首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes in fatty acid metabolism in Atlantic salmon (Salmo salar) induced by vegetable oil (VO) replacement of fish oil (FO) and high dietary oil in aquaculture diets can have negative impacts on the nutritional quality of the product for the human consumer, including altered flesh fatty acid composition and lipid content. A dietary trial was designed to investigate the twin problems of FO replacement and high energy diets in salmon throughout the entire production cycle. Salmon were grown from first feeding to around 2 kg on diets in which FO was completely replaced by a 1:1 blend of linseed and rapeseed oils at low (14–17%) and high (25–35%) dietary oil levels. This paper reports specifically on the influence of diet on various aspects of fatty acid metabolism. Fatty acid compositions of liver, intestinal tissue and gill were altered by the diets with increased proportions of C18 polyunsaturated fatty acids and decreased proportions of n-3 highly unsaturated fatty acids (HUFA) in fish fed VO compared to fish fed FO. HUFA synthesis in hepatocytes and enterocytes was significantly higher in fish fed VO, whereas β-oxidation was unaltered by either dietary oil content or type. Over the entire production cycle, HUFA synthesis in hepatocytes showed a decreasing trend with age interrupted by a large peak in activity at seawater transfer. Gill cell prostaglandin (PG) production showed a possible seasonal trend, with peak activities in winter and low activities in summer and at seawater transfer. PG production in seawater was lower in fish fed the high oil diets with the lowest PG production generally observed in fish fed high VO. The changes in fatty acid metabolism induced by high dietary oil and VO replacement contribute to altered flesh lipid content and fatty acid compositions, and so merit continued investigation to minimize any negative impacts that sustainable, environmentally-friendly and cost-effective aquaculture diets could have in the future. Abbreviations: FO - fish oil; HUFA - highly unsaturated fatty acids acids (carbon chain length ≥C 20 with ≥3 double bonds); LO - linseed oil; RO - rapeseed oil; VO - vegetable oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

3.
Fish such as Atlantic salmon (Salmo salar L.) are a natural source of n‐3 highly unsaturated fatty acids (HUFA) eicosapentaenate (EPA; 20:5n‐3) and docosahexaenoate (DHA; 22:6n‐3), which are essential for protecting humans against cardiovascular diseases. Thus, flesh n‐3 HUFA level is a trait of considerable importance in farmed fish, particularly now that the fishmeal and fish oil (FO) components of traditional aquaculture diets have to be replaced by more sustainable alternatives including plant meals and vegetable oils (VO). The present study aimed to characterize the inter‐individual variation in this trait in a single strain of Atlantic salmon. Fish were grown for 12 weeks on either an FO diet, or a diet with 100% of the FO replaced by a VO blend containing rapeseed, linseed and palm oils, flesh n‐3 HUFA content and composition determined, and the variation between individuals characterized. The results showed that, irrespective of diet, variation exists in the content of n‐3 HUFA in the flesh of individual salmon, showing that individual animals can display an enhanced ability to maintain high levels of n‐3 HUFA in their flesh. The pros and cons of defining the trait on a qualitative or quantitative basis are discussed.  相似文献   

4.
5.
Atlantic salmon were fed extruded diets based on either 100% fish oil (FO) or 100% vegetable oil blend (VO) substitution for 22 months. A total of seven distinct feeding periods were studied that incorporated higher levels of dietary oil inclusion, and larger pellet size as fish size increased. Whole fish levels of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/F) and dioxin‐like PCBs (DLPCB) were analysed at the beginning and end of each of the seven feeding periods. The PCDD/F and DLPCB concentrations in the FO diets increased from 2.43 to 4.74 ng WHO‐TEQ kg?1 (TEQ, toxic equivalents), while VO diets decreased from 1.07 to 0.33 WHO‐TEQ kg?1 as oil inclusion increased. Partial least square regression analyses identified feed concentration, growth rate and feed utilization, but not variations in lipid content, as factors significantly affecting fish PCDD/F and DLPCB levels. Accumulation efficiencies for DLPCB (740 ± 90 g kg?1) were significantly (P < 0.01) higher than for PCDD/F (430 ± 60 g kg?1), explaining the increasing dominance of DLPCB levels over PCDD/F levels in whole fish (DLPCB : PCDD/F ratio of 2.4 ± 0.1 for both VO and FO fed fish) compared with feed (DLPCB : PCDD/F ratio of 1.5 and 0.34 for FO and VO feed respectively). Vegetable oil substitution significantly reduced the level of PCDD/F and DLPCB (eightfold and twelve‐fold, respectively) in the fillet of a 2 kg salmon, but, also negatively affected beneficial health components such as fillet n‐3/n‐6 fatty acid ratio.  相似文献   

