首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

2.
Two experiments were conducted in earthen ponds to evaluate the effect of dietary protein concentration and feeding rate on weight gain, feed efficiency, and body composition of channel catfish. In Experiment 1, two dietary protein concentrations (28% or 32%) and four feeding rates (≤ 90. ≤ 112, ≤ 135 kg/ha per d, or satiation) were used in a factorial arrangement. Channel catfish Ictalurus punctatus fingerlings (average size: 27 g/fish) were stocked into 0.04-ha ponds at a rate of 24,700 fish/ha. Fish were fed once daily at the predetermined maximum feeding rates for 282 d (two growing seasons). In Experiment 2, three dietary protein concentrations (24, 28, or 32%) and two feeding rates (≤ 135 kg/ha per d or satiation) were used. Channel catfish (average size: 373 g/fish) were stocked into 0.04-ha ponds at a rate of 17,300 fish/ha. Fish were fed once daily for 155 d. In both experiments, five ponds were used for each dietary treatment. Results from Experiment 1 showed no differences in total feed fed, feed consumption per fish, weight gain, feed conversion ratio (FCR), or survival between fish fed diets containing 28% and 32% protein diets. As maximum feeding rate increased, total feed fed, feed consumption per fish, and weight gain increased. There were no differences in total feed fed, feed consumption per fish, or weight gain between fish fed at ≤ 135 kg/ha per d and those fed to satiation. Fish fed the 28% protein diet had a lower percentage carcass dressout and higher percentage visceral fat than fish fed the 32% protein diet. Dietary protein concentrations of 28% or 32% had no effect on fillet protein, fat, moisture, and ash. Feeding rate did not affect FCR, survival, percentage carcass dressout, or fillet composition, except fillet fat. As feeding rate increased, percentage visceral fat increased. Fish fed at ≤ 90 kg/ha per d had a lower percentage fillet fat than fish fed at higher feeding rates. In Experiment 2, dietary protein concentration or maximum feeding rate did not affect total feed fed, feed consumption per fish, weight gain, FCR, or survival of channel catfish. Feeding rate had no effect on percentage carcass dressout and visceral fat, or fillet composition. This was due to the similar feed consumption by the fish fed at the two feeding rates. Fish fed the 24% protein diet had lower carcass dressout, higher visceral fat and fillet fat than those fed the 28% or 32% protein diet. Results from the present study indicate that both 28% and 32% protein diets provide satisfactory fish production, dressed yield, and body composition characteristics for pond-raised channel catfish fed a maximum rate of 90 kg/ha per d or ahove.  相似文献   

3.
Stringent environmental legislation in Europe, especially in the Baltic Sea area, limits the discharge of nutrients to natural water bodies, limiting the aquaculture production in the region. Therefore, cost-efficient end-of-pipe treatment technologies to reduce nitrogen (N) discharge are required for the sustainable growth of marine land-based RAS. The following study examined the potential of fed batch reactors (FBR) in treating saline RAS effluents, aiming to define optimal operational conditions and evaluate the activated sludge denitrification capacity using external (acetate, propionate and ethanol) and internal carbon sources (RAS fish organic waste (FOW) and RAS fermented fish organic waste (FFOW)). The results show that between the evaluated operation cycle times (2, 4, and 6 h), the highest nitrate/nitrite removal rate was achieved at an operation cycle time of 2 h (corresponding to a hydraulic retention time of 2.5 h) when acetate was used as a carbon source. The specific denitrification rates were 98.7 ± 3.4 mg NO3-N/(h g biomass) and 93.2 ± 13.6 mg NOx-N/(h g biomass), with a resulting volumetric denitrification capacity of 1.20 kg NO3-N/(m3 reactor d). The usage of external and internal carbon sources at an operation cycle time of 4 h demonstrated that acetate had the highest nitrate removal rate (57.6 ± 6.6 mg N/(h g biomass)), followed by propionate (37.5 ± 6.3 mg NO3-N/(h g biomass)), ethanol (25.5 ± 6.0 mg NO3-N/(h g biomass)) and internal carbon sources (7.7 ± 1.6–14.1 ± 2.2 mg NO3-N/(h g biomass)). No TAN (Total Ammonia Nitrogen) or PO43- accumulation was observed in the effluent when using the external carbon sources, while 0.9 ± 0.5 mg TAN/L and 3.9 ± 1.5 mg PO43--P/L was found in the effluent when using the FOW, and 8.1±0.7 mg TAN/L and 7.3 ± 0.9 mg PO43--P/L when using FFOW. Average sulfide concentrations varied between 0.002 and 0.008 mg S2-/L when using the acetate, propionate and FOW, while using ethanol resulted in the accumulation of sulfide (0.26 ± 0.17 mg S2-/L). Altogether, it was demonstrated that FBR has a great potential for end-of-pipe denitrification in marine land-based RAS, with a reliable operation and a reduced reactor volume as compared to the other available technologies. Using acetate, the required reactor volume is less than half of what is needed for other evaluated carbon sources, due to the higher denitrification rate achieved. Additionally, combined use of both internal and external carbon sources would further reduce the operational carbon cost.  相似文献   

