首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT:   In the present study, Schizochytrium limacinum OUC88, a thraustochytrid with high content of docosahexaenoic acid (DHA, 22:6 n −3), was used as feed for rotifer Brachionus plicatilis and Artemia franciscana . The rotifer and Artemia were harvested at 3, 6, 9, 12, 18, and 24-h intervals, analyzed for fatty acid composition, and compared with the control which fed on yeast only. The highest DHA content resulted from an enrichment period of 12 h for both fed organisms, reached 13.4 and 10.9% of the total fatty acids (TFAs) in rotifers and Artemia nauplii, respectively, and the DHA level reduced sharply if enrichment time was longer than 12 h. The pseudoalbinism rate of turbot Scophthalmus maximus juveniles fed enriched rotifers and Artemia nauplii reduced greatly (40% lower than in control group). Thus, enrichment of rotifers and Artemia nauplii by DHA-rich Schizochytrium limacinum OUC88 may provide a practical strategy for feeding fish juveniles in aquaculture.  相似文献   

2.
Abstract.— The aim of this study was to compare the levels of docosahexaenoic acid (DHA, 22:6n-3) in three different bisexual and one parthenogenetic strains of Artemia after enrichment. Freshly-hatched nauplii from A. franciscana (Great Salt Lake, USA), A. sinica (Yimeng, P. R. China), A. persimilis (Argentina), and A. parthenogenetica (Tanggu, P. R. China) were enriched with a purified lipid emulsion containing 95% DHA ethyl esters (% total fatty acids) and subsequently starved. All strains had very low initial DHA levels (< 0.3 mg/g dry weight). Initial eicosapentaenoic acid, 20:5n-3 (EPA) levels were high in A. parthenogenetica (18.2 mg/g dry weight) as compared to those in the other strains (4.6-8.5 mg/g dry weight). After 24-h enrichment, A. sinica contained the highest DHA level (37.0 mg/g dry weight) as well as the highest DHA/ EPA ratio (3.7). The lowest DHA enrichment levels were found in A. franciscana and A. parthenogenetica (26.3 and 22.7 mg/g dry weight, respectively). During the subsequent 24-h starvation period, the contents of DHA decreased rapidly in all strains, whereas EPA levels remained relatively stable. This indicates the high catabolism of DHA for energy production, the relative conservation of EPA, and possibly a partial bioconversion of DHA to EPA during the starvation period in each species.  相似文献   

3.
This study aimed to evaluate the effect of enriching Artemia nauplii with vitamin C (ascorbyl-6 palmitate) or vitamin E (α-tocopherol acetate), 20% w/w, together with a mixture of concentrated eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) on the growth, survival, and stress resistance of fresh water walleye Stizostedion vitreum larvae. Either cod liver oil (CLO) or EPA/DHA ethyl esters concentrate was used as lipid sources in the Artemia enrichment. Walleye larvae were fed ad libitum for 40 days. At day 40, submersion in salt water (25 g L−1) was performed to evaluate larvae resistance to stress. EPA and DHA levels in walleye juveniles fed EPA/DHA-enriched Artemia increased significantly, by an average of 650% compared with fish fed non-enriched Artemia . A significant increase was found for vitamins C (71.8 ± 1.0 and 42.7 ± 1.2 μg g−1 wet weight (WW)) and E (17.0 ± 3.7 and 6.5 ± 0.9 μg g−1WW) concentrations in fish fed enriched and unenriched Artemia , respectively. Growth was comparable throughout treatments, whereas survival was significantly higher in fish fed CLO-enriched Artemia nauplii compared with fish fed Artemia nauplii enriched with EPA/DHA concentrate. The addition of vitamin C increased fish survival by 1.4-fold compared with fish fed Artemia enriched with only EPA/DHA concentrate. The survival of the latter was similar to control fish ( Artemia without enrichment). The supplementation of vitamin E did not affect fish survival significantly. Stress tests revealed that the resistance of walleye larvae to salinity changes increased when Artemia enrichment was supplemented with vitamin C. However, walleye larvae fed CLO-enriched Artemia had the best performances in the stress test.  相似文献   

