasing with the former having the largest fleet and showing the greatest relative increase with the socioeconomic impacts of reversing these trends likely to be high. The efficiency of the global fleet, in terms of watt days of fishing effort per tonnage of wild marine catch, is now less than in 1950 despite the considerable technological advances, and expansion throughout the world's oceans, that has occurred during this period of time.  相似文献   

6.
北斗船位数据提取拖网捕捞努力量算法研究   总被引:12,自引:1,他引:11  
张胜茂  杨胜龙  戴阳  樊伟  黄华文 《水产学报》2014,38(8):1190-1199
传统的捕捞努力量统计耗时费力,并且存在延时,不能及时了解宏观的捕捞强度,本研究以象山港拖网渔船为研究对象,选择安装北斗终端的1 508艘渔船,对北斗卫星船位监控系统所获取的渔船船位、航向、航速等信息进行分析挖掘,获得捕捞强度。根据航速统计获得每艘渔船处于捕捞状态的航速阈值,如拖网船300791捕捞状态船位点阈值的航向差最小和最大分别是-50和52°,航速最小和最大分别是0.9和2.0 m/s,两者结合判断捕捞状态点,再采用过滤窗修正,在各渔区格网计算一段时间内渔船捕捞状态点的累计捕捞时间,其值与渔船功率的乘积获得捕捞努力量,物理单位为kW·h,并制作累计捕捞kW·h的格点图和插值图。该方法具有实时、大范围、快速、分辨率高的特点,能够很好地服务于渔业资源保护。  相似文献   

7.
Spatial and temporal patterns in catch rates and in allocation of fishing effort were analysed for the coastal fishery in Spermonde Archipelago, Indonesia, to assess whether fishermen can optimise their strategy from catch information, or whether they fish under great uncertainty and merely minimise risks. On average 517 fishing units operated in the 2800 km2 area, catching 21 t fish day−1. Major gear categories were hook and line (59% of total effort and 5% of total catch), and lift nets (16% of total effort and 70% of total catch). The size of individual resource spaces varied with gear type and was smaller in unfavourable weather conditions. Although spatial patterns in catch rates at the scale of the whole archipelago were evident, fishermen could not differentiate between locations, as catch variance within their individual resource spaces was high relative to the contrasts in spatial patterns. The aggregated distribution of fishing effort in Spermonde must be explained by factors such as the small scale of operations, rather than fish abundance.  相似文献   

8.
Pelagic fish stocks in the Java Sea have been exploited intensively since the beginning of the 1970s. However, due to the effect of increased fishing power of the fleets and the changing nature of spatial and temporal distribution of the fishing effort, assessment of stock trends based on commercial data of catch and effort requires the standardization of both effort and catch data. Here we present the first attempt to reconstruct a standardized time series of commercial catch per unit of effort (CPUE) for the main pelagic species exploited by the purse seine fleet in the Java Sea. The results showed that all the stocks analysed have largely declined since the beginning of the 1990s. For bigeye scad, Indian mackerel and sardine, current estimates are only between 3 and 19% of the maximum observed value while round scads and spotted sardine biomass estimates lie between 18 and 34%. However, our assumptions about the effect of lamp power and level of creeping and the fact that the influence of fish density on catchability and the effect of targeting were not taken into account thus observed decline is a rather conservative estimate of the real decline of the stocks. If effective management actions are not put in place as a matter of urgency in the Java Sea for small pelagic fisheries, one runs the risk of adding those species to the long list of overexploited stocks of the world oceans.  相似文献   

9.
Largemouth bass Micropterus salmoides (Lacepède) catch rates decline with sustained fishing effort, even without harvest. It is unclear why declines in catch rate occur, and little research has been directed at how to improve catch rate. Learning has been proposed as a reason for declining catch rate, but has never been tested on largemouth bass. If catch rate declines because fish learn to avoid lures, periods of no fishing could be a management tool for increasing catch rate. In this study, six small impoundments with established fish populations were fished for two May to October fishing seasons to evaluate the effect of fishing effort on catch rate. Closed seasons were implemented to test whether a 2‐month period of no fishing improved catch rates and to determine whether conditioning from factors other than being captured reduced catch rate. Mixed‐model analysis indicated catch rate and catchability declined throughout the fishing season. Catch rate and catchability increased after a 2‐month closure but soon declined to the lowest levels of the fishing season. These changes in catch rate and catchability support the conclusion of learned angler avoidance, but sustained catchability of fish not previously caught does not support that associative or social learning affected catchability.  相似文献   