6.
Duplicate groups of Atlantic salmon parr were fed diets containing either fish oil (FO), rapeseed oil (RO), linseed oil (LO) or linseed oil supplemented with arachidonic acid (20:4n-6; AA) (LOA) from October (week 0) to seawater transfer in March (week 19). From March to July (weeks 20–34) all fish were fed a fish oil-containing diet. Fatty acyl desaturation and elongation activity in isolated hepatocytes incubated with [1-14C]18:3n-3 increased in all dietary groups, peaking in early March about one month prior to seawater transfer. Desaturation activities at their peak were significantly greater in fish fed the vegetable oils, particularly RO, compared to fish fed FO. Docosahexaenoic acid (22:6n-3:DHA) and AA in liver and gill polar lipids (PL) increased in all dietary groups during the freshwater phase whereas eicosapentaenoic acid (20:5n-3; EPA) increased greatly in all groups after seawater transfer. The AA/EPA ratio in tissue PL increased up to seawater transfer and then decreased after transfer. AA levels and the AA/EPA ratio in gill PL were generally higher in the LOA group. The levels of 18:3n-3 in muscle total lipid were increased significantly in the LO, LOA and, to a lesser extent, RO groups prior to transfer but were reduced to initial levels by the termination of the experiment (week 34). In contrast, 18:2n-6 in muscle total lipid was significantly increased after 18 weeks in fish fed the diets supplemented with RO and LO, and was significantly greater in the FO and RO groups at the termination of the experiment. Gill PGF production showed a large peak about two months after transfer to seawater. The production of total PGF post-transfer was significantly lower in fish previously fed the LOA diet. However, plasma chloride concentrations in fish subjected to a seawater challenge at 18 weeks were all lower in fish fed the diets with vegetable oils. This effect was significant in the case of fish receiving the diet with LOA, compared to those fed the diet containing FO. The present study showed that during parr-smolt transformation in Atlantic salmon there is a pre-adaptive increase in hepatocyte fatty acyl desaturation/elongation activities that is controlled primarily by environmental factors such as photoperiod and temperature but that can also be significantly modulated by diet. Feeding salmon parr diets supplemented with rapeseed or linseed oils prevented inhibition of the desaturase activities that is induced by feeding parr diets with fish oils and thus influenced the smoltification process by altering tissue PL fatty acid compositions and eicosanoid production. These effects, in turn, had a beneficial effect on the ability of the fish to osmoregulate and thus adapt to salinity changes.  相似文献   

7.
Relative gene expression pattern of fatty acid transport proteins (FATP and cd36), intracellular fatty acid-binding proteins (FABP3, FABP10 and FABP11), β-oxidation-related genes [carnitine palmitoyl transferase II (CPTII), peroxisome proliferator-activated receptor β (PPARβ), acyl-CoA oxidase (AOX), long-chain fatty acyl-CoA synthetase (FACS), acyl-CoA dehydrogenase (dehydrogenase)] and uncoupling protein 2 (UCP2) was assessed by RT-qPCR in Atlantic salmon muscle (red and white), liver, heart, myosepta and visceral fat. FABP11, a FABP isoform not previously described in Atlantic salmon, was highly expressed in visceral fat and myosepta and at the lower level in red muscle, white muscle, myosepta and heart. Furthermore, Atlantic salmon were fed either a diet containing fish oil (FO) or a complete replacement of FO with a vegetable oil blend (55% rapeseed oil, 30% palm oil and 15% linseed oil; VO) for the production cycle (27 months from start of feeding and until ∼4.5 kg mean weight). The expression of genes related to β-oxidation, fatty acid uptake and transport in the white muscle indicate ( n  = 3) significant down-regulation in VO fed Atlantic salmon and correlated with previously reported white muscle triacylglycerol stores and β-oxidation. FABP11 in visceral fat and myosepta was also down-regulated in VO fed fish.  相似文献   