4.
The effect of varying levels of dietary n-3 highly unsaturated fatty acid (HUFA) and docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratios on growth, survival and osmotic stress tolerance of Eriocheir sinensis zoea larvae was studied in two separate experiments. In experiment I, larvae were fed rotifers and Artemia enriched with ICES emulsions with 0, 30 and 50% total n-3 HUFA levels but with the same DHA/EPA ratio of 0.6. In experiment II, larvae were fed different combinations of enriched rotifers and Artemia, in which, rotifers were enriched with emulsions containing 30% total n-3 HUFA, but different DHA/EPA ratio of 0.6, 2 and 4; while Artemia were enriched with the same emulsions, but DHA/EPA ratio of 0.6 and 4. In both experiments, un-enriched rotifers cultured on baker's yeast and newly-hatched Artemia nauplii were used as control diets. Larvae were fed rotifers at zoea 1 and zoea 2 stages; upon reaching zoea 3 stage, Artemia was introduced.Experiment I revealed no significant effect of prey enrichment on the survival of megalopa among treatments, but higher total n-3 HUFA levels significantly enhanced larval development (larval stage index, LSI) and resulted in higher individual dry body weight of megalopa. Furthermore higher dietary n-3 HUFA levels also resulted in better tolerance to salinity stress. Experiment II indicated that at the same total n-3 HUFA level, larvae continuously receiving a low dietary DHA/EPA ratio had significantly lower survival at the megalopa stage and inferior individual body weight at the megalopa stage, but no negative effect was observed on larval development (LSI). The ability to endure salinity stress of zoea 3, zoea 5 and megalopa fed diets with higher DHA/EPA ratio was also improved.  相似文献   

5.
采用乳化油直接添加法,用n-3高度不饱和脂肪酸(n-3HUFA)含量不等的4种乳化油分别强化轮虫、卤虫活饵料,培育4组黑鲷仔鱼和稚鱼,各自历时15d,结果表明,n-3HUFA对黑鲷仔鱼和稚鱼的生长和存活均有重要影响。在该条件下,轮虫体内n-3HUFA含量为0.233%(湿重计),卤虫体内n-3HUFA含量为4.273%(湿重计)时,仔鱼和稚鱼达到最佳生长和成活率。  相似文献   

6.
Lipid classes and fatty acid levels were analyzed in freshly fertilized eggs, early and late embryo development, and freshly hatched larvae obtained from wild and captive silverside Chirostoma estor estor broodstock, as well as in plankton, Artemia, and pelleted feed. The concentration of triglycerides (TGs) and highly unsaturated fatty acids (HUFAs) in neutral lipid fraction significantly decreased during early development and especially after hatching, whereas phospholipids and HUFA in polar lipid fraction remained constant. These results indicate that TGs rather than PLs are used as energy sources and that all HUFAs [20:4n-6/arachidonic acid (ARA), 20:5n-3/eicosapentaenoic acid (EPA), and 22:6n-3/docosahexaenoic acid (DHA)] of polar lipids are selectively conserved during early development. High levels of DHA (30%, on average, of total fatty acids) and low levels of EPA (4%) were observed in eggs, embryos, and larvae and did not reflect the proportions of these fatty acids in food. Preferential accumulation of DHA from food consumed by broodstock, and then transference to eggs, was probably occurring. The main difference between eggs from both origins was a low level of ARA in eggs from captive fish (4% of total fatty acids) compared to wild fish (9%). This could be associated with a deficiency in the diet that is not compensated for by desaturation/elongation of 18:2n-6 and, possibly, with greater stress in captive fish. In any case, particular requirements of ARA should be determined to optimize the culture of C. estor.  相似文献   

