首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of 60‐mg L?1 clove oil and 60‐mg L?1 tricaine methanesulphonate (MS‐222) on the blood chemistry of rainbow trout were compared after exposure to handling stress via caudal puncture blood sampling. Fish sampled by caudal puncture and subsequently exposed to anaesthetics showed a typical handling stress response over a 48‐h period. There were no significant differences between the responses of fish exposed to equal concentrations of clove oil and MS‐222, with the following exceptions: the blood glucose at full anaesthesia, and lactate at full recovery increased significantly in the clove oil‐exposed fish. In a subsequent experiment, the stress response observed in fish sampled by caudal puncture and exposed to clove oil and MS‐222 was compared with a non‐anaesthetized control group. The increases in plasma cortisol levels were significantly lower at recovery in fish treated with either anaesthetic compared with the control fish. Fish exposed to MS‐222 had significantly higher cortisol levels at 1 h. These findings show that few differences exist between the anaesthetic effects of clove oil and MS‐222 on the physiological response of fish to stress. However, clove oil is more effective at reducing the short‐term stress response induced by handling and blood sampling, and is recommended as an alternative fish anaesthetic.  相似文献   

2.
The present study determined the effective concentrations of clove oil and MS‐222 in juvenile rohu Labeo rohita for quick induction and recovery. The immune‐biochemical responses due to 0, 1 and 24 hr exposure to those anaesthetics were also evaluated. Of four concentrations of the anaesthetics examined, the lowest effective concentration of clove oil and MS‐222 were 50 µl/L and 125 mg/L respectively. Clove oil and MS‐222 significantly increased the myeloperoxidase, total protein and alkaline phosphatase activity at some of the holding durations. However, superoxide anion production (after 0 and 1 hr) and antiprotease activity (after 24 hr) were significantly reduced in fish exposed to clove oil. Serum glucose content was significantly elevated in the MS‐222‐treated group. Furthermore, the clove oil‐treated group showed significantly higher levels of serum Na+ and K+, while the aspartate and alanine aminotransferase activities were significantly enhanced in the MS‐222 group. The use of both clove oil and MS‐222 is advised as an anaesthetic agent for rohu with a bias towards clove oil, considering its economic and operational feasibility.  相似文献   

3.
The effects of weekly anaesthetization with clove oil and tricaine methanesulphonate (MS‐222) on feed intake and growth were examined in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Repeated handling without anaesthetics significantly reduced feed intake and weight gain compared with an unhandled control group during an 8‐week experiment. When anaesthetics were used during handling the feed consumption and weight gain were significantly (MS‐222) or not significantly (clove oil) higher than in fish handled without anaesthesia. When compared with the unhandled control group, neither of these two anaesthetics had significant effects on feed intake but, in contrast to MS‐222, repeated anaesthesia with clove oil had a significant negative effect on growth. However, the effects of MS‐222 and clove oil on the growth were not significantly different from each other. Feed conversion ratio (feed/gain) of MS‐222‐anaesthetized fish was significantly higher compared with unhandled control and handled control fish but was not significantly different from fish anaesthetized with clove oil. These results suggest that both MS‐222 and clove oil alleviate handling stress in juvenile rainbow trout, and that these two anaesthetics are rather similar with respect to their effects during repeated exposures.  相似文献   

4.
The effects of four anaesthetic agents, tricaine methanesulphonate (MS‐222) (112.5 mg L?1), 2‐phenoxyethanol (400 μL L?1), clove oil (70 mg L?1) and benzocaine (65 mg L?1) on juvenile marbled spinefoot (Siganus rivulatus) of three mean body weights (7.3 g, 19.1 g, 55.5 g) and at three temperatures (20, 25, 30°C) were evaluated. In addition, the relationship between body lipid content and efficacy of the four anaesthetic agents was evaluated in juvenile S. rivulatus. Times necessary for induction and recovery were recorded. Significant effects of temperature on induction and recovery times were observed. Induction and recovery times decreased with increasing water temperature. No uniform relationship between body weight of juvenile marbled spinefoot and anaesthetic efficacy was observed. Body fat content was positively correlated with induction time only when MS‐222 was used but did not affect induction times of fish exposed to 2‐phenoxyethanol, clove oil or benzocaine. Recovery times were generally longer for all fish containing more body fat. Results of the study show that anaesthetic efficiency increases with increasing water temperature but is not strongly affected by body weight for juvenile marbled spinefoot. In addition, body fat in fish affected the efficacy of the various anaesthetic agents tested in this study, generally slowing down recovery.  相似文献   