8.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

9.
This study was undertaken to assess the effects of fish oil (FO) substitution by a mixture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154‐day feeding experiment was conducted using juveniles (39.2 ± 1.6 g average weight). Three isolipidic and isoenergetic meal‐based diets were formulated varying their lipid component. The control diet contained 100% FO (FO100), whereas diets VO50 and VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect growth performance, biometric indices, feed efficiency, plasma chemistry and liver and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (C16:0) and oleic acid (C18:1n‐9) and apparent selective retention of long‐chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, C20:5n‐3) and docosahexaenoic acid (DHA, C22:6n‐3). The nutritional value and the potential ability to prevent the development of coronary heart diseases of the flesh lipid fraction decreased with gradual FO substitution.  相似文献   

10.
To study how hepatic lipid turnover and lipid transport may be affected by complete replacement of dietary fish oil (FO) with a vegetable oil blend (VO) from start feeding until the adult stages, Atlantic salmon (Salmo salar L.) were fed either 100% FO‐ or 100% VO‐based diets (55% rapeseed oil, 30% palm oil and 15% linseed oil) from start feeding until 22 months. Liver and plasma lipoprotein lipid class levels and lipoprotein fatty acid composition were analysed through the seawater phase, whereas liver fatty acid composition, plasma cholesterol, triacylglycerol (TAG) and protein levels were analysed through both freshwater and seawater stages. Further, enzyme activity of liver fatty acid synthetase (FAS), NADH‐isocitrate dehydrogenase, malic enzyme, glucose‐6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase and expression of the gene Peroxisome proliferator‐activated receptor γ (PPARγ) was analysed during both fresh water and seawater stages through the experiment. Dietary VO significantly increased salmon liver TAG and hence total liver lipid stores after 14 and 22 months of feeding. Further, after 22 months of feeding, plasma lipid levels and plasma low‐density lipoprotein (LDL) levels were significantly decreased in VO‐fed salmon compared with FO‐fed fish. The same trend, although not statistically significant, was seen for plasma very low‐density lipoprotein (VLDL). The activity of FAS was generally low throughout the experiment with the VO group having significantly lower activity after 16 months of feeding. The expression of PPARγ in livers increased prior to seawater transfer followed by a decrease, and then another increase towards the final sampling (22 months). Dietary vegetable oil replacement had no impact on PPARγ expression in salmon liver. In summary, liver TAG stores, plasma lipid and LDL levels were affected by dietary vegetable oil replacement in Atlantic salmon during a long–term feeding experiment. Current results indicate that high dietary vegetable oil inclusion increase hepatic TAG stores and decrease plasma lipid levels possible through decreased VLDL synthesis.  相似文献   

11.
The objective of this work was to determine whether highly unsaturated fatty acid (HUFA) synthesis and fatty-acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO) or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm, and linseed oils. At key points in the life cycle fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activity were determined in enterocytes and hepatocytes using [1−14C]18:3n−3 as substrate. As observed previously, HUFA synthesis in hepatocytes reached a peak at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a level similar to that in hepatocytes. HUFA synthesis in enterocytes increased rapidly after seawater transfer, however, and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Enterocyte synthesis of HUFA was usually higher in fish fed the VO diet than in those fed the FO diet. Oxidation of [1−14C]18:3n−3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO than in fish fed FO. In enterocytes, oxidation of [1−14C]18:3 in fish fed FO reached a peak in activity just before seawater transfer. In fish fed VO, except for high activity at nine months the pattern was similar to that obtained in enterocytes from fish fed FO, with high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells seemed to be under dual nutritional and environmental or seasonal regulation. Temporal patterns of oxidation of fatty acids were usually similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting the possibility of different regulatory cues.  相似文献   