7.
The effects of feeding different sources of brine shrimp nauplii with different fatty acid compositions on growth, survival, and fatty acid composition of striped bass, Morone saxarilis and palmetto bass (M. saxatilis x M. chrysops) were determined. The sources of brine shrimp were Chinese (CH), with a high percentage of 20:5(n-3), eicosapentaenoic acid (EPA), and Colombian (COL), San Francisco Bay (SFB), and Great Salt Lake (GSL), with low percentages of EPA but high percentages of 18:3(n-3), linoienic acid. None of the brine shrimp sources contained a measurable amount of 22:6(n-3), docosahexaenoic acid (DHA). After enrichment with menhaden oil to increase the content of EPA and DHA, the GSL brine shrimp nauplii were also fed to hybrid striped bass.Growth and survival of fish larvae fed brine shrimp nauplii with high percentages of EPA and DHA (CH and GSLE) were higher (P < 0.05) than those of fish fed brine shrimp with a low percentage of EPA (COL, SFB, and GSL). The ratio of 20:3(n-9) eicosatrienoic acid (ETA), to DHA in polar lipids (phospholipids) of fish, traditionally used as an indicator of essential fatty acid (EFA) sufficiency of the diet, was not a reliable indicator of essential fatty acid sufficiency of diets for larval striped bass and hybrid striped bass. However, the ratio of ETA to EPA appears to be an appropriate indicator. An ETA-to-EPA ratio in phospholipids of less than 0.10 is consistent with an EFA sufficient diet.  相似文献   

8.
用3种营养强化剂强化的轮虫和卤虫无节幼体投喂牙鲆仔鱼,研究牙鲆仔鱼的生长、成活、体脂肪酸的组成。结果表明:用强化的轮虫和卤虫无节幼体投喂牙鲆仔鱼,成活率、增重均显著高于对照组(p<0 01),其中V号强化剂的效果最好,成活率为29 34%,比对照组提高100%;增重倍数为217 90,比对照组提高68 61%;这是由于V号强化剂强化的卤虫无节幼体体内含有较多的AA的缘故,饵料中AA含量的提高,可以提高牙鲆仔鱼的成活率、促进其生长。牙鲆摄食强化过的轮虫、卤虫无节幼体后,其EPA、DHA、n-3HUFA、PUFA的含量随着饵料中含量的升高而升高,这也是牙鲆仔鱼生长速度和成活率提高的重要因素之一。  相似文献   

9.
Abstract— Two bacterial strains, rich in either eicosapentaenoic acid [EPA, 20:5(n-3)] ( Shewanella gel-idimarina ACAM 456) or docosahexaenoic acid [DHA, 22:6(n-3)] ( Colwellia psychroeryrhrus ACAM 605) were tested for their ability to enrich rotifers Erachionus plicatilis in these polyunsaturated fatty acids. Rotifers were exposed for 24 h to each bacterial strain and to a mixture of the two strains. They were then harvested and their fatty acid compositions were analysed and compared to those of rotifers that had been either starved or fed yeast Saccharomyces cerevisiae or microalgae Tetraselmis suecica in 2-L glass flasks. Exposure to 1.4 × 109 cells/ml of the EPA-producing bacterium only resulted in rotifer EPA levels increasing from 0.1% to 1.2% of total dry weight (%dw). Similarly, following exposure to 1.0 × 109 cells/mL of the DHA-producing bacterium only, rotifer DHA levels increased from below detection to 0.1% dw. When exposed to a mixture of the two bacterial strains, containing 7.0 × 108 celldml of the EPA producer and 5.0 × 108 cells/mL of the DHA producer, the rotifers'final EPA and DHA levels were 0.5% dw and 0.3% dw respectively. Although feeding strategies need refining, these results show, for the first time, that rotifers can be enriched with DHA from bacteria, and that rotifers can be enriched simultaneously with both DHA and EPA from different bacterial strains.  相似文献   

10.
The efficiency of the rotifer Brachionus calyciflorus Pallas as a nutritional source for rearing larvae was studied in a coldwater cyprinid, the gudgeon Gobio gobio (L.), and in a percid, the perch Perca fluviatilis L., through their composition in fatty acids. Rotifer intake affected the fatty acid profiles of the larvae significantly, with an especially remarkable presence of the linoleic family. In gudgeon fed with rotifers, the polyunsaturated fatty acids (PUFA) reached 10.98% of the dry weight of the sample. This rate was highly influenced by the presence of the acids C18:2n-6 and C22:6n-3 which represented 66% of the total PUFA. In perch fed exclusively with rotifers, the PUFA represented 7.27% of the dry weight. In both cases, the ratio n-3/n–6 decreased by 75% and 73% after 10 days of feeding with B. calyciflorus. This variation was probably due to the exogenous supply in acids of the linoleic family through the rotifers and to the fact that these two species of fish seem to favour the mobilization of the n-3 PUFA such as C22:6n-3 for growth and survival. Moreover, with the utilization of rotifers. the reactions of elongation and desaturation from the C18:2n-6 and C18:1n-9 seemed to be much more important in the larvae. Lastly, the transition from a diet based on rotifers to one made up exclusively of frozen Artemia nauplii led to a significant reduction of fatty acids in fish. It reached 60.2% and 26.5% of the total fatty acids in the gudgeon and perch, respectively, and was observed especially at the level of the PUFA. On the other hand, a slight increase of the ratio n-3/n-6 was pointed out in the perch fed a mixed diet (co-feeding with rotifers and dry food), a phenomenon probably due to the reduction of C18:2n-6 in the larvae.  相似文献   

