首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A participatory on-farm study was conducted to explore the effects of food input patterns on water quality and sediment nutrient accumulation in ponds, and to identify different types of integrated pond systems. Ten integrated agriculture-aquaculture (IAA) farms, in which ponds associate with fruit orchards, livestock and rice fields were monitored in the Mekong delta of Vietnam. Pond mass balances for nitrogen (N), organic carbon (OC) and phosphorus (P) were determined, and pond water quality and sediment nutrient accumulation were monitored. Data were analyzed using multivariate canonical correlation analysis, cluster analysis and discriminant analysis. The main variability in pond water quality and sediment nutrients was related with food inputs and water exchange rates. Water exchange rate, agro-ecological factors, pond physical properties and human waste input were major variables used to classify ponds. Classification was into: (1) low water exchange rate ponds in the fruit-dominated area, (2) low water exchange rate ponds in the rice-dominated area receiving homemade feed, and (3) high water exchange rate ponds in the rice-dominated areas receiving wastes. Pond water exchange rate was human-controlled and a function of food input patterns, which were determined by livelihood strategies of IAA-households. In the rice-dominated area with deep ponds, higher livestock and human wastes were found together with high water exchange rates. In these ponds, large organic matter loads reduced dissolved oxygen and increased total phosphorus concentrations in the water and increased nutrient (N, OC and P) accumulation in the sediments. In the rice-dominated area with wide ponds, higher homemade feed amounts were added to the ponds with low water exchange rate. This resulted in high phytoplankton biomass and high primary productivity. The contrary occurred in the fruit-dominated area, where fish were grown in shallow and narrow ponds, receiving more plant residue which resulted in lower phytoplankton biomass and lower sediment nutrient accumulation.  相似文献   

2.
Chemical Budgets for Organically Fertilized Fish Ponds in the Dry Tropics   总被引:9,自引:0,他引:9  
Chemical budgets were determined for nitrogen, phosphorns, dissolved oxygen and chemical oxygen demand for three 0.1-ha earthen ponds stocked with Onwchrornis nilotieus at the El Carao National Fish Culture Research Center, Comayagna, Honduras, for two 150-d culture periods, corresponding to the rainy and dry seasons. Layer chicken litter was added to ponds weekly at 500 kg dry matter/ha. Concentrations of nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) in pond water increased during each season. No significant seasonal differencea in concentrations of water quality variables were observed. Chicken litter added to ponds represented 92–94% of N input, 93–95% of P input, and 43–52% of COD input. Photosynthesis by phytoplnnkton provided 47–56% of COD and 98% of dissolved oxygen (DO) added to ponds. Net inward diffnsion of oxygen added 1.2–1.5% of total DO. Regulated inflow was a minor source of nutrients, and contributed 3–4% of input N, 3–4% of input P, 1% of COD input, and 1% of DO input. Nutrient inputs from rain were ≤1% of total for each nutrient. Fish harvest accounted for 18–21% of total N, 16–18% of total P and 2% of COD added to ponds. Community respiration accounted for 48–57% of COD and 99.5% of DO added to ponds. Nutrient losses in pond effluent at draining were: 7–9% of total N, 29–37% of total P and 2–3% of COD. While measured gains exceeded measrued losses, significpntly greater N, P and organic matter concentrations in pre-drain samples indicated pond mud was a major sink for added nutrients, accumulation in mud represented 70% of total N, 35–40% of total P, and 38–46% of COD.  相似文献   

3.
Monthly budgets for nitrogen and phosphorus for a marine fish pond in Eilat were determined for the period September 1983 to June 1984. The ponds are operated as a semi-open system, 41% of the pond water being replaced each day by water from a nearby seawater well. Only 29% of the phosphorus and 36% of the nitrogen are incorporated into harvestable fish flesh (Sparus aurata or Mugil sp.). The remainder reaches the pond as uneaten food, fish faeces or excreted matter, and it is then available to support high levels of phytoplankton and heterotrophic activity. The total input of nutrients supplied to the ponds showed a seasonal trend, with the lowest amount being supplied at the beginning of the sampling period (October) (5.2 moles N/day, 0.25 moles P/day), and increasing in June to 10.6 moles N/day, 0.57 moles P/day. All the increase was due to the amount of food fed. A large proportion (70–80%) of the excess nutrients was exported from the system as dissolved or particulate matter in the overflow. Because of this the water quality of the ponds has remained at levels which have enabled 6.5–12 tons fish/ha to be cultured without regular drying of the ponds. Oysters have been grown on the plankton carried out with the overflow. The ponds have a surplus of nutrient inflow in October/November (1.9 moles N/day, 0.06 moles P/day), a small deficit of N (0.4 moles/day), and surplus of P (0.01 moles/day) in spring, and a large surplus again in May and June of 1.3 moles N/day, 0.11 moles P/day. In all, 60–120% of the nutrient inputs are directly accounted for.  相似文献   

