首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile southern bluefin tuna (Thunnus maccoyii, SBT) were monitored in nearshore waters off southwest Australia using acoustic tagging and monitoring over five austral summers (2002/2003–2006/2007) to determine patterns in age‐based distribution of SBT. A total of 20–70 receivers were deployed in early December along one to three cross‐shelf transects and at three inshore topographic features (lumps) where SBT are known to occur; and a total of 59–84 juvenile SBT (41–90 cm fork length) were tagged and released each year. After several months, receivers were recovered, and data extracted. In 2002/2003 and 2003/2004, 2‐yr‐old SBT were detected more frequently in nearshore areas than did 1‐yr old fish. Similarly in 2004/2005 and 2006/2007, it was the larger 1‐yr‐old SBT that were detected more frequently at inshore lumps (>85% of detections) while small 1‐yr‐old SBT were detected more widely over the study area. In 2005/2006, although large 1‐yr‐old SBT were still detected more frequently at inshore lumps than small 1‐yr old SBT, the percentage of all detections at lumps was lower at 31.5%, indicating wider distribution of both small and large age‐1 fish. The observed age‐dependent distribution pattern may be enhanced by the distribution of prey, which disperse or concentrate depending on the local oceanography.  相似文献   

2.
Acoustic tags were used to examine the spatial and temporal distribution of southern bluefin tuna (SBT) in southern Western Australia, which is in a region where fishery-independent acoustic surveys of the recruitment abundance index of SBT have been historically undertaken. We investigated patterns of SBT distribution within and inshore of the acoustic survey area during three summer seasons. Annual differences in distribution patterns were characterized by two distinctive migration pathways. An inshore-migrating pathway was observed in two seasons (2004/2005 and 2006/2007), with a relatively high proportion of tagged SBT (84.5, 65.0%) migrating inshore of the acoustic survey area. The other pathway was concentrated along the shelf (2005/2006 season), with an estimated 63.3% of tagged SBT moving within the survey area. These variable migration patterns may bias the interannual fluctuations in abundance indices. Current survey methods can be modified to include both inshore and continental shelf areas. This contribution shows that the accuracy of acoustic surveys can be improved by including ecological patterns.  相似文献   

3.
The spatial habitat utilization of juvenile southern bluefin tuna in southern Western Australia was investigated using automated acoustic receivers with acoustic transmitters implanted in tagged fish during three austral summers (2004/2005, N = 79 fish, 2005/2006, N = 81, 2006/2007, N = 84). Seventy acoustic receivers were deployed at three cross-shelf lines and three coastal topographic features (lumps) between December and May. We observed markedly different patterns of habitat utilization between the three seasons: (i) aggregation at lumps in 2004/2005 and 2006/2007, and (ii) wide distribution over the continental shelf (i.e., few occurring at lumps) in 2005/2006. Vertical profile by conductivity-temperature-depth casts showed these spatial shifts were caused by interannual changes in the presence of sub-Antarctic water. The sub-Antarctic water was present in the subsurface layer close to the continental slope only during 2005/2006, and the area had higher chlorophyll-a concentrations than the coastal areas, including at the lumps. These environmental characters, related to the nutrient rich sub-Antarctic water, appear to have a strong influence on fish distributions in 2005/2006, and may occur generally during La Niña events. Interannual fluctuations in habitat utilization will influence detection of fish in recruitment monitoring surveys and thus bias the resulting juvenile abundance indices.  相似文献   

