首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catch per unit effort (CPUE) is often used as an index of relative abundance in fisheries stock assessments. However, the trends in nominal CPUE can be influenced by many factors in addition to stock abundance, including the choice of fishing location and target species, and environmental conditions. Consequently, catch and effort data are usually ‘standardized’ to remove the impact of such factors. Standardized CPUE for bigeye tuna, Thunnus obesus, caught by the Taiwanese distant-water longline fishery in the western and central Pacific Ocean (WCPO) for 1964–2004 were derived using three alternative approaches (GLM, GAM and the delta approach), and sensitivity was explored to whether catch-rates of yellowfin tuna and albacore tuna are included in the analyses. Year, latitude, and the catch-rate of yellowfin explained the most of the deviance (32–49%, depending on model configuration) and were identified consistently among methods, while trends in standardized catch-rate differed spatially. However, the trends in standardized catch-rates by area were found to be relatively insensitive to the approach used for standardization, including whether the catch-rates of yellowfin and albacore were included in the analyses.  相似文献   

2.
金枪鱼延绳钓钓具的最适浸泡时间   总被引:2,自引:1,他引:1  
根据2010年10月—2011年1月金枪鱼延绳钓海上调查数据,分两种起绳方式,建立每次作业每一根支绳的浸泡时间计算模型。将钓具的浸泡时间以1 h为间隔分别统计每个区间的支绳数量及大眼金枪鱼(Thunnus obesus)、黄鳍金枪鱼(Thunnus albacores)的渔获尾数,并计算其钓获率(CPUE)。结果表明:1)大眼金枪鱼和黄鳍金枪鱼的CPUE都随浸泡时间的增加呈现先增后减的趋势,这是由于饵料的诱引效果变化及渔获的丢失引起的;2)二次曲线可拟合浸泡时间与大眼金枪鱼和黄鳍金枪鱼CPUE的关系;3)大眼金枪鱼和黄鳍金枪鱼CPUE最高的浸泡时间分别为9.9 h和10.1 h。建议:1)今后在金枪鱼延绳钓作业中,保证每一根支绳在水中的浸泡时间为9.5~10.5 h,以提高捕捞效率并减少副渔获物;2)可把延绳钓钓具的浸泡时间作为有效捕捞努力量,并用于CPUE的标准化。研究结果可用于提高捕捞效率并减少副渔获物的技术方案制订,并为渔业生产和CPUE的标准化提供科学参考。  相似文献   

3.
为得到南海及临近海域黄鳍金枪鱼(Thunnus albacores)渔场最适宜栖息海表温度(SST)范围,基于美国国家海洋大气局(NOAA)气候预测中心月平均海表温度(SST)资料,结合中西太平洋渔业委员会(WCPFC)发布的南海及临近海域金枪鱼延绳钓渔业数据,绘制了月平均SST和月平均单位捕捞努力量渔获量(CPUE)的空间叠加图,用于分析南海及临近海域黄鳍金枪鱼渔场CPUE时空分布和SST的关系。结果表明,南海及临近海域黄鳍金枪鱼CPUE在16℃~31℃均有分布。在春季和夏季(3~8月),位于10°~20°N的大部分渔区CPUE较高,其南北侧CPUE较低;而到了秋季和冬季(9月到次年2月),高产渔场区域会向南拓宽。CPUE在各SST区间的散点图呈现出明显的负偏态分布,高CPUE主要集中在26℃~30℃,最高值出现在29℃附近;在22℃~26℃范围内CPUE散点分布较为零散,但在这个范围也会出现相当数量的高CPUE;在22℃以下的CPUE几乎属于低CPUE和零CPUE;零CPUE的平均SST为26.7℃(±3.2℃),低CPUE的平均SST为27.8℃(±2.1℃),高CPUE的平均SST为28.4℃(±1.5℃),高CPUE在各SST区间的分布要比零CPUE和低CPUE更为集中。采用频次分析和经验累积分布函数计算其最适SST范围,得到南海及临近海域黄鳍金枪鱼最适SST为26.9℃~29.4℃。本研究初步得到南海及临近海域黄鳍金枪鱼中心渔场时空分布特征及SST适宜分布区间,可为开展南海及临近海域金枪鱼渔情预报工作提供理论依据和参考。  相似文献   