10.
Estimation of gillnet selectivity curve by maximum likelihood method   总被引:2,自引:0,他引:2  
ABSTRACT: A maximum likelihood method of estimating gillnet selectivity when data are obtained by gillnet fleets consisting of several nets of differing mesh size is presented in this paper. The SELECT model is expanded by application of the relative length (i.e. the ratio of fish length to mesh size) to obtain a master curve of gillnet selectivity. Four kinds of functional model, normal, lognormal, skew-normal and bi-normal are fitted to the data. In addition, two cases in which the relative fishing intensity is either estimated or fixed by catch effort are compared. The bi-normal model has the lower model deviance regardless of whether the relative fishing intensity is estimated or not. The estimation of relative fishing intensity by catch effort is also examined in which the estimates of the parameter of the SELECT model are compared with the catch effort as determined by the number of nets of each mesh size used. For the bi-normal model these quantities compare well. Thus, it is concluded that this method gives reliable estimates even if data for each mesh size is obtained with different catch efforts.  相似文献   

11.
Spatial fishery closures will induce fishing effort to either move to open areas or to cease to fish. When designing a short- or long-term closed area management regime, the expected impact of that closure will depend upon how that effort is redistributed. We present a redistribution model based upon Ideal Free Distributions (IFDs) which is intermediate in complexity between analyses in which effort is distributed uniformly over open areas and models of full fleet dynamics. The IFD models incorporate the fundamentals of the decision process invoked by fishers facing relocation and the ensuing catch rates that result from the addition or removal of effort. Two classes of models were tested: an Availability model where catch rate declines were proportional to abundance; and an Abundance model where abundance declines at an exponential rate with the entry of displaced effort into an area. Results of these models were compared with uniform and proportional redistribution methods. The IFD-based methods included relative cost of relocation, thereby illustrating the importance of both catch rates and movement costs in designing closed area regulations. To demonstrate the methods, hypothetical area closures to United States pelagic longliners in the western Atlantic were examined and the impact of those closures on bycatch rates was evaluated. Guidance for selecting an appropriate model structure for a particular closed area problem is given.  相似文献   

12.
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.  相似文献   

13.
1999—2011年东、黄海鲐资源丰度年间变化分析   总被引:4,自引:1,他引:3  
根据1999—2011年我国鲐大型灯光围网渔业数据,使用广义线性模型(generalized linear model,GLM)和广义加性模型(generalized additive model,GAM)估算了影响CPUE的时间(年、月)、空间(经度、纬度)、捕捞性能和环境效应[海表面温度(sea surface temperature,SST)、海表面高度、海表面叶绿素浓度],并以年效应作为资源丰度指数,分析了东、黄海鲐资源丰度的年间变化,东、黄海鲐资源丰度指数的年间变化与产卵场海表面温度以及捕捞强度间的关系。GAM结果表明,时间、空间、捕捞和环境变量对CPUE偏差的解释率为11.69%,其中变量年的解释率最大,占总解释率的38%。结果显示,1999—2011年东、黄海鲐鱼资源丰度指数(abundance index,AI)总体上呈下降趋势,2008年以来更是持续下降,丰度指数由2008年的1.22降至2011年的0.82。东、黄海鲐资源丰度指数年间与产卵场呈正相关,关系式为AI=-3.51+0.23SST(P0.05),这表明较高的产卵场SST对鲐资源量增加有利。过高的渔获量以及我国群众围网渔业渔船数量的快速增长是导致近年来鲐鱼资源下降的重要原因。  相似文献   