5.
Anaesthetics are used in aquaculture and fisheries to facilitate routine procedures, such as capture, handling, transportation, tagging, grading and measurements that can often cause injury or induce physiological stress. Two experiments were performed to assess the efficacies of four anaesthetic agents, clove oil, benzocaine, 2‐phenoxyethanol and MS‐222 on juvenile marbled spinefoot rabbitfish (Siganus rivulatus). In the first experiment we tested the lowest effective doses that produced induction and recovery times in 3 min or less and 5 min or less respectively. Dosages were 70 mg L?1 for clove oil, 60–70 mg L?1 for benzocaine, 400 μL L?1 for 2‐phenoxyethanol and 100–125 mg L?1 for MS‐222. In the second experiment, we determined optimal concentrations of the four anaesthetics if they were to be used to transport rabbitfish fry. Anaesthetic concentrations suitable for handling and transport were: 10–15 mg L?1 of MS‐222, 5–10 mg L?1 of benzocaine, 5 mg L?1 of clove oil and 50–100 μL L?1 of 2‐phenoxyethanol. All anaesthetic agents are acceptable for use on S. rivulatus, however, 2‐phenoxyethanol, MS‐222 and clove oil appear to be more suitable than benzocaine. Further studies need to be conducted on effects of high and low doses of anaesthetic agents on physiology of marbled spinefoot.  相似文献   

6.
The diurnal rhythms of plasma glucose, cortisol, growth hormone (GH) and thyroid hormone (T4, T3) concentrations and hepatic glycogen content were measured in rainbow trout that had been entrained to a specific time of daily feeding (post-dawn, midday, pre-dusk); the purpose of the study was to investigate the significance of feeding time on hormones and metabolite patterns. Plasma GH, cortisol and T4 concentrations all showed evidence of a diurnal rhythm in some treatment groups. There was a significant interaction between the time of feeding and plasma GH and cortisol concentration rhythms; for GH, this appeared to be related to the phase-shifting of the post-prandial increases in plasma GH concentrations, and for cortisol, the rhythms were only evident in fish fed in the post-dawn period [diurnal rhythms were not evident in treatment groups fed in at midday or pre-dusk]. Peak plasma T4 concentrations were evident during the photophase in all three treatment groups; however, the time of feeding had a negligible effect on the timing of those peaks. There were no apparent diurnal rhythms of plasma T3 and glucose concentrations, hepatic glycogen content or hepatosomatic index in any of the three treatment groups. To whom correspondence should be addressed  相似文献   

7.
Although daily variations in drug pharmacokinetics have been reported for a variety of teleost species, the influence of this daily variation on the cortisol response following anaesthesia remains poorly understood. To address this, two experiments were performed. The first experiment described the daily patterns of cortisol and glucose secretion in tilapia (Oreochromis niloticus). The second experiment investigated how the timing of anaesthetic administration (specifically at mid‐light [ML] or at mid‐dark [MD]) affects the induction and recovery times and plasma cortisol and glucose levels of juvenile Nile tilapia exposed to benzocaine, clove oil or tricaine methanesulphonate (MS‐222). The results revealed that the effect on the stress response associated with the moment when anaesthesia took place (ML or MD) varied according to the treatment (p < 0.05). Cortisol levels were significantly higher at ML for MS‐222 (ML = 116.23 ± 25.55; MD = 48.25 ± 22.33 ng/dl) (p < 0.05) and clove oil (ML 59.73 ± 14.27; MD 38.26 ± 12.07 ng/dl) (p < 0.05), whereas no significant differences were found between ML and MD cortisol levels for the control treatment (ML = 72.91 ± 18.42; MD = 64.80 ± 10.68 ng/dl) (p > 0.05) or in the benzocaine‐treated group (ML = 38.7 ± 4.90; MD = 38.60 ± 3.69 ng/dl) (p > 0.05). The highest plasma cortisol level in ML was found in the MS‐222‐treated group. All the tested anaesthetics had similar cortisol levels at MD (p > 0.05).  相似文献   