4.
A new habitat‐based model is developed to improve estimates of relative abundance of Pacific bigeye tuna (Thunnus obesus). The model provides estimates of `effective' longline effort and therefore better estimates of catch‐per‐unit‐of‐effort (CPUE) by incorporating information on the variation in longline fishing depth and depth of bigeye tuna preferred habitat. The essential elements in the model are: (1) estimation of the depth distribution of the longline gear, using information on gear configuration and ocean currents; (2) estimation of the depth distribution of bigeye tuna, based on habitat preference and oceanographic data; (3) estimation of effective longline effort, using fine‐scale Japanese longline fishery data; and (4) aggregation of catch and effective effort over appropriate spatial zones to produce revised time series of CPUE. Model results indicate that effective effort has increased in both the western and central Pacific Ocean (WCPO) and eastern Pacific Ocean (EPO). In the WCPO, effective effort increased by 43% from the late 1960s to the late 1980s due primarily to the increased effectiveness of effort (deeper longline sets) rather than to increased nominal effort. Over the same period, effective effort increased 250% in the EPO due primarily to increased nominal effort. Nominal and standardized CPUE indices in the EPO show similar trends – a decline during the 1960s, a period of stability in the 1970s, high values during 1985–1986 and a decline thereafter. In the WCPO, nominal CPUE is stable over the time‐series; however, standardized CPUE has declined by ~50%. If estimates of standardized CPUE accurately reflect relative abundance, then we have documented substantial reductions of bigeye tuna abundance for some regions in the Pacific Ocean. A decline in standardized CPUE in the subtropical gyres concurrent with stability in equatorial areas may represent a contraction in the range of the population resulting from a decline in population abundance. The sensitivity of the results to the habitat (temperature and oxygen) assumptions was tested using Monte Carlo simulations.  相似文献   

5.
6.
大眼金枪鱼渔场与环境关系的研究进展   总被引:2,自引:0,他引:2  
大眼金枪鱼是金枪鱼远洋渔业的主要捕捞对象。本文从大眼金枪鱼适宜环境因子、大眼金枪鱼渔场变动、资源丰度及其与环境因子间关系的研究方法等几方面总结了大眼金枪鱼渔场与环境关系的研究进展。大眼金枪鱼种群资源丰度的指标主要是CPUE和标准化后的CPUE,CPUE标准化的方法主要是GLM模型和GLM/HBM模型;目前,分析大眼金枪鱼资源变化与环境间关系的研究方法主要有聚类分析法、G IS软件定性分析法和栖息地指数模型。其中,聚类分析适用于研究大眼金枪鱼的渔场变动,包括系统聚类分析法、动态聚类分析法和灰色星座分析法,利用G IS软件定性分析适用于分析单个环境因子对渔场产生的影响;而栖息地指数模型能综合多个环境因子,分析它们共同对渔场产生的影响。  相似文献   

7.
Atlantic bluefin tuna (ABFT) stocks have been considered overfished over the last decades, especially the western stock, whose main spawning grounds are in the Gulf of Mexico (GoM). Despite the current measures implemented, spawner bycatch by the longline fleet targeting yellowfin tuna (YFT) may explain the lack of recovery of local stocks. This situation demands the implementation of appropriate spatiotemporal management strategies to minimize bluefin bycatch in the GoM, which involves knowledge in depth of its distribution and environmental forcing. Using catch and effort data from the Mexican commercial longline fleet with 100% scientific observer coverage from 1999 to 2012 and satellite derived environmental data, this study investigated the influence of environmental conditions on catch per unit effort (CPUE) of ABFT and YFT. General additive models (GAMs) were fitted using a negative binomial distribution and applying Akaike information criterion (AIC) to select the best model. Bluefin CPUE exhibited a marked seasonality, reaching higher values in February and March while YFT catches occurred throughout the year. Two main locations were identified with higher ABFT bycatch rates, Campeche Bay and the western‐central area of the GoM. Higher ABFT CPUE was significantly associated with areas with negative sea level anomalies and low sea surface temperatures, characteristic of cyclonic eddies. Instead, YFT CPUE showed a lesser environmental influence in its distribution. To our knowledge, the patterns shown in this study provide the first in‐depth approach to understand ABFT bycatch in Mexican waters, which will help in further development of adequate management strategies.  相似文献   