11.
以18日龄的牙鲆(Paralichthys olivaceus)稚鱼为研究对象,通过11 d 的生长实验,研究了添加不同比例的微藻粉替代鱼油对牙鲆稚鱼生长、存活率和脂肪酸组成的影响。以鱼油组(FO)为对照组,以裂壶藻粉(Schizochytrium sp.)、微绿球藻粉(Nannochloropsis sp.)和橄榄油替代不同比例的鱼油,配制成5组等氮等能的实验饲料,分别命名为鱼油组(FO),50%混合替代组(M50)、100%混合替代组(M100)、100%裂壶藻橄榄油替代组(S100)、100%微绿球藻橄榄油替代组(N100)。结果显示,微藻粉替代鱼油对牙鲆稚鱼的生长无显著影响;含有裂壶藻的各饲料组(M50、M100、S100)成活率显著高于 FO 组和 N100组(P?0.05);微藻粉替代鱼油不影响牙鲆稚鱼主要脂肪酸的组成;Person相关性分析发现,C14:0、C16:1n-7、C18:2n-6、C20:0、C18:3n-3、C22:0、C20:4n-3、EPA、C22:5n-6和 DHA 的百分含量均与其饲料中的百分含量呈显著正相关(P<0.05);总饱和脂肪酸、总单不饱和脂肪酸、n-3多不饱和脂肪酸的百分含量以及 DHA/EPA 比率均与其饲料组成表现出显著正相关(P<0.05)。综上所述,微藻作为脂肪源替代鱼油完全可以满足牙鲆稚鱼的生长和发育,各种脂肪酸均可以被牙鲆稚鱼充分消化和吸收,并且添加两种微藻后提高了稚鱼的 DHA 含量和 DHA/EPA 比率,与鱼油对照组相比显著提高了牙鲆稚鱼的成活率。因此,以微藻替代鱼油在牙鲆稚鱼的培育中是可行的。  相似文献   

12.
Oil-seawater emulsions of 12%, 8%, 4% and 2% soya phosphatidylcholine (PC) in tuna orbital oil (TOO) (w:w) were tested with respect to their suitability as Artemia enrichment media. Levels of essential fatty acids (EFA) accumulated by feeding Artemia nauplii were measured after enrichment periods of 0, 14, 18 and 20 h, and the stability of polyunsaturated fatty acids levels in the emulsions were also monitored throughout the enrichment process. Artemia enrichment efficiency in terms of %DHA (docosahexaenoic acid, 22:6w-3) and DHA:EPA (eicosapentaenoic acid, 20:5w-3) ratios were similar for all four types of emulsions (10-12% and 1.7-1.8, respectively). However, 8% and 12% soya PC/TOO emulsions yielded nauplii with slightly higher mean lipid contents than the other two treatments (235-243 and 217-229 mg lipid g-1 dry body weight, respectively). Stability of polyunsaturated fatty acids (PUFA) levels within the emulsions in seawater, and of DHA and EPA levels in particular, correlated with soya PC concentration. In 12% soya PC/TOO emulsions, PUFA levels remained high after 20 h enrichment whilst those in the 2% and 4% soya PC emulsions showed a marked reduction by 18 h enrichment time. It is suggested that soya PC may protect PUFA levels in the emulsions in a dose-dependent manner, probably by acting as an antioxidant. No significant improvement in Artemia total lipid content or DHA:EPA ratio occurred when enrichment was continued for longer than 18 h. When using this enrichment system, it is preferable, therefore, to employ the 12% soya PC/TOO emulsion and to terminate the enrichment process at 18 h, thus preventing the risk of PUFA levels deteriorating in the emulsion.  相似文献   