4.
Juvenile largemouth bass Micropterus salmoides , trained to accept artificial diets, were stocked into six 0.04-ha ponds at stocking densities of either 6,175 or 12,350 fish/ha. Fish were fed a floating custom-formulated diet, containing 44% protein, once daily to satiation for 12 mo (May 1994–May 1995). At final harvest, the total yield of fish was significantly greater (P < 0.05) and feed conversion ratio (FCR) was significantly lower, for bass stocked at the higher density (4,598 kg/ha and 2.3, respectively) than when stocked at the lower density (2,354 kg/ha and 3.3, respectively). There was no significant difference (P > 0.05) in average weight, length, or survival of bass stocked at the two densities. Averaged over the study period, there were no significant differences (P > 0.05) in total ammonia-nitrogen (TAN), nitrite-nitrogen, or un-ionized ammonia concentrations in ponds in which bass were stocked at the two densities. These data indicate that largemouth bass of the size used in this study are amenable to pond culture at densities of at least 12,350 fish/ha and that higher stocking densities may be possible.  相似文献   

5.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

6.
This 210-day study compared variation in water quality and fish growth for channel catfish (Ictalurus punctatus; 47 g/fish) stocked in earthen ponds (1.5 fish/m2, 14,820/ha) and in a biofloc technology (BFT) production system with high-density polyethylene-lined rectangular tanks (12.6 fish/m2, 126,000/ha). Feed input and culture environment affected water-quality dynamics. In ponds, phytoplankton uptake predominated and little nitrification occurred, whereas in the BFT system phytoplankton uptake and nitrification maintained low ammonia-nitrogen concentrations. Size classes of fish were skewed toward the larger market sizes in ponds and toward smaller market sizes in the BFT system. Mean final fish weight was 630 g/fish in ponds and 542 g/fish in the BFT system. Despite these differences, fish yield was higher in the BFT system (7.7 kg/m3 v. 1.5 kg/m3) because of the greater initial stocking rate.  相似文献   

7.
A 2 ± 4 factorial experiment was conducted to examine effects of dietary protein level (28, 32, 36, and 40%) and feeding rate (satiation or ± 90 kg/ha per d) on production characteristics, processing yield, body composition, and water quality for pond-raised channel catfish Ictalurus punctatus. Fingerling channel catfish with a mean weight of 64 g/fish were stocked into 40 0.04-ha ponds at a rate of 17,290 fish/ha. Fish were fed once daily to apparent satiation or at a rate of ± 90 kg/ha per d for 134 d during the growing season. Dietary protein concentration had no effect on feed consumption, weight gain, feed conversion, survival, aeration time, or on fillet moisture, protein, and fat levels. Fish fed to satiation consumed more feed, gained more weight, had a higher feed conversion, and required more aeration time than fish fed a restricted ration. Visceral fat decreased, and fillet yield increased as dietary protein concentration increased to 36%. Carcass yield was lower for fish fed a diet containing 28% protein. Increasing feeding rate increased visceral fat but had no major effect on carcass, fillet, and nugget yields. Fish fed to satiation contained less moisture and more fat in the fillets that those fed a restricted ration. Nitrogenous waste compounds were generally higher where the fish were fed the higher protein diets. Although there was a significant interaction in pond water chemical oxygen demand between dietary protein and feeding rate, generally ponds in the satiation feeding group had higher chemical oxygen demand than ponds in the restricted feeding group. There was a trend that pond water total phosphorus levels were slightly elevated in the satiation feeding group compared to the restricted feeding group. However, pond water soluble reactive phosphorus and chlorophyll-a were not affected by either diet or feeding rate. Results from the present study indicate that a 28% protein diet provides the same level of channel catfish production as a 40% protein diet even when diet is restricted to 90 kg/ha per d. Although there was an increase in nitrogenous wastes in ponds where fish were fed high protein diets, there was little effect on fish production. The long term effects of using high protein diets on water quality are still unclear. Feeding to less than satiety may be beneficial in improving feed efficiency and water quality.  相似文献   