4.
We used satellite telemetry data to investigate the movement patterns and habitat use of juvenile shortfin makos Isurus oxyrinchus (Lamnidae) tagged in the Great Australian Bight, southern Australia. Tracking durations ranged from 49–672 days and six deployments were > 1 year. During winter and spring, some shortfin makos migrated to the tropical NE Indian Ocean and Coral Sea, and the Subtropical Front region. One shortfin mako undertook an extended migration of 25 550 km across the Indian Ocean. Areas characterized by sea‐mounts in the NE Indian Ocean, the oceanic Subtropical Front region, and the continental shelf edge (200‐m depth) and slope canyons were visited by several sharks. Juvenile shortfin makos used the outer continental shelf, the shelf edge, the slope and oceanic waters during migrations and mostly exhibited fidelity in the mid‐outer shelf, the shelf edge and slope habitats characterized by high bathymetric relief and oceanographic frontal gradients. Our findings highlighted that the continental shelf and slope and associated submarine canyons of the Great Australian Bight represent ecologically important habitats for juvenile shortfin makos. The findings of this study will be pertinent during future management processes for this highly migratory species in this Southern Hemisphere region.  相似文献   

5.
We investigated the broad‐scale movements and pelagic habitats of large juvenile dusky sharks (Carcharhinus obscurus) off Southern Australia. Pop‐up satellite archival tags (PSATs) were deployed on three large juvenile dusky sharks (~2.2–2.6 m total length) for 6 months in Spencer Gulf during 2010. Tagged dusky sharks all migrated westward and across the Great Australian Bight (GAB) during autumn to offshore shelf waters off Western Australia. Estimated minimum distances travelled ranged from 1760 to 2736 km. Depths occupied by tagged dusky sharks ranged from the surface to 355 m. The most common thermal ranges occupied were 19–22°C. Broad‐scale movements of large juvenile dusky sharks across the continental shelves combined with periods of residency in semi‐protected gulf waters indicated that a multi‐jurisdictional management approach may be appropriate for this species.  相似文献   

6.
We determined the habitat usage and habitat connectivity of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in continental shelf waters off Washington and Oregon, based on samples collected every June for 9 yr (1998–2006). Habitat usage and connectivity were evaluated using SeaWiFS satellite‐derived chlorophyll a data and water depth. Logistic regression models were developed for both species, and habitats were first classified using a threshold value estimated from a receiver operating characteristic curve. A Bernoulli random process using catch probabilities from observed data, i.e. the frequency of occurrence of a fish divided by the number of times a station was surveyed, was applied to reclassify stations. Zero‐catch probabilities of yearling Chinook and yearling coho salmon decreased with increases in chlorophyll a concentration, and with decreases in water depth. From 1998 to 2006, ~ 47% of stations surveyed were classified as unfavorable habitat for yearling Chinook salmon and ~ 53% for yearling coho salmon. Potentially favorable habitat varied among years and ranged from 9 856 to 15 120 km2 (Chinook) and from 14 800 to 16 736 km2 (coho). For both species, the smallest habitat area occurred in 1998, an El Niño year. Favorable habitats for yearling Chinook salmon were more isolated in 1998 and 2005 than in other years. Both species had larger and more continuous favorable habitat areas along the Washington coast than along the Oregon coast. The favorable habitats were also larger and more continuous nearshore than offshore for both species. Further investigations on large‐scale transport, mesoscale physical features, and prey and predator availability in the study area are necessary to explain the spatial arrangement of juvenile salmon habitats in continental shelf waters.  相似文献   

7.
8.
The habitat use of Pacific bluefin tuna (Thunnus orientalis; PBF) in nursery waters off the southern coast of Japan was investigated using archival tags over a 3 year study period (2012–2015), and the data were used to examine the free‐ranging habitat preferences of PBF and the relationship between their horizontal movements and the path of the Kuroshio off the Pacific coast of Japan. The path of the Kuroshio fluctuated seasonally, leading to changes in water temperature that strongly influenced the habitat use of small PBF (2–3 months after hatching). Most PBF were present in coastal waters inshore of the path of the current, and their habitat use changed in response to the distance of the current from the coast. The Kuroshio typically flowed along the coast from summer to autumn, and PBF remained in the coastal waters off Kochi Prefecture during this period. In contrast, PBF quickly moved eastward in winter when the current moved away from the coast. Throughout the winter and spring, the area of habitat use extended widely from the eastern end of the southern coast of Japan (the Boso Peninsula) to the offshore Kuroshio‐Oyashio transition region. These findings suggest that the seasonal habitat use and movement behavior of juvenile PBF are influenced by the distance of the Kuroshio axis from the coast, and the ultimate drivers are likely variations in oceanographic conditions and prey availability along the southern coast of Japan.  相似文献   