12.
This study was undertaken to evaluate the effect of dietary lipid source [linseed oil (LO, rich in 18:3 n?3); corn oil (CO, rich in 18:2 n?6); olive oil (OO, rich in 18:1n?9); and fish oil (FO, rich in LC‐PUFA)] and level (9% L and 18% L) on growth, body composition and selected plasma biochemistry parameters in hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus) juveniles. Moreover, liver histology (lipids, glycogen, cell vacuolization) and key metabolic enzyme activities were also evaluated. After 8 weeks of feeding, there were no differences in growth performance and whole‐body composition between groups. Plasma lipoprotein, muscle and liver composition, and G6PD and ME activity were affected by lipid level and source. No differences were observed between groups in hepatic ALT activity; however, AST activity was lower in fish fed the 9% L diets. Overall, liver and muscle fatty acid composition reflected that of diet FA composition, with increased n3/n6 ratio, high HUFA and low MUFA in fish fed FO compared with the VO diets. Higher liver glycogen content was observed in fish fed the 18% L than the 9% L diets, except for fish fed FO diet. Considering the experimental diets used, these results indicate that hybrid catfish can efficiently utilize VO supplementation as an energy source, without affecting growth performance and fillet composition.  相似文献   

13.
An experiment was conducted to study dietary fat type (fish oil (FO) vs. vegetable oil) effect on lipid and glucose metabolism in post-smolt Atlantic salmon. Duplicate groups of salmon were fed one of eight diets in which the two fat sources FO (long chain n-3 fatty acids, FA) or linseed oil (LO) (short chain n-3 FA) were combined in a 2 × 4 factorial design with sunflower oil (SO) (rich in n-6 FA) at inclusion levels of 0, 25, 50 and 75% of total added fat. The effects of the diets on plasma metabolites, the activity of selected enzymes involved in lipid metabolism, biometric indices and muscle glucose transporter GLUT4 expression were determined after 12 weeks of feeding. Lower viscero-somatic indices (VSI) and fatty livers were observed in fish fed LO based diets. Increasing inclusion levels of SO affected plasma glucose concentration in fish fed FO based diets, and plasma triglycerides, which decreased in a linear and quadratic pattern in fish fed FO based diets, but increased linearly in fish fed LO based diets. Specific activity of liver carnitine palmitoyl transferase I (CPT I) and glucose-6-phosphate dehydrogenase (G6PD) and plasma nonesterified fatty acids (NEFA) concentration was higher in fish fed LO based diets. Two GLUT4 isoforms I and II have been described in muscle and proved to be differentially expressed related to dietary fatty acids. In summary, dietary fat type affects lipid metabolism in post-smolted Atlantic salmon. In addition, a possibility to interfere on glucose metabolism by means of dietary fat type is discussed.  相似文献   

14.
A 12‐week feeding trial was conducted to investigate the interactive effects between water temperature and diets supplemented with different blends of fish oil, rapeseed oil and crude palm oil (CPO) on the apparent nutrient and fatty acid digestibility in Atlantic salmon. Two isolipidic extruded diets with added fish oil fixed at 50% and CPO supplemented at 10% or 25% of total added oil, at the expense of rapeseed oil, were formulated and fed to groups of Atlantic salmon (about 3.4 kg) maintained in floating cages. There were no significant effects (P>0.05) of diet on growth, feed utilization efficiency, muscle total lipid or pigment concentrations. Fatty acid compositions of muscle and liver lipids were mostly not significantly different in salmon fed the two experimental diets but showed elevated concentrations of 18:1n‐9 and 18:2n‐6 compared with initial values. Decreasing water temperatures (11–6°C) did not significantly affect protein, lipid or energy apparent digestibilities of the diets with different oil blends. However, dry matter digestibility decreased significantly in fish fed the diet with CPO at 25% of added oil. Increasing dietary CPO levels and decreasing water temperature significantly reduced the apparent digestibility (AD) of saturated fatty acids. The AD of the saturates decreased with increasing chain length within each temperature regimen irrespective of CPO level fed to the fish. The AD of monoenes and polyunsaturated fatty acids was not affected by dietary CPO levels or water temperature. No significant interaction between diet and water temperature effects was detected on the AD of all nutrients and fatty acids. The results of this study showed that the inclusion of CPO up to about 10% (wt/wt) in Atlantic salmon feeds resulted in negligible differences in nutrient and fatty acid digestibility that did not affect growth performance of fish at the range of water temperatures generally encountered in the grow‐out phase.  相似文献   