8.
A factorial experiment was conducted to evaluate effect of dietary protein (28% or 32%), animal protein (0, 3, or 6%), and feeding rate (satiation or >90 kg/ha per d) on production characteristics, processing yield, and body composition of pond-raised channel catfish Ictalurus punctatus . Fingerling channel catfish (average weight: 55 g/fish) were stocked into 60, 0.04-ha ponds at a rate of 18,530 fish/ha. Five ponds were used for each dietary treatment. Fish were fed once daily to satiation or no more than 90 kg/ha per d for 147 d. Fish fed at a rate of >90 kg/ha per d consumed about 85% of the amount of feed consumed by fish fed to satiation. Dietary protein did not affect the total amount of feed fed, amount of feed consumed per fish, weight gain, feed conversion efficiency, or fillet protein. Animal protein had no effect on the total amount of feed fed, amount of feed consumed per fish, weight gain, or fillet protein and ash. Fish fed a diet containing 6% animal protein converted feed more efficiently than fish fed diets containing 0% and 3% animal protein. Fish fed to satiation daily consumed more feed, gained more weight, converted the feed less efficiently, and had a higher carcass yield, a higher level of visceral fat as compared to fish fed at a rate of >90 kg/ha per d. Feeding rate had no effect on fillet protein. Results from this study indicated that both a 28% and a 32% protein diet with or without animal protein provided the same growth rate of channel catfish raised in ponds from fingerlings to marketable size if feed is not restricted below a maximum rate of 90 kg/ha per d. Even though there were some interactions among the three factors evaluated, dietary protein levels of 28% to 32% and animal protein levels of 0% to 6% do not appear to markedly affect carcass yield and fillet proximate composition of pond-raised channel catfish.  相似文献   

9.
于 2005年 3月 5日 ~5月 3日连续监测了海水观赏鱼居室养殖循环系统的水质,研究该系统中三态氮的变化规律以及添加硝化细菌后对水质的影响。结果表明:1)试验初期氨氮的质量分数迅速上升, 在 1周内达到高峰(峰值2.56mg/L),并在1.50mg/L的范围内维持 1周左右,此后迅速下降至0.01mg/L 左右,并一直维持在该水平直至试验结束。亚硝态氮的质量分数在氨氮的质量分数迅速回落时(约试验开始后 2周)呈现出直线上升的趋势,并在 3~3.5mg/L左右的水平上维持 2~3周时间(峰值为3.65 mg/L),此后迅速下降至0.01mg/L以下,并一直维持在低水平直至试验结束。而硝酸盐的质量分数在整个试验期间基本保持稳定上升的趋势,至本试验末期,NO3 - -N的质量分数达到 15mg/L左右。2)系统的生物滤器需要 4~5周左右时间才能基本成熟,即氨氮和亚硝酸氮均降至 <0.01mg/L,到达安全的质量分数,适合海水观赏鱼健康生长。3)添加硝化细菌的试验组,氨氮和 NO3 - -N的质量分数变化与对照组基本相似,而 NO2 - -N的质量分数变化与对照组明显不同。试验组从高质量分数水平迅速下降的时间比对照组提前了约 1周。  相似文献   