8.
To analyze the effects of mesoscale eddies, sea surface temperature (SST), and gear configuration on the catch of Atlantic bluefin (Thunnus thynnus), yellowfin (Thunnus albacares), and bigeye tuna (Thunnus obesus) and swordfish (Xiphias gladius) in the U.S. northwest Atlantic longline fishery, we constructed multivariate statistical models relating these variables to the catch of the four species in 62 121 longline hauls made between 1993 and 2005. During the same 13‐year period, 103 anticyclonic eddies and 269 cyclonic eddies were detected by our algorithm in the region 30–55°N, 30–80°W. Our results show that tuna and swordfish catches were associated with different eddy structures. Bluefin tuna catch was highest in anticyclonic eddies whereas yellowfin and bigeye tuna catches were highest in cyclonic eddies. Swordfish catch was found preferentially in regions outside of eddies. Our study confirms that the common practice of targeting tuna with day sets and swordfish with night sets is effective. In addition, bluefin tuna and swordfish catches responded to most of the variables we tested in the opposite directions. Bluefin tuna catch was negatively correlated with longitude and the number of light sticks used whereas swordfish catch was positively correlated with these two variables. We argue that overfishing of bluefin tuna can be alleviated and that swordfish can be targeted more efficiently by avoiding fishing in anticyclonic eddies and in near‐shore waters and using more light sticks and fishing at night in our study area, although further studies are needed to propose a solid oceanography‐based management plan for catch selection.  相似文献   

9.
ABSTRACT:   The recruitment abundance index of Pacific bluefin tuna Thunnus orientalis was estimated from 1980 to 2003 fishing year by using the troll fishery data in Nagasaki Prefecture, western Japan. It has been shown that the troll fishery in Nagasaki Prefecture operates with good time–area coverage of the species habitat, and that the fishing power slightly changed during the period analyzed, based on fisheries statistics, published information, and interviews with the fishers. Average catch per unit effort (CPUEs) were standardized by a generalized linear model (GLM) considering the effects of fishing year, season and landing area. Standardized CPUE of age-0 bluefin tuna showed larger fluctuations year by year than the nominal CPUE combined for all ages. High CPUEs in fishing years of 1981, 1994, 1996 and 1999 were observed. Data from these years agreed with the higher recruitments estimated by virtual population analysis (VPA) or higher catch of age-0 fish reported for the Pacific side. The age-specific standardized CPUE of age-0 bluefin tuna in this study was judged to be a useful indicator of recruitment.  相似文献   

10.
近十年来,越南将南海的金枪鱼资源作为其"外向型"渔业的重要支撑,不断增加捕捞强度,产量逐年升高。本文总结了越南发展南海金枪鱼渔业的过程,分析了南海金枪鱼资源的开发趋势。越南现代化的金枪鱼捕捞技术主要来自日本,使用的渔具主要有金枪鱼延绳钓、手钓、刺网和小型围网,捕捞的种类主要为鲣鱼、黄鳍金枪鱼和大眼金枪鱼,主要作业区域在西沙群岛南部海域和南沙群岛海域。越南2009年金枪鱼的产量已达到5.9×104t,计划2015年达到30×104t。根据越南海洋渔业研究所(RIMF)的评估,南海中西部的金枪鱼资源量为66~67×104t,可捕量23.3×104t,其中鲣鱼的可捕量21.6×104t,黄鳍金枪鱼和大眼金枪鱼的可捕量1.7×104t。随着全球金枪鱼捕捞配额的缩减和越南"外向型"渔业经济的发展,越南将继续加强对南海金枪鱼资源的开发。  相似文献   

11.
We analysed the influence of climatic oscillations [based on the Indian Oscillation Index (IOI)] on monthly catch rates of two tropical tuna species in the equatorial Indian Ocean. We carried out wavelet analysis, an efficient method of time series analysis to study non‐stationary data. Catch per unit of effort (CPUE) of bigeye tuna was computed from Japanese longline statistics from 1955 to 2002 in the equatorial Indian Ocean and CPUE of yellowfin tuna was derived from industrial purse seine statistics from 1984 to 2003 in the Western Indian Ocean. Wavelet analyses allowed us to quantify both the pattern of variability in the time series and non‐stationary associations between tuna and climatic signals. Phase analyses were carried out to investigate dependency between the two signals. We reported strong associations between tuna and climate series for the 4‐ and 5‐yr periodic modes, i.e. the periodic band of the El Niño Southern Oscillation signal propagation in the Indian Ocean. These associations were non‐stationary, evidenced from 1970 to 1990 for bigeye, and from 1984 to 1991 and then from 1993 to 2001 for yellowfin. Warm episodes (low negative IOI values) matched increases of longline catch rates of bigeye during the 1970–1990 time frame, whereas the strong 1997–1998 warm event matched a decrease of purse seine catch rates of yellowfin. We discussed these results in terms of changes in catchability for purse seine and longline.  相似文献   