9.
Electronic tagging provides unprecedented information on the habitat use and behaviour of highly migratory marine predators, but few analyses have developed quantitative links between animal behaviour and their oceanographic context. In this paper we use archival tag data from juvenile southern bluefin tuna ( Thunnus maccoyii , SBT) to (i) develop a novel approach characterising the oceanographic habitats used throughout an annual migration cycle on the basis of water column structure (i.e., temperature-at-depth data from tags), and (ii) model how the vertical behaviour of SBT altered in relation to habitat type and other factors. Using this approach, we identified eight habitat types occupied by juvenile SBT between the southern margin of the subtropical gyre and the northern edge of the Subantarctic Front in the south Indian Ocean. Although a high degree of variability was evident both within and between fish, mixed-effect models identified consistent behavioural responses to habitat, lunar phase, migration status and diel period. Our results indicate SBT do not act to maintain preferred depth or temperature ranges, but rather show highly plastic behaviours in response to changes in their environment. This plasticity is discussed in terms of the potential proximate causes (physiological, ecological) and with reference to the challenges posed for habitat-based standardisation of fishery data used in stock assessments.  相似文献   

10.
Greater amberjack (Seriola dumerili) is an important fishery resource with a circumglobal distribution from tropical to temperate waters. Here, we investigated the spawning migration and habitat utilization of S. dumerili in the East China Sea (ECS). Archival tags were attached to 22 adult fish to examine their horizontal and vertical movements and estimate the spawning ground. S. dumerili were captured and released in the coastal waters of eastern Taiwan on November of 2016 and 2017. Information from seven pop-up satellite archival tags and seven depth–temperature recorders was recovered. Almost all of the fish stayed in the Taiwanese exclusive economic zone. Most individuals moved from released site to the southern edge of the ECS and showed behavior associated with the topographic features in winter (November to December). These phenomena may be related to foraging and be driven by oceanographic features such as the seasonal monsoon and the Kuroshio. The fish then migrated to the south offshore area of Taiwan in January and February. During their southward migration, the fish experienced a slowly elevated water temperature regime (SETR), which is one of the environmental factors that induce final oocyte maturation. In the spawning season (February to April), tagged females exhibited continuous diel vertical movements (DVMs) after experiencing the SETR. These continuous DVMs were observed over a wide geographic range from north to south in the Kuroshio off eastern Taiwan. Our study demonstrated that the putative spawning ground of S. dumerili must extend further in a north–south direction than predicted in a previous study.  相似文献   

11.
Here we investigate processes affecting productivity of capelin and walleye pollock in the Gulf of Alaska. We examine pelagic habitat selection by comparing the distribution of juvenile fish and their prey with oceanographic properties and we evaluate the potential for interspecific competition by comparing diets and measures of foraging. The primary field study was conducted in Barnabus Trough, Kodiak Island, Alaska, during September 2005. The distribution of fish was assessed acoustically and trawls were used to collect individual fish for stomach content analyses. Physical and biological data were collected with conductivity–temperature–depth probes and zooplankton tows. Age‐0 pollock were distributed in cool waters offshore of a mid‐trough front, coincident with the distribution of euphausiids, their preferred prey. In contrast, capelin and their prey (copepods) were distributed throughout the trough. We observed that sympatric capelin (occurring with pollock) often had reduced foraging success compared to allopatric capelin (occurring alone). Results of a bioenergetic model also suggest that the exclusion of capelin from foraging on euphausiids can have negative consequences for capelin growth.  相似文献   