4.
Mass balance estimates of carbon and nitrogen flux through two extensive shrimp ponds in the Mekong delta, Vietnam, were constructed to identify major sources and sinks of organic matter potentially available for shrimp production. Nutrient transformations in the sediments were measured to further assess rates of decomposition and burial and quality of organic matter. Tidal exchange was the major pathway for inputs and outputs of carbon and nitrogen in both ponds, with net primary production, nitrogen fixation and precipitation being minor inputs. No fertilizers or artificial feeds were added to either pond. The nutrient budgets identified burial and respiration as the next most important outputs after tidal exchange losses of particulate and dissolved carbon and nitrogen. There was no measurable denitrification in either pond, and volatilization was negligible. Mineralization efficiency of carbon in the water column was high (> 100%) in pond 23 reflecting rapid respiration rates; efficiency was lower (36%) in pond 12 waters. Mineralization efficiency of sediment nutrients averaged 34% for C and 41% for N in the pond with a higher annual shrimp yield (pond 12); lower mineralization efficiencies (11% for C, 10% for N) were calculated for the lower yield pond (pond 23). High burial efficiencies for both C (66–89%) and N (59–90%) in the sediments of both ponds suggest that little organic matter was shunted into biological production. Conversion efficiency for shrimp averaged 16% for C and 24% for N from pond 12, and 6% for C and 18% for N from pond 23. The high quantity but low quality of organic matter entering the ponds coupled with other factors, such as poor water quality, limits shrimp productivity. On average, nutrient outputs were greater than inputs in both ponds. This imbalance partly explains why shrimp yields are declining in these ponds.  相似文献   

5.
A nutrient budget of some intensive marine shrimp ponds in Thailand   总被引:17,自引:0,他引:17  
Abstract. A mass balance was constructed for nutrient flow through intensive marine shrimp ponds in which budgets for nitrogen and phosphorus were determined for a series of ponds in southern Thailand over two or three culture cycles. Ninety-five per cent of the nitrogen and 71% of the phosphorus applied to the ponds was in the form of feed and fertilizers. Of the feed input (at a food conversion ratio of 2) only 24% of the nitrogen and 13% of the phosphorus was incorporated into the shrimp harvested, whilst the remainder was retained in the pond and ultimately exported to the surrounding environment. The effluent water contained 35% of the nitrogen and 10% of the phosphorus discharged. Of the N and P exported in this effluent, 63–67% occurred during routine water exchange and the remainder during drainage on harvest. A major portion of the nitrogen (31%) and most of the phosphorus (84%) was retained in the sediments, emphasizing the importance of the correct removal and disposal of sediments between crops. Pond age (between two and six production cycles) did not markedly affect nutrient flows, whilst increasing stocking density increased the quantity of nutrients, but not their relative proportions.
The results derived from the nutrient budget provide data which may help define effective management techniques for reducing potentially harmful nutrient levels within intensive shrimp ponds, and for reducing the discharge of nutrients to the local environment. The data may also assist in determining the carrying capacity of an area for shrimp farming, and the potential impact of its development on the environment.  相似文献   