8.
We studied the simultaneous effect of sex and dose on anaesthesia efficacy to estimate, if possible, the lowest effective dose (LED) for clove oil, tricaine methanesulphonate (MS‐222), 2‐phenoxyethanol (2‐PE) and propofol in mature guppies. LED is the lowest dose needed to reach A5 stage in a mean time of 3 min, with mean recovery (R5) time of 5 min. We used four doses/anaesthetic: 25, 50, 75 and 100 mg/L for clove oil; 120,140,160 and 180 mg/L for MS‐222; 800, 1,000, 1,200 and 1,400 mg/L for 2‐PE, and 7.50, 8.25, 10.00 and 11.25 mg/L for propofol. Each dose was tested on 10 females and 10 males. Morbidity, mortality and behavioural changes were checked on two control groups (10 males and 10 females/group). Sedation (A3), A5 and R5 times were recorded. Significant interactive effect dose*sex on A5 time was found for each anaesthetic agent (pdose*sex < .05). Except for MS‐222 (pdose*sex = .284), significant interactive effect dose * sex on R5 time was found (pdose*sex < .05). A5 time in females tended to be greater than in males, but, in general, R5 times were longer in males. Body size differences between males and females could explain these differences in MS‐222 on A5 time and for clove oil, 2‐PE and propofol on R5 time. No dose simultaneous meet LED′s conditions relating to both A5 and R5 times; therefore the lowest doses inducing A5 in a mean time of 3 min could be a safe guideline for anaesthetic procedure in both male and females.  相似文献   

9.
This study investigated the feasibility of using clove oil as an alternative to tricaine methanesulphonate as a fish anaesthetic, particularly in fish stress research. The physiological stress responses of juvenile chinook salmon Oncorhynchus tshawytscha (Walbaum) anaesthetized with either tricaine (50 mg L?1) or clove oil (20 p.p.m.) were compared using unanaesthetized fish as controls. Haematocrit, serum cortisol and serum glucose concentrations, serum lysozyme activity and differential leucocyte counts were measured from blood samples collected before, during and upon recovery from anaesthesia and at specified intervals up to 72 h after recovery. Differences between the two anaesthetic groups were not significant for most of the physiological traits measured. Serum lysozyme activity of control fish, however, was significantly suppressed relative to the treated fish for 72 h after stress. Clove oil may be a safe and cost‐effective alternative to tricaine without significantly affecting study results. Furthermore, clove oil may be more practical for field‐based research, because a withdrawal period is unnecessary, and clove oil does not pose an environmental hazard.  相似文献   

10.
The anaesthetic effects of clove-oil-derived eugenol were studied in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). Acute lethality and the effects of multiple exposures to eugenol were measured. The estimated 8-96 h LC50 for eugenol was found to be approximately 9 p.p.m. Times to induction and recovery from anaesthesia were measured and compared with MS-222 under similar conditions. Eugenol generally induced anaesthesia faster and at lower concentrations than MS-222. The recovery times for fish exposed to eugenol were six to 10 times longer than in those exposed to similar concentrations of MS-222. Clove oil eugenol was determined to be an acceptable anaesthetic with potential for use in aquaculture and aquatic research. Doses of 40-60 p.p.m. eugenol were found to induce rapid anaesthesia with a relatively short time for recovery in juvenile trout.  相似文献   