12.
Shelf waters of southern Australia support the world's only northern boundary current ecosystem. Although there are some indications of intense nitrate enrichment in the eastern Great Australian Bight (GAB) arising from upwelling of the Flinders Current, the biological consequences of these processes are poorly understood. We show that productivity in the eastern GAB is low during winter, but that coastal upwelling at several locations during the austral summer–autumn results in localized increases in surface chlorophyll a concentrations and downstream enhancement of zooplankton biomass. Sardine (Sardinops sagax) and anchovy (Engraulis australis) eggs and larvae are abundant and widely distributed in shelf waters of the eastern and central GAB during summer–autumn, with high densities of sardine eggs and larvae occurring in areas with high zooplankton biomass. Egg densities and distributions support previous evidence suggesting that the spawning biomass of sardine in the waters off South Australia is an order of magnitude higher than elsewhere in southern Australia. Sardine comprised >50% of the identified prey species of juvenile southern bluefin tuna (SBT, Thunnus maccoyii) collected during this study. Other studies have shown that the lipid content of sardine from the GAB is relatively high during summer and autumn. We suggest that juvenile SBT migrate into the eastern and central GAB during each summer–autumn to access the high densities of lipid‐rich sardines that are available in the region during the upwelling period. Levels of primary, secondary and fish production in the eastern GAB during summer–autumn are higher than those recorded in other parts of Australia, and within the lower portion of ranges observed during upwelling events in the productive eastern boundary current systems off California, Peru and southern Africa.  相似文献   

13.
Striped marlin (Kajikia audax) is an epipelagic species distributed in tropical and temperate waters of the Pacific Ocean. In the central and eastern Pacific Ocean, it is captured principally in commercial longline fisheries, and in small artisanal fisheries, however, it is also taken throughout its range in this region as an incidental catch of the tuna purse‐seine fishery. Previous studies suggest that overexploitation and climate change may reduce abundance and cause changes in spatial distributions of marine species. The main objective of this study was to describe the habitat preferences of striped marlin and the changes in its distribution in response to environmental factors. Habitat modeling was conducted using a maximum entropy model. Operational level data for 2003–2014, collected by scientific observers aboard large purse seine vessels, were compiled by the Inter‐American Tropical Tuna Commission and were matched with detailed (4 km) oceanographic data from satellites and general circulation models. Results showed that the spatial distribution of habitat was dynamic, with seasonal shifts between coastal (winter) and oceanic (summer) waters. We found that the preferred habitat is mainly in coastal waters with warm sea surface temperatures and a high chlorophyll‐a concentration.  相似文献   

14.
The southern Brazilian shelf supports the largest fish stocks in the country, and studies on physical–biological processes in the ecology of ichthyoplankton have been recommended to provide a better understanding of the variability of the recruitment of fishing resources. This study is the first to examine the influence of mesoscale physical processes on the distribution of early life stages of fish in this shelf‐break region. Collections of fish eggs and larvae and measurements of temperature and salinity were made at 13 stations along cross‐shelf transects in December 1997. Myctophidae, Bregmacerotidae, Clupeidae, Synodontidae and Engraulidae were the most abundant larvae in the northern region, while Engraulidae and Bregmacerotidae prevailed further south. In situ hydrographic data, NOAA/AVHRR images and merged TOPEX/POSEIDON + ERS‐1/2 satellite altimetry taken during the cruise revealed an anticyclonic eddy dominating the shelf around 31°S. Larval fish abundance was lower at the centre of this feature, suggesting that the eddy advected poorer offshore waters of tropical origin towards the inner shelf‐concentrating the larvae around the eddy.  相似文献   