10.
Higher-energy fish feeds can reduce waste discharges and might also improve water quality in recirculating fish-culture systems. A higher-energy diet, Zeigler Salmon High Energy feed (HE; 45% protein, 20% fat, 17.4 MJ digestible energy kg-1) and a lower-energy diet, Zeigler Hi-Fat Trout Grower (LE; 38% protein, 12% fat, 14.6 MJ digestible energy kg -1) were fed ad libitum at different times to rainbow trout, Oncorhynchus mykiss (Walbaum), in a semi-closed recirculating culture system by means of demand feeders. The system contained two 10-m3 fish-culture tanks, each with a downstream microscreen (80 μn) filter. Feeding rates per day and per unit biomass were not significantly different between diets. In general, use of HE was associated with higher levels of total ammonia nitrogen (TAN) and NO2-N, lower BOD5 and total suspended solids (TSS), and lower effluent releases of suspended solids per unit feed, NO3-N per unit feed, and dissolved phosphorus per unit feed. Although total effluent P per unit feed or P fed did not differ significantly between diets, HE had significantly more of the total effluent P in the settleable solids, 85% vs. 76%. Differences in water quality in the system were probably not of great importance with respect to fish health.  相似文献   

11.
草鱼养殖水体中参与氮转化途径的异养菌分析   总被引:1,自引:0,他引:1  
为分析草鱼池塘中参与氮代谢的异养细菌比例及其代谢途径,从杭州郊区取得4个草鱼池塘的水样,每个水样通过涂布随即挑选100株菌株进行定性显色试验,并据此选取11株异养菌进行16S rRNA序列分析。结果表明,4个草鱼养殖池塘中NH4+-N和NO2--N的平均水平分别为5.597 mg/L和0.135 mg/L。池塘中可培养的异养菌平均为3.26×105cfu/mL,其中的89.75%参与了氮的不同代谢途径,其中31.25%的氨化菌和33.50%NO3--N(NO2--N)还原菌参与了NH4+-N的生成,32.45%的氨氧化菌参与了NH4+-N的降低;NO2--N生成途径主要包括蛋白质直接转化(11.26%)、氨氧化(4.25%)和硝酸盐氮还原(10.75%),而NO2--N降低主要通过15.50%的亚硝酸氧化菌、8.75%的NO2--N还原菌和10.75%的反硝化菌实现。结果提示,草鱼养殖水体中存在大量的异养硝化菌参与不同的氮代谢途径,且产生氨氮的异养菌比例远高于去除氨氮的菌,这是草鱼养殖水体中氨氮含量易偏高的原因。同时,11株不同功能的异养菌16SrRNA鉴定结果为寡养食单胞菌(Stenotrophomonas)6株、假单胞菌(Pseudomonas)3株、克雷伯氏菌(Klebsiella)和肠杆菌(Enterobacter)各1株,而且细菌对氮源的利用具有菌株特异性。  相似文献   

12.
Empirical data on ammonia excretion rates were compiled from several published and unpublished growth studies on post-smolt Atlantic salmon, Salmo salar L. Fish in all studies were fed to satiation with commercially produced high-energy diets (ME = 18–19 MJ kg-1) with a protein content of 40–45%. About 35 ± 3% (mean SE) of the nitrogen supplied to fish was excreted as total ammonia (TAN = NH3-N + NH4+-N). The results of a linear regression analysis of N intake to N excretion demonstrated, however, that TAN excretion rates could be divided into two components: TANexcretion [g N kg fish-1 day-1] = 0.036 + 0.26 Nintake [g N kg fish-1 day-1]. The intercept of the regression equation indicates that the endogenous TAN excretion rates in post-smolts could be estimated as 36 mg TAN kg fish-1 day-1, and about 26% of the nitrogen supplied to the fish was excreted postprandially. This postprandial TAN excretion was lower than that from other salmonid species fed low-energy diets. The daily maximum TAN excretion rate was about 43% higher than daily mean values, which agree with several studies. The ammonia quotient (A.Q.) measured was independent of the nitrogen supplied, and was calculated as 0.112. The outputs from the present model were compared to those from other ammonia excretion models.  相似文献   