6.
A dynamic model was developed to simulate nitrogen (N) flows and fish production in seasonal wetland fish ponds (Fingerponds) based on organic manuring and natural food production. The model incorporates pond water depth, food availability, fish stocking densities, fish and fingerling weights at stocking, reproduction rate, manure type and application rates. The ponds were fertilized fortnightly with 1042 kg ha−1 chicken manure. The model captured the dynamics of hydrology, nutrients and fish and demonstrated that similar fundamental processes underlie fish production in these systems. The model predicted annual fish yields of up to 2800 kg ha−1. Simulated fish production, chlorophyll a and dissolved inorganic N concentrations were comparable with field measurements. Using the model, N budgets and estimates of all N flows were made. Most of the N input into the ponds (60–70%) accumulated in the bottom detritus of the pond and only 8–10% was converted into fish biomass, of which about half consisted of small fish. Fish production in Fingerponds was limited by turbidity induced light limitation and by nutrient limitation. Reduction of variability of fish production should come from reduced turbidity and sufficient nutrient input to minimize light limitation and maximize fish growth.  相似文献   

7.
Sedimentation and Resuspension in Earthen Fish Ponds   总被引:5,自引:0,他引:5  
Resuspension of particles from pond sediment into the water column may be an important nutrient transfer mechanism in aquaculture ponds. However, the magnitude of sediment re-suspension cannot be determined directly because sediment traps collect particles settling from the water column as well as those re-suspended from the pond bottom. We developed a dilution analysis method to differentiate the magnitude of the two particle source fluxes based upon the concentration of soil-derived elements (Si, Al, and Fe) and water-derived elements (C, N) in material collected by sediment traps placed in earthen ponds. Estimated organic C sedimentation from feed residues and algae was compared with trapped organic C as an independent and approximate measure of resuspension. Resuspension fluxes based independently on analyses of three soil-derived elements and on the estimation of expected C sedimentation were similar and accounted for 60–90% of the total solids flux (121–2,676 g/m2 per d) in most ponds sampled. The proportion of total flux that was derived from resuspension in ponds stocked with common carp Cyprinus carpio and tilapia Oreochromis spp . was modeled as a hyperbolic function of fish size and density, with a threshold fish size of 200–300 g. Resuspension flux was conservatively estimated to be equivalent to the daily suspension of a few mm of the pond bottom. These results indicate that sediment resuspension is a major process in carp and tilapia ponds, suggesting that the exchange of nutrients between the sediment and overlying water is intensive.  相似文献   

8.
Abstract. During three 5-month experiments in Thailand, earthen ponds of approximately 370m2 surface area were stocked with male Nile tilapia, Oreochromis niloticus (L.), fingerlings of 4–12g weight at densities of 0·5 to l·6fish/m2. Stocking and fertilization (with chicken manure, urea and TSP) in triplicated depth treatments of 0·6,1·0 and 1·5m were proportional to pond volume in two experiments (wet and dry seasons) and to pond area in the other (dry season).
Depth showed no direct effect on fish yields of 0·9–6·3t/ha/year, on survival rates of 66 to 98%, nor on final individual weights of 96–313 g/fish. Greater yields were obtained from deeper ponds when they received proportionally greater stocking and fertilizer inputs. Inputs per unit area were the most important factor accounting for yield variation.
Temperature, dissolved N and P, and suspended solids showed little or no relation to depth treatments. Time-averaged chlorophyll concentrations and photosynthetic production of dissolved oxygen were greater in treatments receiving greater inputs of nitrogen per unit pond volume.
Deeper ponds produced the greatest areal yields of fish, when fertilized in proportion to their volumes. Shallow ponds produced fish and dissolved oxygen at least as efficiently per unit input as did deep ponds, which is consistent with models of photosynthesis-depth relations.  相似文献   

9.
A budget describing the flow of organic carbon (OC), nitrogen (N) and phosphorus (P) through two polyculture ponds (jellyfish–shellfish–fish–prawn) was constructed. The total input of OC was 3107 kg ha?1 in pond 1 and 3358 kg ha?1 in pond 2, while total output was 1759 kg ha?1 in pond 1 and 1325 kg ha?1 in pond 2. In pond 1, the total input of N was 364 kg ha?1 and output was 359 kg ha?1, whereas, in pond 2, the total input of N was 439 kg ha?1 and total output was 331 kg ha?1. The total input of P was 75 kg ha?1 in pond 1 and 66 kg ha?1 in pond 2, while total outputs for pond 1 and pond 2 were 74 and 65 kg ha?1 respectively. Primary production from phytoplankton contributed the largest proportion of total OC (49–56%), while feed contributed the largest proportion of N (78–81%) and P (79–80%). Animals harvested from the aquaculture ponds accounted for the largest proportion of N (50–73%) and P (49–52%), and respiration accounted for the largest proportion of OC (43–61%) output from the system. The OC, N and P use efficiency of harvested animals was 30.30%, 70.19% and 50.14% in pond 1, respectively, and 21.03%, 46.95% and 46.47% in pond 2 respectively. In terms of nutrient use, the filter‐feeding bivalve, Sinonovacula constricta, was the most efficient species within the polyculture system.  相似文献   