15.
Climate change is resulting in rapid poleward shifts in the geographical distribution of many tropical fish species, but it is equally apparent that some fishes are failing to exhibit expected shifts in their geographical distribution. There is still little understanding of the species‐specific traits that may constrain or promote successful establishment of populations in temperate regions. We review the factors likely to affect population establishment, including larval supply, settlement and post‐settlement processes. In addition, we conduct meta‐analyses on existing and new data to examine relationships between species‐specific traits and vagrancy. We show that tropical vagrant species are more likely to originate from high‐latitude populations, while at the demographic level, tropical fish species with large body size, high swimming ability, large size at settlement and pelagic spawning behaviour are more likely to show successful settlement into temperate habitats. We also show that both habitat and food limitation at settlement and within juvenile stages may constrain tropical vagrant communities to those species with medium to low reliance on coral resources.  相似文献   

16.
Transport processes of jack mackerel (Trachurus japonicus) larvae in the waters off the west coast of Kyushu in the eastern East China Sea, have been investigated using satellite‐tracked surface drifters and consecutive satellite thermal images. Trajectories of drifters describe northward flows over the continental shelf, eastward flows of the Kuroshio south‐west of Kyushu, and a weak clockwise gyre off the west coast of Kyushu. In particular, the clockwise gyre causes the entrainment of jack mackerel larvae into the waters off the west coast of Kyushu. Consecutive satellite thermal images help to elucidate the northward warm water intrusion from the Kuroshio front south‐west of Kyushu. Particle trajectories using sea surface current fields computed with the Maximum Cross Correlation (MCC) technique also reveal that the transport of jack mackerel larvae into the nursery ground off the west coast of Kyushu caused by the anti‐cyclonic gyre and the warm streamers are an important process for successful recruitment.  相似文献   

17.
Researchers have applied numerous techniques to improve billfish stock assessments, including habitat‐based models that incorporate behavioral and oceanographic parameters to standardize historical catch‐per‐unit‐effort time‐series data. These methods have allowed researchers to account for significant changes in the depths of pelagic longline (PLL) gear deployments over time. This study presents habitat‐use data recovered from high‐resolution 5‐ and 10‐day pop‐up satellite archival tags (PSATs) attached to 47 surviving white marlin released from commercial and recreational fishing gears offshore of the U.S. East Coast, the northern Caribbean, and Venezuela between 2002 and 2004. Data recovered from transmitting tags indicated that white marlin spent nearly half of their time associated with warm, near‐surface waters (<10 m). All fish displayed frequent short duration (mean: 39.8 min) vertical excursions from surface waters to depths averaging 51 m. Qualitative and multivariate classifications of data from completely transmitted movements of surviving white marlin revealed two major types of descents: one pattern was characterized by deep ‘V’‐shaped excursions of relatively short duration (mean: 23.4 min) while the other featured descents that were more broadly ‘U’‐shaped and confined to a specific depth range for an extended period of time (mean: 75.8 min). Based on the frequency, persistence, and patterns of these vertical movements, white marlin appear to direct a considerable proportion of foraging effort well below surface waters, a behavior that may account for relatively high catch rates of white marlin on some deep‐set PLL deployments.  相似文献   

18.
Abstract Southern bluefin tuna (SBT), Thunnus maccoyii (Castelnau), is a quota‐managed species that makes annual winter migrations to the Tasman Sea off south‐eastern Australia. During this period it interacts with a year‐round tropical tuna longline fishery (Eastern Tuna and Billfish Fishery, ETBF). ETBF managers seek to minimise the bycatch of SBT by commercial ETBF longline fishers with limited or no SBT quota through spatial restrictions. Access to areas where SBT are believed to be present is restricted to fishers holding SBT quota. A temperature‐based SBT habitat model was developed to provide managers with an estimate of tuna distribution upon which to base their decisions about placement of management boundaries. Adult SBT temperature preferences were determined using pop‐up satellite archival tags. The near real‐time predicted location of SBT was determined by matching temperature preferences to satellite sea surface temperature data and vertical temperature data from an oceanographic model. Regular reports detailing the location of temperature‐based SBT habitat were produced during the period of the ETBF fishing season when interactions with SBT occur. The SBT habitat model included: (i) predictions based on the current vertical structure of the ocean; (ii) seasonally adjusted temperature preference data for the 60 calendar days centred on the prediction date; and (iii) development of a temperature‐based SBT habitat climatology that allowed visualisation of the expected change in the distribution of the SBT habitat zones throughout the season. At the conclusion of the fishing season an automated method for placing management boundaries was compared with the subjective approach used by managers. Applying this automated procedure to the habitat predictions enabled an investigation of the effects of setting management boundaries using old data and updating management boundaries infrequently. Direct comparison with the management boundaries allowed an evaluation of the efficiency and biases produced by this aspect of the fishery management process. Near real‐time fishery management continues to be a realistic prospect that new scientific approaches using novel tools can support and advance.  相似文献   