14.
捕捞和环境变化对渤海生态系统的影响   总被引:5,自引:2,他引:3       下载免费PDF全文
以1982年的渤海Ecopath静态模型为起始状态,设置17个功能群,利用CPUE和渔业相对捕捞强度作为时间强制序列,构建渤海Ecosim模型,模拟1982—2008年渤海生态系统发育的动态变化及捕捞的影响;利用气候环境时间序列数据,分析环境变化对渤海生态系统渔业资源的影响。研究发现,1982—2008年间,只有口虾蛄的生物量保持上升趋势,主要经济鱼种小黄鱼、蓝点马鲛、鳀、花鲈、黄鲫等的生物量均呈下降趋势,虾蟹类、头足类的生物量相对稳定。渤海渔获物的平均营养级在1982—2008年间明显下降,总捕捞产量在1984年之后一直保持上升趋势,两者之间存在显著的负相关;FIB指数的变动与捕捞产量的变动保持一致。Q-90多样性指数在1982—1987年间处于波动状态,从1988—1994年间保持增长趋势,在1994年之后迅速下降,由2.5降至0.5附近,渔业生物多样性下降;渤海海表盐度、海表水温、黄河径流量对捕捞产量影响显著。Ecosim模型终止状态(2008年)与起始状态(1982年)的比较表明,系统成熟度降低,生态系统出现一定程度的退化,渔业捕捞是渔业生态系统出现退化的主要原因,降低了生态系统总体的生物量水平;除捕捞因素外,环境变化也是影响渤海生态系统渔业资源变动的主要因素。  相似文献   

15.
Gear-based management for coral reef fisheries is often overlooked in the scientific literature. Empirical studies have demonstrated the conservation benefits of gear-restricted areas (i.e. prohibiting fishing gears), which can support greater biomass than unrestricted areas and protect species that play key functional roles. However, population dynamics of functional feeding groups of reef fishes under specific gear-restriction regimes remains uncertain. Here, we constructed a multi-species, length-based fisheries model to observe relative biomass and catch of reef fishes under various gear-restriction management scenarios. We used fishery-dependent and fishery-independent data to determine the catchability of functional groups and selectivity of size classes for hook-and-line, net and spear fishing, which are widely used gear types on coral reefs globally. Our model revealed trade-offs involved with gear-restriction management such that no single management strategy was able to maximize biomass or catch of all functional groups simultaneously. Also, we found that spear fishing (i.e. prohibiting hook-and-line and net fishing) maintained the highest total biomass summed across functional groups, whilst hook-and-line fishing (i.e. prohibiting net and spear fishing) and a ban on spears maintained the lowest biomass. However, hook-and-line fishing generated the highest catch-per-unit-effort. Our model results were primarily driven by differential growth rates, maximum per capita production of recruits, and catchability of functional groups targeted by each fishing gear. We demonstrate that gear restrictions can be a critical management tool for maintaining biomass and catch of certain functional groups but will likely require additional management to protect all key functional feeding groups of coral reef fishes.  相似文献   

16.
Illegal fishing is an acknowledged problem within no‐take areas (NTAs), which are frequently used as a marine conservation management tool. While gathering data on illegal fishing is difficult, it is necessary, as these data enable increased efficiency of compliance patrols, where resources are inherently limited. In particular, information about short‐term temporal variations in illegal fishing in NTAs is needed to guide management and compliance efforts. To address this knowledge gap, daily variations in illegal fishing effort were examined using surveillance cameras at two sites in New South Wales, Australia. Generalised linear modelling (GLM) identified that illegal fishing was significantly greater on non‐working days and during periods with no rain, light winds and slight seas. The GLM developed provided useful predictions of illegal activity in both the NTA used to build the model and in a second nearby NTA. The study demonstrated that illegal fishing was principally concentrated on days with good boating conditions and was greater at the study site closer to boat launching facilities. These insights will assist with future targeting of enforcement, community outreach and management efforts, which should focus on days and sites with an increased likelihood of illegal fishing.  相似文献   

17.
In this study, catch and effort data of southern bluefin tuna (SBT) from Taiwan longliners operating in the Central Indian Ocean (CIO) during 1982 to 2003 were compiled and their catch per unit effort (CPUE) was standardized using the generalized linear model (GLM). The GLM includes factors such as year, season, by-catch, latitude, sea surface temperature (SST) and the interactive effects among factors. The standardized CPUE and its relationship with SST fluctuation were then analyzed to understand the effects of fishing ground SST variations on CPUE of SBT, as well as their connection to El Niño-Southern Oscillation (ENSO) events. The standardized CPUE in the CIO seemed to oscillate with the sea surface temperature anomalies (SSTA) between 30 and 50°S where SSTA fluctuations were prolonged and slower than the ENSO cycle. It is then very likely that fishing conditions at the CIO fishing ground were influenced by the expansion of the cold water mass from the Southern Ocean, and the colder SST is beneficial to increasing SBT catch rate.  相似文献   