11.
The effects of clove oil anaesthetic on mitigating the physiological responses to air exposure, a stressful and routine situation in fish farming, laboratory conditions and sport fishing (catch and release), were evaluated in lambari (A. altiparanae). Adult females (n = 80) were randomly sorted to receive one of four treatments: control, anaesthesia (clove oil 50 mg/L), stress (5 min air exposure) and pre‐anaesthesia associated to stress. Their cortisol, glucose, lactate and haematocrit levels, the hepatosomatic index (HSI), liver and muscle glycogen, lipid peroxidation and the enzymatic activity of lactate dehydrogenase (LDH), catalase (CAT) and glutathione reductase (GR), were recorded. Glucose levels increased (53.9%) after anaesthesia and/or stress. The stress situation increased plasma cortisol (146.6%), lactate (294.6%) and lipid peroxidation in white muscle (45%) and decreased glycogen in white muscle (40.1%). The haematocrit increased after stress or anaesthesia (7.9%) while the liver glycogen and HSI did not change. Anaesthesia or stress did not affect the LDH but reduced the activity of CAT (46.1%) and GR (30.3%). We concluded that the anaesthetic clove oil in the concentration 50 mg/L modulates the physiological responses to air exposure stress improving the welfare; air exposure and clove oil affect the antioxidant defences of lambari; the activity of CAT and GR and the concentration of MDA can be used as biomarkers of stress in A. altiparanae.  相似文献   

12.
This study investigated the feasibility of using clove oil, 2-phenoxyethanol, or Propiscin as an alternative to tricaine methane sulphonate (MS 222) as a fish anaesthetic, particularly in regard to reducing fish stress. The biochemical blood profiles of perch Perca fluviatilis L. anaesthetized with either MS 222 (100 mg L−1), clove oil (33 mg L−1), 2-phenoxyethanol (0.40 mL L−1) or Propiscin (1.0 mL L−1), and a non-anaesthetized control group were compared. Biochemical profiles were determined from blood samples collected before treatment in controls. For each anaesthetic tested, fish were divided into two groups, one sampled immediately after 10-min anaesthesia and a second, sampled 24 h after 10-min anaesthesia. The values determined in the present study suggested that internal organs and tissues of perch were slightly altered by MS 222, clove oil and 2-phenoxyethanol anaesthesia, but not by Propiscin anaesthesia.  相似文献   

13.
14.
Responses to anaesthesia with essential oil (EO) of Aloysia triphylla (135 and 180 mg L?1) and tricaine methanesulfonate (MS222) (150 and 300 mg L?1) were assessed in silver catfish. Exposure to the anaesthetics elicited a stress response in the species. In the case of MS222, it was displayed as a release of cortisol into bloodstream, elevation in hematocrit and plasma ion loss. The EO presented cortisol‐blocking properties, but increased haematocrit and disturbances of hydromineral balance were observed. Liver antioxidant/oxidant status of EO and MS222‐anaesthetized silver catfish was also estimated. The synthetic anaesthetic induced lipoperoxidation, notwithstanding increased catalase contents, whereas the naturally occurring product was capable of preventing the formation of lipid peroxides, possibly due to combined actions of catalase and glutathione‐S‐transferase. Anaesthetic efficacy was also tested via induction and recovery times. Overall, the promising results obtained for the physiological parameters of the EO‐treated fish counterbalanced the slight prolonged induction time observed for 180 mg L?1. As for 135 mg L?1, both induction and recovery times were lengthy; despite that, the EO was able to promote oxidative protection and mitigate stress. None of the MS222 concentrations prompted such responses concomitantly.  相似文献   

15.
The present study aimed to investigate the effects of anaesthesia with citronellal and linalool on stress, antioxidant and hydromineral responses of common carp. Eugenol was used as control anaesthetic, as it is a common anaesthetic in aquaculture. The fish (110 ± 5.65 g) were exposed to 406 mg/L citronellal, 982 mg/L linalool or 43 mg/L eugenol within 5 min (short‐term anaesthesia) or 10 and 20 mg/L of each anaesthetic for 3 hr (long‐term exposure), before blood sampling. The results showed that the short‐term anaesthesia had no significant effects on plasma lactate, sodium, chloride and phosphorus levels and blood catalase (CAT) and superoxide dismutase activities. The short‐term anaesthesia with linalool led to higher stress responses (increased cortisol and glucose levels) and oxidative stress (increased malondialdehyde [MDA] level and decreased total antioxidant capacity [TAC] and glutathione peroxidase [GPx] activity) compared to the eugenol and citronellal. Citronellal group had significantly higher cortisol and lower TAC level and GPx activity compared to eugenol group. Under the long‐term exposure, increase in anaesthetic concentration led to significant increase in plasma cortisol, glucose and phosphorus levels. The linalool‐treated fish had significantly higher cortisol and MDA levels compared to the other groups. The eugenol group had significantly higher lactate and phosphorus and lower TAC levels compared to the other groups. Although citronellal causes slight increase in plasma cortisol level, it induces lower tissue damages compared to eugenol. Thus, citronellal might be an alternative anaesthetic for carp anaesthesia based on the present tested parameters.  相似文献   