13.
Effects of feeding 17-α-methyltestosterone (MT) to channel catfish ( Icralurus punctatus ) grown to harvestable size in earthen ponds were examined. Channel catfish fingerlings (mean weight, 14.4 g), stocked in 0.04 ha ponds (7,410 fish/ha) were fed diets containing MT at concentrations of 0, 2.5, and 10 mg/kg for 123 days. Weight gain by fish fed the control diet (0 MT) was higher ( P < 0.05) than that of fish fed the treated diets. Increasing the dietary concentration of MT reduced weight gain further ( P < 0.05). Both male and female fish fed MT had enlarged and thickened heads, and their skins were dark. Their dorsal and pectoral spines were short and the tips, which are normally very sharp, were soft and blunt. Weight of the rib bones per unit of length decreased ( P < 0.05) as MT was added to the diet. Breaking strength of the ribs (force required to break the bone at its midpoint) measured by an Instron shear press, was less ( P < 0.05) for fish fed MT than for control fish. The ratio of calcium to phosphorus in bones was lower ( P < 0.05) in fish fed MT. These results indicate that feeding MT at these doses (2.5 mg/kg or above) to channel catfish suppresses growth rate and reduces size and strength of bones.  相似文献   

14.
为研究絮团浓度对革胡子鲇零换水养殖效果的影响,在不额外添加有机碳源(只利用饲料中的碳)的革胡子鲇()养殖系统中,设置了平均絮团质量浓度为561.18 mg/L和780.41 mg/L两个处理组,比较了两实验组的水质、菌群结构、鱼生长及氮利用效率。结果表明,两种浓度絮团条件下,总氨氮(total ammonia nitrogen,TAN)和亚硝酸氮(NO2--N)能分别维持1.84 mg/L和1.79 mg/L以下。两处理组间pH、溶解氧(dissolved oxygen,DO)、TAN、NO2--N、氮素利用效率及主要生长指标无显著差异(-N)浓度(822.0 mg/L)明显高于低浓度絮团组(623.33 mg/L)。高通量测序分析菌群结构结果表明,两组间门水平的菌群组成种类及优势度无显著性差异(<0.05)。两处理组中的革胡子鲇存活率分别达到(91.11±1.53)%和(94.44±2.08)%,饲料系数为(1.41±0.18)和(1.27±0.26),特殊生长率为(2.13±0.04)%/d和(2.19±0.08)%/d,均无显著差异(>0.05)。两实验组饲料氮的利用率分别达到了72.17%和71.34%。综合以上结果认为,仅利用饲料中的碳既能维持革胡子鲇的零换水养殖且能取得较高的氮素利用效率,两种絮团浓度对革胡子鲇的生长无显著影响,高浓度絮团组中的硝化作用更明显。  相似文献   

15.
Abstract.— This study evaluated the effects of dietary protein concentration (26, 28, and 32%) on growth. feed efficiency, processing yield, and body composition of USDA103 and Mississippi "normal" (MN) strains of channel catfish raised in ponds. Fin-gerling channel catfish (average weight = 32.5 and 47.3 g/fish for USDA103 and MN strains, respectively) were stocked into 24 0.04-ha ponds (12 ponds/ strain) at a density of 18,530 fish/ha. Fish were fed once daily to apparent satiation from May to October 1999. There were no interactions between fish strain and dietary protein concentration for any parameters measured. Regardless of dietary protein concentrations, the USDA103 strain consumed more feed and gained more weight than the MN strain. There were no differences in feed conversion ratio (FCR) or survival between the two strains. Feed consumption, weight gain, FCR, and survival were not affected by dietary protein concentration. The USDA103 strain exhibited a lower level of visceral fat, a higher carcass yield, a lower level of fillet moisture, and a higher level of fillet fat than the MN strain. Regardless of fish strains, fish fed the 32% protein diet had a lower level of visceral fat and a higher fillet yield than fish fed the 26% protein diet. Fish fed the 32% protein diet were also higher in carcass yield as compared to those fed the 28% protein diet. Fillet moisture, protein, and fat concentrations were not affected by dietary protein concentration. Results from this study indicate that the USDA103 strain of channel catfish appears to possess superior traits in growth characteristics compared with the MN strain that is currently cultured commercially. Both strains appear to have the same dietary protein requirement.  相似文献   