10.
The effects of introducing common carp (CC) and of adding artificial feed to fertilized rohu ponds on water quality and nutrient accumulation efficiency were studied. All ponds were stocked with 15 000 rohu ha?1. Treatments included ponds with rohu alone, rohu plus 5000 common carp ha?1 and rohu plus 10 000 CC ha?1. A comparison was also made between supplementally fed and non‐fed ponds. The overall highest nitrogen (N) and phosphorus (P) concentrations were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 and 0 CC ha?1. The largest fractions of N and P inputs accumulating in fish, phytoplankton and zooplankton were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 CC ha?1 and subsequently ponds without CC. Relatively more nutrients accumulated in benthic organisms in ponds without than in ponds with CC. A smaller fraction of the nutrient input was retained in fish, plankton and benthic organisms in ponds without CC compared with ponds with CC. Compared with 5000 CC ha?1, stocking 10 000 CC ha?1 can be considered as overstocking, because this leads to lower fish production and relatively less nutrients retained in plankton and benthic organisms.  相似文献   

11.
An experiment was conducted in six earthen ponds with 20 shrimp/m2 ( Litopenaeus stylirostris ) during the cold season in New Caledonia to determine the effect of water exchange rate on characteristics of effluents and pond sediment. The nitrogen budget was established, taking into account the different forms of nitrogen in the water, sediment, feed, and shrimp. Mean water exchange rates ranged from 10 to 23% per day. Increasing water exchange rate did not cause any significant change in the average quality of the rearing environment (water and sediment) during the whole growout period. However, the results showed that increasing exchange rates boosted primary productivity. Compounds produced by the mineralisation and metabolism of organic matter (feces, uneaten feed) were exported as particulate, rather than soluble matter. The nitrogen budget showed that the amount of exported wastes from the pond into the coastal environment was only 40–50% of nitrogen inputs due to nitrogen accumulation in the pond sediments and/or release to the atmosphere. The highest accumulation of dry material, as well as the highest Δ N (concentration of total N at the end of rearing - concentration of total N before rearing), was observed in ponds with the highest WER.  相似文献   

12.
采用低频率运转循环水处理系统(含粗滤器、臭氧仪、气液混合器,蛋白分离器、暗沉淀池等)联用池内设施(微泡曝气增氧机与净水网)开展凡纳滨对虾室内集约化养殖实验。研究了养虾池以水处理系统调控水质效果及氮磷收支。结果表明,养虾水经系统处理后,NO2-N(53.4%~64.5%)、CODMn(53.4%~94.4%)与TAN(31.6%~40.4%)被显著去除,有效改进虾池水质;养殖周期内未换水与用药,虾池主要水化指标均控制在对虾生长安全范围,7号实验池(100 d)与8号对照池(80 d)主要水化指标变化范围:DO分别为 5.07~6.70 mg/L和4.38~6.94 mg/L,TAN 0.248~0.561 mg/L和0.301~0.794 mg/L,NO2-N 0.019~0.311 mg/L和0.012~0.210 mg/L,CODMn 10.88~21.22 mg/L和11.65~23.34 mg/L。7号池对虾生长指数优于8号池(80 d虾病暴发终止),单位水体产量分别为1.398 kg/m2与0.803 kg/m2。氮磷收支估算结果:7号与8号池饲料氮磷分别占总收入:氮93.70%与92.37%,磷98.77%与99.09%;初始水层与虾苗含氮共占总收入6.30%与7.63%,磷共占1.23%与0.91%。总水层(含排污水)氮磷分别占总输出:氮56.45%与59.86%,磷53.26%与55.79%;收获虾体氮磷分别占总输出:氮37.07%与31.94%,磷21.37%与13.11%。7号池饲料转化率较高;池水渗漏与吸附等共损失氮磷分别占总输出:氮7.00%与9.34%,磷25.37%与31.10%。实验结果表明,虾池以低频率运转循环水处理系统联用池内设施可有效控制水质与虾病,具较高饲料转化率。  相似文献   