15.
Replacement of fish oil with sustainable alternatives, such as vegetable oil, in aquaculture diets has to be achieved without compromising the nutritional quality, in terms of n-3 highly unsaturated fatty acid (HUFA) content, of the product. This may be possible if the level of replacement is not too high and oil blends are chosen carefully but, if high levels of fish oil are substituted, a fish oil finishing diet prior to harvest would be required to restore n-3HUFA. However, a decontaminated fish oil would be required to avoid increasing undesirable contaminants. Here we test the hypotheses that blending of rapeseed and soybean oils with southern hemisphere fish oil will have a low impact upon tissue n-3HUFA levels, and that decontamination of fish oil will have no major effect on the nutritional quality of fish oil as a feed ingredient for Atlantic salmon. Salmon (initial weight ~ 0.8 kg) were fed for 10 weeks with diets in which 60% of fish oil was replaced with blends of soybean, rapeseed and southern hemisphere fish oil (SVO) or 100% decontaminated northern fish oil (DFO) in comparison with a standard northern fish oil diet (FO). Decontamination of the oil was a two-step procedure that included treatment with activated carbon followed by thin film deodorisation. Growth performance and feed efficiency were unaffected by either the SVO or DFO diets despite these having lower gross nutrient and fatty acid digestibilities than the FO diet. There were also no effects on the gross composition of the fish. Liver and, to a lesser extent flesh, lipid levels were lower in fish fed the SVO blends, due to lower proportions of neutral lipids, specifically triacylglycerol. Tissue lipid levels were not affected in fish fed the DFO diet. Reflecting the diet, flesh eicosapentaenoic acid (EPA) and total n-3 fatty acids were higher, and 18:1n-9 lower, in fish fed DFO than FO, whereas there were no differences in liver fatty acid compositions. Flesh EPA levels were only slightly reduced from about 6% to 5% although docosahexaenoic acid (DHA) was reduced more severely from around 13% to about 7% in fish fed the SVO diets. In contrast, the liver fatty acid compositions showed higher levels of n-3 HUFA, with DHA only reduced from 21% to about 18% and EPA increased from under 8% to 9–10% in fish fed the SVO diets. The evidence suggested that increased liver EPA (and arachidonic acid) was not simply retention, but also conversion of dietary 18:3n-3 and 18:2n-6. Increased HUFA synthesis was supported by increased hepatic expression of fatty acyl desaturases in fish fed the SVO diets. Flesh n-3HUFA levels and desaturase expression was significantly higher in fish fed soybean oil than in fish fed rapeseed oil. In conclusion, partial replacement of fish oil with blends of vegetable oils and southern hemisphere fish oil had minimal impact on HUFA levels in liver, but a greater effect on flesh HUFA levels. Despite lower apparent digestibility, decontamination of fish oil did not significantly impact its nutritional quality for salmon.  相似文献   