16.
研究了 NH3-N、NO2 - -N与 NO3 - -N对凡纳滨对虾幼虾的毒性作用。获得了 NH3-Nt(NH3-Nm) 与 NO2 - -N对体长2.4cm幼虾的 24h、48h、72h、96h之 LC50值,两者对幼虾的安全质量分数分别为1.30 (0.101)mg/L和3.80mg/L。当 NH3-Nt(NH3-Nm)质量分数在1.3(0.101)~4.3(0.333)mg/L时,存活率为71.4% ~92.9%,体长增长率为36.3% ~57.1%,体重增长率为188.5% ~322.3%。当 NO2 - -N质量分数在3.00~21.00mg/L时,成活率为75.0% ~91.7%,体长增长率为21.2% ~59.2%,体重增长率为72.0% ~311.9%。NO3 - -N对体长7.37cm幼虾的亚急性毒性效应:NO3 - -N的质量分数在 30~195mg/L时,成活率为 35% ~100%,体长增长率为8.5% ~20.5%,体重增长率为29.6% ~56.8% 。三态氮在一定质量分数范围内均对幼虾的存活率和生长率产生影响。  相似文献   

17.
The role of offering a commercial pelleted diet has been characterized as both an expensive organic fertilizer and as a selected food item for larval hybrid striped bass (palmetto), Morone saxatilis × Morone chrysops, culture operations. In this study, we examined the effects of providing a commercial diet on fish production and zooplankton dynamics during phase I culture in plastic‐lined ponds. We also sought to estimate relative dietary contribution of a commercial fish feed relative to natural pond biota using stable isotope tissue analysis. Palmetto bass were stocked into six 0.04‐ha plastic‐lined ponds at a rate of 125,000/ha. During the 31‐d culture period, ponds were fertilized with alfalfa pellets at a rate of 112 kg/ha/wk. At 14 d post‐stock (dps), Silver Cup Trout Fry diet was offered at a rate of 13.6 kg/ha/d and fertilization was discontinued in three ponds. Although mean final fish length was significantly greater within the fed treatment, no other production parameters were found to be different (P < 0.1). Following feed application, copepod concentrations within the fed ponds were greater in magnitude by 24 dps. Through stable isotope tissue analysis, we found a significant enrichment in both 13C and 15ν of fish, zooplankton, and Chironomidae larvae within the fed ponds (P < 0.10). Using a three‐source mixing model, the mean (±SE) percent composition of feed in the fish's isotopic signature increased from 5% ±2 to 20% ±6 within 16 d. Although fish production was not greatly affected through the addition of a commercial fish feed, enriched 13C and 15ν of fish tissue indicate that palmetto bass fingerlings increasingly utilized the prepared diets over time. However, based on the isotopic values of fish and potential food sources, it can be estimated that natural pond biota likely accounted for up to 80% of nutrient assimilation in the hybrid striped bass.  相似文献   

18.
Abstract.— This study was conducted to evaluate the effect of dietary protein concentration and an all‐plant diet on growth and processing yield of pond‐raised channel catfish Ictalurus punctatus. Four diets were formulated using plant and animal proteins to contain 24%n, 28%, 32%, or 36% crude protein with digestible energy to protein (DE/P) ratios of 11.7, 10.2, 9.0, and 8.1 kcal/g, respectively. An all‐plant diet containing 28% protein with a DE/P ratio of 10.2 kcal/g was also included. Channel catfish fingerlings averaging 40 g/fish were stocked into 24, 0.04‐ha ponds at a density of 18,530 fish/ha. Five ponds were used for each dietary treatment except for the all‐plant diet which had four replicates. The fish were fed once daily to apparent satiation for 160 d. No differences were observed in feed consumption, weight gain, survival, carcass and nugget yield, or fillet moisture and protein concentrations among treatments. Fish fed the 28% protein diet had a lower feed conversion ratio (FCR) than fish fed diets containing 24% and 32% protein, but had a FCR similar to fish fed the 36% protein diet. Fillet yield was higher for fish fed the 36% protein diet than fish fed the 24% protein diet. Visceral fat was lower in fish fed the 36% protein diet than fish fed other diets. Fish fed the 32% and 36% protein diets exhibited a lower level of fillet fat than fish fed the 24% protein diet. The 36% protein diet resulted in a lower level of fillet fat than fish fed the 28% protein diet. There was a positive linear regression in fillet yield and fillet moisture concentration and a negative linear regression in visceral fat and fillet fat against dietary protein concentration. No differences in any variables were noted between the 28% protein diets with and without animal protein except that fish fed the 28% protein diet without animal protein had a higher FCR than fish fed the 28% protein diet with animal protein. This observation did not appear to be diet related since FCR of fish fed the 32% protein diet containing animal protein was not different from that of fish fed the 28% all‐plant protein diet. Data from the present study indicate that dietary protein concentrations ranging from 24% to 36% provided for similar feed consumption, growth, feed efficiency, and carcass yield. However, since there is a general increase in fattiness and a decrease in fillet yield as the dietary protein concentration decreases or DEP ratio increases, it is suggested that a minimum of 28% dietary protein with a maximum DEIP ratio of 10 kcal/g protein is optimal for channel catfish growout.  相似文献   