18.
A new habitat‐based model is developed to improve estimates of relative abundance of Pacific bigeye tuna (Thunnus obesus). The model provides estimates of `effective' longline effort and therefore better estimates of catch‐per‐unit‐of‐effort (CPUE) by incorporating information on the variation in longline fishing depth and depth of bigeye tuna preferred habitat. The essential elements in the model are: (1) estimation of the depth distribution of the longline gear, using information on gear configuration and ocean currents; (2) estimation of the depth distribution of bigeye tuna, based on habitat preference and oceanographic data; (3) estimation of effective longline effort, using fine‐scale Japanese longline fishery data; and (4) aggregation of catch and effective effort over appropriate spatial zones to produce revised time series of CPUE. Model results indicate that effective effort has increased in both the western and central Pacific Ocean (WCPO) and eastern Pacific Ocean (EPO). In the WCPO, effective effort increased by 43% from the late 1960s to the late 1980s due primarily to the increased effectiveness of effort (deeper longline sets) rather than to increased nominal effort. Over the same period, effective effort increased 250% in the EPO due primarily to increased nominal effort. Nominal and standardized CPUE indices in the EPO show similar trends – a decline during the 1960s, a period of stability in the 1970s, high values during 1985–1986 and a decline thereafter. In the WCPO, nominal CPUE is stable over the time‐series; however, standardized CPUE has declined by ~50%. If estimates of standardized CPUE accurately reflect relative abundance, then we have documented substantial reductions of bigeye tuna abundance for some regions in the Pacific Ocean. A decline in standardized CPUE in the subtropical gyres concurrent with stability in equatorial areas may represent a contraction in the range of the population resulting from a decline in population abundance. The sensitivity of the results to the habitat (temperature and oxygen) assumptions was tested using Monte Carlo simulations.  相似文献   

19.
Abstract. A non-linear programming model was developed to determine the benefits obtainable from the inland capture fisheries of Bangladesh. Functions and parameters of a base model were estimated by deriving non-linear catch-effort and cost functions as well as rice responsive demand functions using both primary and secondary data. Results of LP (linear programming) solution of the base model suggest that the inland fisheries of Bangladesh are capable, under optimal conditions, of generating a total net benefit of Bangladesh Taka (BDT) 1383 million per annum (US$1 = BDT38), most of which (96%) accrues as producer surplus. Under the optimal allocation of total fishing effort the model shows a 13% reduction in overall fish catch with 54% less effort. Sensitivity analysis, through variations of fishing effort, shows that the incorporated variables (e.g. catch, cost, benefit and shadow price) change in line with theoretical expectations. The implication of these results for management is that a reduction in effort would be required in order to generate a greater net economic benefit from the riverine fisheries. Such reduction should be specific to individual fishery and/or fishing grounds.  相似文献   

20.
根据1950―2016年的渔获量数据及1955―2016年的单位捕捞努力量(Catch Per Unit Effort,CPUE)数据,采用贝叶斯状态空间剩余产量模型框架JABBA(Just Another Bayesian Biomass Assessment)对印度洋大眼金枪鱼(Thunnus obesus)的资源状况进行评估,分析了渔船效应、CPUE数据尺度对评估结果的影响。结果表明,模型拟合效果对于不同时间跨度下CPUE数据的选择比较敏感。当选用时间跨度为1979―2016年的CPUE数据且考虑渔船效应时,模型拟合效果最好。2016年大眼金枪鱼的资源量为812 kt,最大可持续产量(Maximum Sustainable Yield,MSY)为163 kt,远高于同年渔获量86.81 kt,其资源量具有82.50%的概率处于"健康"状态。当总允许可捕量为69.45~104.17 kt时(2016年渔获量的80%~120%),未来10年大眼金枪鱼的资源量仍高于B_(MSY)(达到MSY所需的生物量)。回顾性分析结果表明,该资源评估结果存在一定程度的回顾性问题,捕捞死亡率和资源量分别存在被低估和高估的现象。将来需要在模型结构设定、CPUE数据选择及模型参数的先验分布设置等方面进一步优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号