13.
This study was performed to assess the nutritional value of Streptocephalus dichotomus nauplii and compared with standard larval diet and parthenogenetic strain of Artemia nauplii. The effectiveness of live feed was determined by feeding freshwater prawn Macrobrachium rosenbergii postlarvae. Results on the growth rate, weight gain, survival, fatty acid and amino acid composition show a significant variation between the dietary treatments. Mean larval growth was significantly different ( P  < 0.001) between control diet (13.5 ± 0.5 mm) and live feeds ( Streptocephalus nauplii; 18.4 ± 0.5 mm and Artemia nauplii 18.7 ± 0.2 mm). The weight of larvae-fed Streptocephalus (41.1 ± 1.44 mg) and Artemia nauplii (41.7 ± 0.2 mg) was not significantly different; however, treatment with live feeds was significantly higher than the control (16.3 ± 0.5 mg) ( P  < 0.001). Proximate composition on the fairy shrimp reveals that they are rich in protein, lipid, essential amino acids (EAA) and essential fatty acids (EFA). The polyenoic unsaturated fatty acid (18 : 2 n-6 and 18 : 3 n-3) and highly unsaturated fatty acid (20 : 4 n-3 and 20 : 5 n-3) show a dramatic increase in larval tissue relative to its proportional composition in the live diets. Amino acid composition in the live feeds, Streptocephalus and Artemia nauplii, perfectly reflects on the amino acid proportions in the larvae-fed diets which confirm its utilization.  相似文献   

14.
《水生生物资源》1999,12(1):31-36
Larvae of the coral reef damselfish Acanthochromis polyacanthus (Bleeker) were fed either unenriched Artemia nauplii or nauplii which had been enriched by pre-feeding with microcapsules containing either squid oil (SQO) or cod liver oil (CLO). Enriched nauplii contained elevated levels of the n-3 highly unsaturated fatty acids (HUFA) eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) which made up 5.22 ± 0.34 and 2.62 ± 0.28 %, respectively, of total fatty acids in nauplii enriched with CLO, and 10.48 ± 0.36 and 3.43 ± 0.33 %, respectively, in nauplii enriched with SQO. In contrast, unenriched nauplii contained EPA (5.03 ± 1.04 %) but did not contain DHA. Survival differed significantly between treatments over the 18-d study; larvae receiving CLO enriched nauplii showed 100 % survival and those receiving SQO enriched nauplii showed 93.3 ± 6.6 % survival. In contrast, only 46 ± 6.7 % of larvae receiving unenriched nauplii survived to the end of the 18-d study. Wet weight, dry weight and proximate biochemical composition did not differ significantly between treatments at the end of the study. Mean standard length of larvae fed CLO enriched nauplii was significantly smaller than that of larvae fed SQO enriched nauplii; however, neither differed significantly from larvae fed unenriched nauplii. The fatty acid composition of A. polyacanthus larvae was significantly influenced by the fatty acid composition of the diet. The results indicate that A. polyacanthus larvae are unable to synthesise DHA from available dietary precursors and, as such, dietary DHA is required to maximise survival. Development of appropriate culture techniques for the larvae of coral reef fishes will allow controlled laboratory studies with these species and may eventually reduce pressure on wild populations exploited for the aquarium trade.  相似文献   

15.
A feeding study was conducted in the winter 2001 to determine the effects of feeding rotifers (Brachionus plicatilis) enriched with various levels of essential fatty acids on the growth and survival of haddock larvae (Melanogrammus aeglefinus). Rotifer enrichment treatments were: 1) mixed algae, 2) high DHA (docosahexaenoic acid, 22:6n-3), 3) high DHA and EPA (eicosapentaenoic acid, 20:5n-3), and 4) DHA, EPA, and AA (arachidonic acid, 20:4n-6). Larvae were fed rotifers enriched with the different treatments from days 1 to 16 post-hatch. From day 17 until 25 all treatment groups were fed rotifers reared on mixed algae and then weaned onto the International Council for Exploration of the SEA (ICES) Standard Reference Weaning diet (http://allserv.rug.ac.t/aquaculture/rend/rend.htm) over a five day period. The experiment was terminated on day 41 post-hatch. The enrichment treatments affected the fatty acid composition of the rotifers and correlated with the accumulation of these fatty acids in the haddock larvae. However, no significant differences in larval growth or survival to 40 days post hatch were detected, suggesting that all treatments provided the minimal essential fatty acid requirements for haddock.  相似文献   