16.
Sexually immature Arctic charr, Salvelinus alpinus (Linnaeus), were fed one of five isoenergetic practical diets of differing lipid:protein ratios (0.98, 0.67, 0.41, 0.26, 0.19) for an 84‐day period to examine the influence of diet composition on growth, and growth hormone (GH) and thyroid hormone physiology. All five diets supported growth at approximately the same rate, but the diet with a lipid:protein ratio of 0.98 had the lowest weight gain and highest food conversion ratios. A GH enzyme‐linked immunosorbent assay (ELISA), developed for use with oncorhynchid fishes, was validated for use with Arctic charr. Plasma GH concentrations were significantly higher in fish fed the diet with a lipid:protein ratio of 0.98, and there were significant direct and inverse correlations between plasma GH levels and dietary lipid and protein content respectively. There were no significant differences in pre‐ and post‐prandial plasma GH concentrations for any group. There were significant post‐prandial elevations of plasma triiodothyronine (T3) and thyroxine (T4) for fish fed the lower lipid:protein ratio diets, but there were no differences related to the diets. The results are discussed in terms of GH as a factor in the regulation of lipid and protein homeostasis in fishes.  相似文献   

17.
Temporal changes in growth, plasma thyroid hormone, cortisol, growth hormone (GH) and non-esterified fatty acid (NEFA) concentrations, hepatic T3 content and hepatic 5-monodeiodinase activity were measured in rainbow trout (Oncorhynchus mykiss) subjected to a sustained fast for up to eight weeks, and during a four-week re-feeding period. The purpose of the study was to examine aspects of the endocrine control of energy partitioning processes characteristic of short-term (acute; fasting) and long-term (chronic; starvation) food-deprivation states in fish, and to explore the role of the thyroid hormones, cortisol and GH in the energy repartitioning that takes place during an acute anabolic (re-feeding) state following chronic food deprivation.Differences in growth rate between fed and fasted groups were evident after two weeks, but significant weight loss by the fasted groups was not evident until between four and six weeks into the fast. Hepatosomatic indices (HSIs) were significantly reduced in the fasted fish within seven days, and as early as two days in one study; recovery of the HSI in fasted fish was evident within three days of re-feeding. Liver protein content (expressed as % wet weight) was consistently depressed in the fasted fish in only one of the three studies. Liver total lipid content (expressed as % wet weight) was depressed in the fasted fish within two days of food deprivation. Because of the rapid and sustained decrease in the HSI of fasted fish, the hepatic total protein and lipid reserves, when considered on a body weight basis, were markedly lowered within the first few days of the fast. Plasma GH concentrations exhibited a bi-modal pattern of change, with a transient fall in levels, followed by a sustained increase in fasted fish. The indicators of interrenal activity were suggestive of a depressed pituitary-interrenal axis in fasted animals; plasma cortisol levels were elevated to levels of fed animals within one day of re-feeding. The indicators of thyroid hormone economy (plasma thyroid hormone levels, liver triiodothyronine content, hepatic 5-monodeiodinase (MD) activity, thyroid epithelial cell height) were similarly indicative of a depressed pituitary-thyroid axis in fasted animals, with recovery to levels of the fed animals within one week. Despite the compensatory changes in accumulation of reserves (as indicated by a compensatory increase in HSI), there were no apparent compensatory changes in any of the endocrine parameters evident during the re-feeding period.  相似文献   