13.
Nutrient budget for shrimp (Penaeus monodon) culture was performed in ten culture ponds (0.4–1.0 ha) in Orissa, India, at stocking density of 10.0–22.10/m2. The average initial body weight of shrimps was 0.02 g. The culture period was for 4 months. Feed was the main input of nitrogen (N), phosphorus (P) and organic carbon (OC). The FCR varied from 1.35 to 1.75. At harvest time, the average weight of shrimps varied from 28 to 32 g. Total N, P and OC applied to these ponds through all the inputs ranged from 106.64 to 292.63, 23.17 to 57.55 kg and 763.10 to 1,831.20 kg per crop, respectively. Feed alone accounted for 94.43–95.03 % total N, 91.92–95.36 % total P and 80.33–92.48 % total OC, respectively. The harvest of shrimp accounted for recovery of 25.45–36.88 (av. 30.12) %, 10.07–12.94 (av. 11.16) % and 15.80–20.81 (av. 18.01) % of added N, P and OC, respectively. N, P and OC accumulated in sediment were 49.11, 64.07 and 64.82 %, respectively, of total nutrient retention in the culture system. Unaccounted N, P and OC were 13.29, 21.83 and 18.14 %, respectively, of the total nutrient retention in the system. N, P and OC outputs in the discharged water during harvest were 7.48, 2.94 and 2.03 %, respectively.  相似文献   

14.
Direct use of pig wastes as inputs into fish culture systems may be unacceptable or an inferior use of valuable inputs. High value, but non-filter feeding fish, such as African catfish, Clarias gariepinus (Burchell), may be unable to recover nutrients efficiently through the pond food web and require complete diets in intensive culture. Live feeds such as the larval stage of the green blow fly. Lucilia sericata, can be used as intermediate organisms to utilize pig waste and subsequently be fed live as part of a complete ration for catfish raised in cages. The nutrient efficiency of the system is further enhanced by the stocking of phytophagous fish, the Nile tilapia, Oreochromis niloticus (L.), in the pond in which the catfish culture cages are suspended. A model derived from on-farm experimentation is presented that demonstrates system design and nutrient efficiencies. An extrapolated catfish production of 61 year1 using only fly larvae produced from a standing herd of approximately 1000 fattening pigs was demonstrated. The static water pond in which the catfish were cultured ensured that the environmental impact of both pig and catfish systems was minimal compared to conventional production systems.  相似文献   

15.
Commercial intensive aquaculture systems werebuilt and are managed in a somewhat differentway in each farm. To evaluate the effects ofseveral management procedures on water qualityin intensive fish ponds, data from severallocations, times and culture conditions indifferent farms were collected and are hereinanalyzed through multivariate statistics. Water quality in the intensive ponds depends onthe water entering, the biological processeswithin, and the water leaving the ponds. Areservoir used as source and sink water supplied theintensive ponds with higher organic loadingthan clear source waters, and its phytoplanktoncontent affected nitrogen cycling within theintensive ponds. The systems with a reservoirhad better water quality in the intensive pondsthan those with only clean source water. Within the ponds (1) compared to paddle-wheelaeration, aeration by pure oxygen increasedoxygen concentration, improved nitrificationand promoted decomposition that reduced organicloading. (2) In concrete ponds accumulation oforganic matter and development of anerobicconditions on the pond bottom was higher thanin the slippery plastic-covered ponds. (3) Allintensive ponds provided good growthconditions, tilapia biomass having relativelysmall influence on water quality. Only inpaddle-wheel aerated ponds did increased tilapiabiomass increased inorganic nitrogen compoundsand soluble phosphorus through excretion, andreduce organic nitrogen through a moreefficient removal of food particles. Water leaving the ponds removes matteraffecting water quality within the pond. (1)Draining sediments accumulated on the bottomavoided development of anaerobic conditionswhere denitrification and phosphorus liberationcan occur. (2) Water exchange removed particleswith nitrifying bacteria and algae that absorbnutrients. A high water exchange rate may havea negative effect from the water quality pointof view and from the extra costs incurred inenergy and feeds washed out. The processes described occur simultaneouslythroughout the culture period and shape waterquality dynamics in the ponds. This researchcontributed to the understanding of howmanagement procedures affect the differentphases of water quality dynamics in real-scaletilapia commercial intensive systems.  相似文献   