16.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial weight 90 g, were fed four practical‐type diets in which the added oil was 1000 g kg?1 fish oil (FO) (control diet), 600 g kg?1 rapeseed oil (RO) and 400 g kg?1 FO, 600 g kg?1 linseed oil (LO) and 400 g kg?1 FO, and 600 g kg?1 olive oil (OO) and 400 g kg?1 FO for 34 weeks. After sampling, the remaining fish were switched to the 1000 g kg?1 FO diet for a further 14 weeks. Fatty acid composition of flesh total lipid was influenced by dietary fatty acid input but specific fatty acids were selectively retained or utilized. There was selective deposition and retention of docosahexaenoic acid (DHA; 22:6n‐3). Eicosapentaenoic acid (EPA; 20:5n‐3) and DHA were significantly reduced and linolenic (LNA; 18:3n‐3), linoleic (LA; 18:2n‐6) and oleic (OA; 18:1n‐9) acids significantly increased in flesh lipids following the inclusion of 600 g kg?1 RO, LO and OO in the diets. No significant differences were found among different treatments on plasma concentrations of prostaglandin E2 and prostaglandin F2α. Evaluation of non‐specific immune function, showed that the number of circulating leucocytes was significantly affected (P < 0.001), as was macrophage respiratory burst activity (P < 0.006) in fish fed vegetable oil diets. Accumulation of large amounts of lipid droplets were observed within the hepatocytes in relation to decreased levels of dietary n‐3 HUFA, although no signs of cellular necrosis was evident. After feeding a FO finishing diet for 14 weeks, DHA and total n‐3 HUFA levels were restored to values in control fish although EPA remained 18% higher in control than in the other treatments. This study suggests that vegetable oils such as RO, LO and OO can potentially be used as partial substitutes for dietary FO in European sea bass culture, during the grow out phase, without compromising growth rates but may alter some immune parameters.  相似文献   

17.
Copepod oil (CO) from the marine zooplankton, Calanus finmarchicus, is a potential alternative to fish oils (FOs) for inclusion in aquafeeds. The oil is composed mainly of wax esters (WE) containing high levels of saturated fatty acids (SFAs) and monounsaturated fatty alcohols that are poorly digested by fish at low temperatures. Consequently, tissue lipid compositions may be adversely affected in salmon‐fed CO at low temperatures. This study examined the lipid and FA compositions of muscle and liver of Atlantic salmon reared at two temperatures (3 and 12 °C) and fed diets containing either FO or CO, supplying 50% of dietary lipid as WE, at two fat levels (~330 g kg?1, high; ~180 g kg?1, low). Fish were acclimatized to rearing temperature for 1 month and then fed one of four diets: high‐fat fish oil (HFFO), high‐fat Calanus oil (HFCO), low‐fat fish oil (LFFO) and low‐fat Calanus oil (LFCO). The fish were grown to produce an approximate doubling of initial weight at harvest (220 days at 3 °C and 67 days at 12 °C), and lipid content, lipid class composition and FA composition of liver and muscle were determined. The differences in tissue lipid composition between dietary groups were relatively small. The majority of FA in triacylglycerols (TAG) in both tissues were monounsaturated, and their levels were generally higher at 3 °C than 12 °C. Polyunsaturated fatty acids (PUFA), particularly (n‐3) PUFA, predominated in the polar lipids, and their level was not significantly affected by temperature. The PUFA content of TAG was highest (~26%) in the muscle of fish fed the HFCO diet at both temperatures. Tissue levels of SFAs were lower in fish‐fed diets containing HFCO than those fed HFFO, LFFO or LFCO, particularly at 3 °C. The results are consistent with Atlantic salmon being able to incorporate both the FA and fatty alcohol components of WE into tissue lipids but, overall, the effects of environmental temperature on tissue lipids were more pronounced in fish fed the CO diets than FO diets.  相似文献   

18.
High dietary content of vegetable oil (VO) has been associated with increased intestinal lipid accumulations in fish. The extent of this in aquacultured Atlantic salmon (Salmo salar L.) and its health effects are not certain. Samples were therefore collected from two separate feeding trials to investigate the effect of high dietary VO on intestinal lipid accumulations in Atlantic salmon. In the first trial, the fish were fed diets high in plant protein and with fish oil or ~80% of the fish oil replaced with either olive oil, rapeseed oil or soybean oil in a land‐based experimental set‐up. The second trial was performed in sea cages under commercial production conditions, and the fish were fed two dietary concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (9.7% or 5.5% EPA + DHA of total fatty acids). Neither dietary VO nor variations in EPA and DHA led to any significant effects on intestinal health or lipid accumulations. There were, however, indications of a delayed lipid transport in the rapeseed oil‐fed fish of the first trial, possibly caused by high dietary ≥18‐carbon fatty acids and low dietary 16:0 fatty acid and cholesterol.  相似文献   