18.
Juvenile and adult black sea bass (Centropristis striata L.) were exposed to various concentrations of four anaesthetics to determine practical dosages for handling as well as for procedures such as bleeding, ovarian biopsy or tag implantation. In experiment 1, juveniles exposed to either 2.0 mg L?1 metomidate, 15 mg L?1 clove oil, 70 mg L?1 tricaine methanesulphonate (TMS) or 200 mg L?1 2‐phenoxyethanol (2‐PE) reached stage II of anaesthesia in 3–5 min and could be handled for weighing and measuring. All fish had completed recovery to stage III within 6 min. In experiment 2, the established concentrations of each anaesthetic were tested on juveniles to determine their ability to prevent a reflex to a subcutaneous needle puncture. All of the fish exposed to clove oil (20 mg L?1) and 40% of the TMS‐treated (70 mg L?1) fish reacted while none of the fish anaesthetized in metomidate (2.0 mg L?1) or 2‐PE (200 mg L?1) responded to the needle puncture. In experiment 3, metomidate (5.0 mg L?1), clove oil (30 mg L?1) TMS (125 mg L?1) or 2‐PE (300 mg L?1) were all effective for performing an ovarian biopsy or tag implantation on adults. In experiment 4, TMS (125 mg L?1) exacerbated the cortisol response to a short handling stressor during a 30 min exposure. Fish anaesthetized in 2‐PE (300 mg L?1), metomidate (5.0 mg L?1) or clove oil (40 mg L?1) had increased cortisol levels associated with the handling stressor but there were no further increases during the remainder of the experimental period. The results demonstrate that these anaesthetics are effective for sedation and anaesthesia of black sea bass and that the best choice is dependant upon the procedures to be performed.  相似文献   

19.
The efficacy of anaesthetic tricaine methanesulfonate (MS‐222) was evaluated in four freshwater aquarium fish species, Zebrafish (Danio rerio), Guppy (Poecilia reticulata), Discu (Symphysodon discus) and Green swordtail (Xiphophorus helleri). The correct dose of anaesthetic should induce the plane 4 of anaesthesia in less than 180 s, recovery in less than 300 s and must survive when exposed during 30 min to anaesthetic. Fishes were exposed to six concentrations of anaesthetic (75, 100, 125, 150, 200 and 250 mg L?1) and the time of fish reaching plane 4 of anaesthesia, post exposure recovery, and the percentage of survival when fish were subject to 30 min in the anaesthetic were recorded. The optimal doses varied according to the species: D. rerio – 75, 100 and 125 mg L?1, P. reticulata – 125, 150 and 200 mg L?1, S. discus – 75 and 100 mg L?1 and X. helleri – 125 and 150 mg L?1. The induction time generally decreased significantly with increasing concentration of MS‐222 for all of the species evaluated. The recovery time had a tendency to increase with the increase of the MS‐222 concentration for D. rerio, P. reticulata and S. discus. On the other hand, X. helleri recovery time decreased with the increase of MS‐222 concentration. MS‐222 proved to be effective in anaesthesia for all the freshwater ornamental species studied. The main results clearly show that the optimal dose to anesthetize is fish species dependent and it is completely wrong to extrapolate optimal anaesthetic concentrations between different species.  相似文献   

20.
Rainbow trout fed a 26% canola meal-based (CM) diet for 12 weeks at 15°C exhibited reduced growth, lower feed conversion, enlarged thyroid glands and lower plasma thyroid hormone (TH) levels than comparable fish fed equinitrogenous, equicaloric soybean meal-based (SB) diets. Supplementation of the SB diets with either T4 (20 mg/kg) or T3 (10 or 20 mg/kg) had no effect on the growth rate, feed conversion and thyroid histology of the trout. However, plasma T4 levels weredepressed in trout fed the T4- and high T3-supplemented SB diets. In trout fed T4- and T3-supplemented CM diets the growth rates and feed conversion were not significantly different from those of the SB-fed groups. Moreover, in the T4-supplemented group, plasma T4 levels were in the normal range. However, thyroid enlargement was evident in all the CM-fed fish, and plasma T3 levels were markedly elevated in groups fed the T3-supplemented CM diets. The data suggest that antithyroid components in the CM diets inhibited TH synthesis (but not their release), and impaired TH clearance from the circulation. There were no significant differences in plasma cortisol levels in the 8 treatment groups, nor were there differences in the histological appearance of the interrenal gland. However, when the data from SB- and CM-fed fish were pooled, plasma cortisol levels in the SB-fed fish were significantly lower than in the CM-fed animals. Glucosinolates at a level of 164 mg/kg diet were toxic to young trout, but the effect was ameliorated by dietary TH supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号