16.
The effect of dietary 22:6n-3 (docosahexaenoic acid, DHA) on growth and survival was determined in striped trumpeter during metamorphosis and the Artemia-feeding period (16–36 days posthatch, dph). Artemia were enriched on one of five experimental emulsions that contained graduated concentrations of DHA and constant 20:4n-6 (arachidonic acid, ARA). We also compared larval performance using a commercial enrichment product high in n-3 PUFA. Final DHA concentrations in Artemia enriched on the experimental emulsions ranged from 0.1–20.8 mg/g DM, while Artemia fed the commercial product had 18.2 mg DHA/g DM. Each of the six diets was fed to larvae in four replicate 300-l tanks. Standard length (range 10.0–11.2 mm) and dry weight (range 1.6–2.5 mg) of larvae at the end of the experiment were directly related to dietary DHA, with the highest growth recorded in the experimental diet with the greatest concentration of DHA (20.8 mg/g DM). Survival at 36 dph was not influenced by dietary DHA and ranged from 20–44%. Mortality increased noticeably, regardless of dietary treatment, when larvae attained a standard length of approximately 9.5 mm. Mortality was related to a nocturnal behaviour where larvae would migrate to the tank bottom during the dark phase. Fatty acid profiles of the larvae were generally correlated to dietary fatty acids. Dietary DHA was found to be important in larval striped trumpeter growth, where enhanced growth probably shortened the critical period of metamorphosis and the window where nocturnal downward migration and mortality occurred.  相似文献   

17.
The effects of culture parameters of tank color and feeding regimes were examined on larval white bass Morone chrysops during 1994–1995. Under high surface illumination (998 lux), dark tank walls were essential for effective prey capture. Larvae reared in clear glass aquaria did not grow and had died by day 6 of the study. In contrast, 48.7% of the larvae reared in black-walled tanks were alive on day 24 and had grown to 17.2 mm total length (TL). In another study, larvae were fed rotifers Brachionus plicatilis and Artemia nauplii in different feeding protocols. In one treatment only rotifers (10/mL) were fed day 1 (4 d post-hatch), rotifers and Artemia (3/mL) were fed days 2–4, and Artemia fed days 5–15. This protocol produced similar growth (mean size 11.7 mm TL) and survival (mean 30.3%) as slower weaning times from rotifers to Artemia . Juveniles (27-day-old, 17.2 mm TL) were converted to a dry crumble diet over a 14-d period by slow transfer from a combination diet consisting of live Artemia nauplii, frozen adult Artemia , plankton flakes and dry crumbles. Survival offish weaned to the dry diet was 64.5%. Most of the mortalities during the weaning period were fish with uninflated swim bladders which were cannibalized by larger fish. Using the above tank culture techniques, white bass were reared to a mean size of 73.2 mm TL (mean weight 5.8 g) over a 73-d period. This essentially closes the life cycle of white bass.  相似文献   