19.
This study was conducted to evaluate the use of low protein diets for channel catfish Ictalurus punctatus raised in earthen ponds at high density. Fingerling channel catfish were stocked into 0.04-ha earthen ponds at a rate 24,700 fish/ha and fed experimental diets daily to satiation from April to October 1995. The five diets contained either 32, 28, 24, 20, or 16% crude protein with digestible energy to protein (DE:P) ratios ranging from 8.9 to 16.2 kcal/ g protein. Weight gain was not different among channel catfish fed diets containing 32, 28, or 24% crude protein. Fish fed diets containing 20% or 16% crude protein gained less weight than fish fed the diets containing 28% or 24% crude protein, but not statistically less than the fish fed the 32% crude protein diet. Feed consumption data followed similar trends as weight gain data. Feed conversion ratio increased linearly as dietary protein decreased, but was not significantly different (multiple range test) for fish fed diets containing either 32% or 28% crude protein. There were no differences in survival and hematocrit of fish fed the different diets. No differences (multiple range test) were observed in dressout percentages for fish fed the various diets, but dressout percentage tended to decrease linearly as dietary protein decreased. Visceral fat and fillet fat increased and fillet protein and moisture decreased linearly as dietary protein decreased. Results from this study indicated that dietary protein concentrations as low as 24% are adequate for maximum weight gain of pond-raised channel catfish fed daily to satiation. Fish fed dietary protein levels below 24% grew relatively well, particularly considering that dietary protein was reduced 40–50% below that typically used in commercial channel catfish feeds. However, dietary protein levels below 24% may increase fattiness to an unacceptable level presumably because of the high digestible energy to protein ratio.  相似文献   

20.
A 117‐day feeding trial was conducted in ponds with juvenile Australian red claw crayfish (Cherax quadricarinatus) to evaluate the effects on growth, survival, body composition, and processing traits when fed diets containing three different protein levels (22%, 32%, and 42%), and the effects of feeding these diets on pond water quality. Juvenile crayfish (mean weight of 4.6±2.2 g) were randomly stocked into nine 0.02‐ha ponds at a rate of 500 per pond (25 000 ha?1), and each diet was fed to three ponds. There were two feedings per day, each consisting of one‐half of the total daily ration. At harvest, there were no significant differences (P>0.05) in the individual weight, percentage weight gain, or specific growth rate among treatments, which averaged 75.3 g, 1535%, and 2.38% day?1 respectively. Red claw fed the 42% crude protein diet had significantly higher (P<0.05) feed conversion ratio (7.34) compared with crayfish fed diets containing 22% (5.18) or 32% (5.13) crude protein, and had significantly lower percentage survival (46.1%) compared with red claw fed diets with 22% (61.1%) or 32% (58.2%) protein. Total yield was significantly lower (P<0.05) in red claw fed the 42% protein diet (640 kg ha?1) compared with red claw fed diets containing 22% (920 kg ha?1) or 32% (904 kg ha?1) protein. Mean total ammonia nitrogen (TAN) levels were significantly higher (P<0.05) in ponds with red claw fed the 42% protein diet (0.55 mg L?1) compared with ponds with red claw fed diets containing 22% (0.32 mg L?1) or 32% (0.38 mg L?1) protein. Mean total nitrite concentrations in ponds with red claw fed the 42% protein diet was significantly higher (0.05 mg L?1) compared with red claw fed diets containing 22% (0.01 mg L?1) or 32% (0.02 mg L?1) protein. These results indicate that a practical diet containing 22% (as fed basis) protein may be adequate for pond production of red claw when stocked at the density used in this study, and that a diet containing 42% protein adversely affected levels of TAN and nitrite, possibly reducing overall survival of red claw. Use of a diet with 22% protein may allow red claw producers to reduce diet costs and thereby increase profits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号