16.
An environmental assessment was made of Alabama channel catfish Ictalurus punctatus farming which is concentrated in the west‐central region of the state. There are about 10,000 ha of production ponds with 10.7% of the area for fry and fingerlings and 89.3% for food fish. Food fish production was about 40,800 tons in 1997. Watershed ponds filled by rainfall and runoff make up 76% of total pond area. Water levels in many of these ponds are maintained in dry weather with well water. The other ponds are embankment ponds supplied by well water. Harvest is primarily by seine‐through procedures and ponds are not drained frequently. The main points related to Alabama catfish farming and environment issues are as follows: 1) catfish farming in Alabama is conservative of water, and excluding storm overflow, about two pond volumes are intentionally discharged from each pond in 15 yr; 2) overflow from ponds following rains occurs mostly in winter and early spring when pond water quality is good and stream discharge volume is high; 3) total suspended solids concentrations in pond effluents were high, and the main sources of total suspended solids were erosion of embankments, pond bottoms, and discharge ditches; 4) concentrations of nitrogen and phosphorus in effluents were not high, but annual effluent loads of these two nutrients were greater than for typical row crops in Alabama; 5) ground water use by the industry is about 86,000 m3/d, but seepage from ponds returns water to aquifers; 6) there is little use of medicated feeds; 7) copper sulfate is used to control blue‐green algae and off‐flavor in ponds, but copper is rapidly lost from pond water; 8) although sodium chloride is applied to ponds to control nitrite toxicity, stream or ground water salinization has not resulted from this practice; 9) fertilizers are applied two or three times annually to fry and fingerling ponds and occasionally to grow‐out ponds; 10) hydrated lime is applied occasionally at 50 to 100 kg/ha but this does not cause high pH in pond waters or effluents; 11) accumulated sediment removed from pond bottoms is used to repair embankments and not discarded outside ponds; 12) sampling above and below catfish pond outfalls on eight streams revealed few differences in stream water quality; 13) electricity used for pumping water and mechanical aeration is only 0.90 kW h/kg of production; 14) each metric ton of fish meal used in feeds yields about 10 tons of dressed catfish. Reduction in effluent volume through water reuse and effluent treatment in settling basins or wetlands does not appear feasible on most farms. However, some management practices are recommended for reducing the volume and improving the quality of channel catfish pond effluents.  相似文献   

17.
Commercial intensive aquaculture systems werebuilt and are managed in a somewhat differentway in each farm. To evaluate the effects ofseveral management procedures on water qualityin intensive fish ponds, data from severallocations, times and culture conditions indifferent farms were collected and are hereinanalyzed through multivariate statistics.Water quality in the intensive ponds depends onthe water entering, the biological processeswithin, and the water leaving the ponds. Areservoir used as source and sink water supplied theintensive ponds with higher organic loadingthan clear source waters, and its phytoplanktoncontent affected nitrogen cycling within theintensive ponds. The systems with a reservoirhad better water quality in the intensive pondsthan those with only clean source water.Within the ponds (1) compared to paddle-wheelaeration, aeration by pure oxygen increasedoxygen concentration, improved nitrificationand promoted decomposition that reduced organicloading. (2) In concrete ponds accumulation oforganic matter and development of anerobicconditions on the pond bottom was higher thanin the slippery plastic-covered ponds. (3) Allintensive ponds provided good growthconditions, tilapia biomass having relativelysmall influence on water quality. Only inpaddle-wheel aerated ponds did increased tilapiabiomass increased inorganic nitrogen compoundsand soluble phosphorus through excretion, andreduce organic nitrogen through a moreefficient removal of food particles.Water leaving the ponds removes matteraffecting water quality within the pond. (1)Draining sediments accumulated on the bottomavoided development of anaerobic conditionswhere denitrification and phosphorus liberationcan occur. (2) Water exchange removed particleswith nitrifying bacteria and algae that absorbnutrients. A high water exchange rate may havea negative effect from the water quality pointof view and from the extra costs incurred inenergy and feeds washed out.The processes described occur simultaneouslythroughout the culture period and shape waterquality dynamics in the ponds. This researchcontributed to the understanding of howmanagement procedures affect the differentphases of water quality dynamics in real-scaletilapia commercial intensive systems.  相似文献   