18.
Lipid Nutrition and Feeding of Cobia Rachycentron canadum Larvae   总被引:3,自引:0,他引:3  
This study examined the fatty acid composition of cobia Rachycentron canadum eggs and yolksac larvae, as well as the ovaries of wild caught females as an initial guide to lipid nutritional requirements. A 2-wk feeding study also was conducted to investigate the effectiveness of four dietary treatments on the growth and survival of cobia larvae. Cobia eggs in the tailbud stage contained 31.4 ± 1.3 μg lipid/egg. After hatching, the amount of lipid decreased significantly (P < 0.05) from 28.3 ± 0.3 to 23.2 ± 0.1 μg lipid/larvae during the yolksac larval stage (days 1 to 3 after hatching). Ovaries from wild caught adults and captive spawned eggs and yolksac larvae contained high levels of PUFAs with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) accounting for approximately 80% of the total suggesting that cobia larvae may have a high dietary requirement for these fatty acids. For the feeding study, larvae were fed: 1) Artemia only; 2) enriched rotifers for 1 d only + microparticulate diet (day 313); 3) enriched rotifers for 3 d (day 3–5) + Artemia (day 3–13); and 4) enriched rotifers for 6 d (day 3–8) + Artemia (day 3–13). Cobia larvae began feeding on rotifers 3 d after hatching and on newly hatched Artemia nauplii by the fifth day following the onset of exogenous feeding (day 7). On day 7, no differences in larval growth were found among larvae fed rotifers for 3 versus 6 d, whereas larvae fed only Artemia or rotifers for I d followed by microparticulate diet were significantly smaller (P < 0.05) and did not survive beyond day 9 and 13, respectively. The results of the feeding study indicate that cobia larvae require rotifers for a minimum of 4 d following the onset of exogenous feeding.  相似文献   

19.
Atlantic salmon fry (4 g) were fed for 4 months on semi-synthetic diets containing fatty acid methyl esters of either 18:2 n-6, 18:3 n-3 or a mixture of equal amounts of 20:5 n-3 and 22:6 n-3. The different amounts of polyunsaturated fatty acids added were 0, 0.1, 0.2, 0.5, 1 and 2% (by dry weight). Increasing levels of dietary n-3 fatty acids up to 1% gave faster growth rates in salmon fry, and fish fed the mixture of 20:5 n-3 and 22:6 n-3 seemed to grow faster than fish fed only 18:3 n-3. No significant effect on growth rate was seen when the dietary level of 18:2 n-6 was increased. Dietary inclusions of n-3 fatty acids reduced the mortality of salmon, while dietary 18:2 n-6 had no such beneficial effects.
The dietary treatments caused substantial changes in the fatty acid composition of blood and liver phospholipids (PL), whereas the total lipid fraction of the carcass was less affected. Increasing doses of 18:2 n-6 in the diet resulted in an increased percentage of 20:4 n-6 in liver and blood PLs, while the percentage of 20:3 n-9 decreased. The percentage of 18:2 n-6 also increased in liver, blood and carcass. Dietary 18:3 n-3 resulted in increased percentages of 18:3 n-3 and 20:5 n-3 in liver PLs, while the percentage of 20:3 n-9 decreased. There was, however, no significant increase in the percentage of 22:6 n-3. Dietary 18:3 n-3 produced no significant changes in the composition of blood fatty acids, but increased the percentage of 18:3 n-3 in the carcass. The dietary combination of the n-3 fatty acids 20:5 and 22:6 resulted in an increased percentage of 22:6 n-3 in blood and liver lipids and a decreased percentage of 20:3 n-9, but there were no changes in the percentage of 20:5 n-3.  相似文献   

20.
The uptake of oxolinic acid by the rotifer Brachionus plicatilis, Artemia franciscana nauplii and metanauplii was studied as a function of its concentration in the enrichment medium and the duration of the enrichment period. An emulsion containing 5, 10, 20 or 30% (w/w) oxolinic acid was administered and the enrichment period lasted 4, 8, 12 or 36 h. Highest incorporation of oxolinic acid was achieved using a 20% emulsion and a 12 h enrichment for rotifers (205.05 ± 17.1 μg g?1 dry weight), a 24 h enrichment for nauplii (2528.8 ± 254.6 μg g?1 dry weight), and an 8 h enrichment for metanauplii (1236.58 ± 22.9 μg g?1 dry weight). Higher concentrations of oxolinic acid in the enrichment emulsion or longer enrichment times resulted in decreased survival. Two hours post enrichment the contents of the drug appeared significantly decreased. The concentration data of oxolinic acid were best fit to a two phase exponential elimination model, the first phase elimination half‐life (t1/2α) being 1.86, 1.08 and 1.74 and the terminal phase elimination half‐life (t1/2β) 26.83, 29.67 and 17.48 in rotifers, nauplii and metanauplii correspondingly. Enrichment with an emulsion containing 20% oxolinic acid is recommended employing a duration of 12, 24, or 8 h enrichment for rotifers, nauplii and metanauplii respectively, while enriched carriers should be used shortly after enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号