19.
Highly productive surface waters and hypoxic (dissolved oxygen, DO ≤ 2.0 mg L?1) bottom waters develop seasonally on the northwestern Gulf of Mexico continental shelf due to nutrient and freshwater inputs from the Mississippi‐Atchafalaya River system. We investigated the spatial distribution of the cownose ray (Rhinoptera bonasus), a highly mobile, bentho‐pelagic species that is a seasonal resident of the shelf, in relation to surface chlorophyll, bottom‐water hypoxia, and other environmental variables (salinity, temperature, depth). We used synoptic trawl and aerial surveys to investigate ray distributions at both shelfwide (100–1000s km) and local (5–50 km) spatial scales. Shelfwide sampling indicated that rays were associated with regions of high surface chlorophyll and low bottom salinity and DO, conditions characterizing the Mississippi‐Atchafalaya plume region. Local sampling in and around the hypoxic zone indicated that rays preferred habitats where bottom waters were hypoxic but they primarily occupied normoxic (DO > 2.0 mg L?1) waters above the bottom hypoxic layer. Stomach fullness and diet composition were similar between rays sampled in habitats with hypoxic versus normoxic bottom waters. These results indicate that cownose rays are strongly associated with riverine‐influenced regions of the shelf and preferentially use habitats with hypoxic bottom waters, perhaps for benthic foraging. Collectively, our results highlight the importance of considering the responses of mobile species to enhanced productivity and to hypoxia‐induced habitat degradation, which are both the products of coastal eutrophication.  相似文献   

20.
Beatty SJ, Morgan DL, McAleer FJ, Ramsay AR. Groundwater contribution to baseflow maintains habitat connectivity for Tandanus bostocki (Teleostei: Plotosidae) in a south‐western Australian river.
Ecology of Freshwater Fish 2010: 19: 595–608. © 2010 John Wiley & Sons A/S Abstract – A global biodiversity hotspot, south‐western Australia is characterised by a highly endemic freshwater fish fauna that is severely impacted by habitat alterations. As is the case with many rivers in this region, the Blackwood River is secondarily salinised as a consequence of agricultural practices and this has caused population depletions of halo‐intolerant fishes. This study is the first to examine the role that groundwater intrusion has in maintaining habitat connectivity for an obligate freshwater fish in a secondarily salinised river. We determined the significance of nonsaline groundwater intrusion in maintaining habitat and migratory routes of the freshwater cobbler, Tandanus bostocki during prolonged annual dry periods; characteristic of Mediterranean climatic zones. Tandanus bostocki undertook large, yet spatially and temporally variable, localised movements through riffles. During baseflow, the period of major groundwater influence, movements were significantly associated with discharge. Analysis of gonadal development suggested that such movements were not strictly related to reproduction and were probably for foraging purposes. The study reveals groundwater is crucial in maintaining migratory routes through riffles and suggests T. bostocki may be reliably used as an indicator of aquatic habitat connectivity in light of groundwater extractions and also continued rainfall reductions in this region due to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号