18.
Phosphorus fractions in soil and water were determined for a 22-year-old, 400m2 fish pond constructed on clayey Ultisols at Auburn, Alabama. This pond had been used in pond fertilization and fish feeding experiments each year. Total phosphorus concenlrations in bottom soil were greater in deep water than in shallow water areas. Highest concentrations of phosphorus occurred in the 5–10 cm soil layer, but phosphorus had accumulated above its original concentration to depths of 20 to 45 cm ( x = 36.8 cm). The soil phosphorus accumulation rate was 2.68 g/m2 per year. Less than 1% of the total phosphorus in soils from three ponds was extractable in distilled water or 0.5 M NaHCO3. Sequential extraction with 1 M NH4Cl, 0.5 N HCl, and 0.1 N NaOH removed less than 25% of the total phosphorus. The loosely-bound phosphorus fraction (1 M NH4Cl extractable) was 0.4 to 5.2% of the extractable phosphorus. The ability to adsorb phosphorus decreased and the capacity to release phosphorus increased in pond soils as total phosphorus concentration increased. After 22 years of aquacultural production, phosphorus adsorption sites in a pond soil were only about half-saturated. Although soluble phosphorus accounted for 37% of the phosphorus in pond water, only 7% of the total phosphorus in pond water was soluble reactive phosphorus. The phosphorus pool in pond soil was over 500 times greater than that of pond water, but most of the soil phosphorus was strongly adsorbed and unavailable.  相似文献   

19.
Water temperature and water loss by evaporation were monitored in control ponds and in ponds with different rates of aeration (9.2, 18.4, 27.6 and 36.9 kW/ha). The mean decrease in water temperature at 70‐cm depth was greater than that at the surface in aerated ponds than in control ponds. The greater the aeration rate, the cooler was water, both at the surface and at 70 cm. Evaporation rates were found to increase with greater aeration rate. Water loss increased by 32%–92% over 24‐hr periods in ponds with one to four 0.37‐kW Air‐O‐Lator aerators, respectively. The nutrient‐enriched control pond was more turbid, had cooler surface and deep water temperature, and had greater evaporation loss than the control pond without nutrient addition and less turbid water. But, aeration did not increase turbidity. Aeration can increase water loss from ponds and result in lower water temperature. Although aeration should not be used excessively in order to conserve water and reduce production cost, it is essential for many types of feed‐based aquaculture.  相似文献   

20.
为了揭示池塘种植莲藕对沉积物养分吸收及其养分转化相关酶的作用效果,将基本情况完全相同的黄颡鱼养殖池塘分为植藕组(Tf)和非植藕组(CK),观察两组池塘在黄颡鱼苗种培育过程沉积物中养分和4种酶(脲酶、磷酸酶、蛋白酶、蔗糖酶)活性的变化特征。结果表明,与CK相比,Tf沉积物中的TN、NH4+—N和NO3-—N在莲藕苗期后均显著降低,在莲藕休眠期分别降低了8.5%、54.1%和52.7%,其中NH4+—N减少是沉积物中TN降低的主要原因;从莲藕苗期至花果期TP明显下降,最大降幅达22.6%;苗期后有机质开始显著降低,休眠期相较未植藕池塘降低8.4%。对两组池塘而言,沉积物的酶活性均呈现先增加后降低的变化趋势,Tf沉积物中4种酶的平均活性均高于CK,酶活性的差异在莲藕苗期和休眠期达显著水平(P < 0.5)。分析表明,4种酶之间存在着显著正相关关系(P< 0.5),脲酶、磷酸酶和蔗糖酶活性与沉积物中NH4+—N的含量呈显著负相关,蛋白酶活性与沉积物中NO3-—N的含量呈显著正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号