19.
Increased use of plant oils with different origins and quality in fish feed needs to be approached from a food safety and fish welfare point of view. Plant oils contain a number of bioactive minor lipid compounds that may affect the fish’s metabolism and taste perception. This study focuses on the effect of replacing fish oil (FO) with different levels of cold‐pressed rapeseed oil (RO) on the lipid composition in muscle and liver as well as on the preference by the fish. Rainbow trout (Oncorhynchus mykiss) were fed diets with a FO : RO ratio of 100 : 0, 75 : 25, 50 : 50 and 25 : 75 until twofold weight increase. In self‐selecting feed trials of single rainbow trout, fish preferred the diet composed of only FO compared with the diets with RO but did not discriminate between different levels of RO. Plant sterols and their metabolites were found in liver of the fish fed RO diets, suggesting an effect on the sterol metabolism different from fish fed a 100% FO diet. The largest effects were seen in the fatty acid composition of the edible tissue of the fish with a decrease in 22:6n‐3 and 20:5n‐3 and an increase in 18:2n‐6 and 18:1n‐9.  相似文献   

20.
The recent decreasing worldwide supplies of marine oils have forced the aquaculture industry to investigate alternative lipid sources for use in marine fish feeds. The aim of this study was to determine the impact of dietary replacement of fish oil by vegetable oils on gilthead seabream (Sparus aurata) growth performance, nutritive utilization, body composition, and fatty acid profile as well as feed cost. Two dietary vegetable oil (VO) mix blends (VO1 and VO2) in which: sunflower (SO), cottonseed (CO) and linseed (LO) for VO1 or soybean oil (SBO) for VO2, were tested as 60% fish oil (FO) substitutes versus the 100% FO control or reference diet (FO). Three iso-proteic (46% CP) and iso-lipidic (18%) experimental diets were hand fed, twice a day, 6 days a week to apparent visual satiety to triplicate groups of seabream growers (average initial weight, 130.9 ± 3.44 g), until fish reached market size (300–400 g/fish) after 20 weeks at mean ambient temperature 27.0 ± 1.8°C. All experimental diets were well accepted by seabream growers regardless of the different lipid sources used, as overall mean feed intake (FI) and daily intake (DFI) were not significantly different (P > 0.05) among dietary treatments. In terms of growth performance, fish fed VO1 diet (with LO) exhibited a relatively lower, but significant (P < 0.05), total weight gain (WG) than fish fed all FO diet (FO). However, mean value of WG of fish fed either vegetable oil-tested diet was nonsignificantly different. Feeding seabream growers vegetable oil (VO) diets (VO1 or VO2) had no significant effect on specific growth rate (SGR), daily weight index (DWI), or feed conversion ratio (FCR) among dietary treatments. Consumption of VO for 20 weeks did not significantly alter the major nutrient composition of fish, but the muscle fatty acid (FA) profile was significantly altered compared to the reference FO diet. Comparatively reduced levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA), as well as elevated levels of linoleic and linolenic acids (LA and LNA) compared with fish fed the FO were noticed. In terms of economics, 17 or 20% reduction in Kg feed cost was obtained for diets VO1 or VO2, respectively. In terms of growth performance and cost, VO2 diet showed slight relative superiority over VO1 diet. However, in terms of liver structure morphology, VO1 diet (with LO) has resulted in less fat-infiltration and altered hepatic cells than VO2 (with SBO). As these traits do not affect yield or the price paid for the fish, VO2 diet has therefore been considered better than VO1 as complementary lipid sources for gilthead seabream grower diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号