12.
The environmental processes associated with variability in the catch rates of bigeye tuna in the Atlantic Ocean are largely unexplored. This study used generalized additive models (GAMs) fitted to Taiwanese longline fishery data from 1990 to 2009 and investigated the association between environmental variables and catch rates to identify the processes influencing bigeye tuna distribution in the Atlantic Ocean. The present findings reveal that the year (temporal factor), latitude and longitude (spatial factors), and major regular longline target species of albacore catches are significant for the standardization of bigeye tuna catch rates in the Atlantic Ocean. The standardized catch rates and distribution of bigeye tuna were found to be related to environmental and climatic variation. The model selection processes showed that the selected GAMs explained 70% of the cumulative deviance in the entire Atlantic Ocean. Regarding environmental factors, the depth of the 20 degree isotherm (D20) substantially contributed to the explained deviance; other important factors were sea surface temperature (SST) and sea surface height deviation (SSHD). The potential fishing grounds were observed with SSTs of 22–28°C, a D20 shallower than 150 m and negative SSHDs in the Atlantic Ocean. The higher predicted catch rates were increased in the positive northern tropical Atlantic and negative North Atlantic Oscillation events with a higher SST and shallow D20, suggesting that climatic oscillations affect the population abundance and distribution of bigeye tuna.  相似文献   

13.
通过模型分析环境变量对延绳钓大眼金枪鱼渔获率的影响,评估适宜垂直活动空间对大西洋大眼金枪鱼延绳钓渔获率的作用。首先采用回归分析检验环境变量对延绳钓渔获率(由单位捕捞努力渔获量(catch per unit fishing effort,CPUE)表示)的影响显著性,结合时空变量,采用GAM(generalized additive model)模型分析各变量对大眼金枪鱼CPUE非线性作用。模型结果表明,环境因子和时空变量对热带大西洋延绳钓大眼金枪鱼渔获率空间分布影响明显。大西洋大眼金枪鱼延绳钓的高渔获率月份出现在夏季和冬季,空间上在赤道以北和30?~50?W。12℃等温线深度对大眼金枪鱼延绳钓渔获率的影响表现为抛物线形状,高渔获率出现在深度较浅的250 m水层,随着12℃等温线深度的增加,大眼金枪鱼延绳钓渔获率降低。温跃层下界深度和深度差对大眼金枪鱼延绳钓渔获率的影响都是穹顶状。随着温跃层下界深度值和深度差由小变大至200 m,延绳钓渔获率递增;温跃层下界深度和深度差超过200 m后,延绳钓渔获率变小。温跃层下界深度和深度差对大眼金枪鱼延绳钓渔获率影响显著的水层分别是200 m和50 m。研究结果显示,12℃等温线深度和温跃层对热带大西洋延绳钓大眼金枪鱼渔获率影响是交叉的,在大眼金枪鱼适宜垂直活动水层受限到和延绳钓作业深度相同时,延绳钓渔获率最高;在适宜垂直活动空间过深或者过浅时,延绳钓渔获率都变小,但可以通过改变作业方式提高渔获率。采用延绳钓CPUE进行渔场和资源评估要考虑金枪鱼适宜垂直活动空间。  相似文献   

14.
根据1950―2016年的渔获量数据及1955―2016年的单位捕捞努力量(Catch Per Unit Effort,CPUE)数据,采用贝叶斯状态空间剩余产量模型框架JABBA(Just Another Bayesian Biomass Assessment)对印度洋大眼金枪鱼(Thunnus obesus)的资源状况进行评估,分析了渔船效应、CPUE数据尺度对评估结果的影响。结果表明,模型拟合效果对于不同时间跨度下CPUE数据的选择比较敏感。当选用时间跨度为1979―2016年的CPUE数据且考虑渔船效应时,模型拟合效果最好。2016年大眼金枪鱼的资源量为812 kt,最大可持续产量(Maximum Sustainable Yield,MSY)为163 kt,远高于同年渔获量86.81 kt,其资源量具有82.50%的概率处于"健康"状态。当总允许可捕量为69.45~104.17 kt时(2016年渔获量的80%~120%),未来10年大眼金枪鱼的资源量仍高于B_(MSY)(达到MSY所需的生物量)。回顾性分析结果表明,该资源评估结果存在一定程度的回顾性问题,捕捞死亡率和资源量分别存在被低估和高估的现象。将来需要在模型结构设定、CPUE数据选择及模型参数的先验分布设置等方面进一步优化。  相似文献   

15.
This study used a delta-lognormal model to analyze monthly catches of age-0 Pacific bluefin tuna by the troll fishery. The model included fixed effects of month, area, and month–area interaction, and random effects of port, year and port–year interaction. The catch patterns by month and area predicted by the statistical model (standardized catch) revealed that main fishing grounds along the Tsushima Warm Current generally shifted from north to south as the season turned from autumn to winter. In contrast, the standardized catch along the Kuroshio Current did not show such clear spatiotemporal patterns. The standardized catch along the Tsushima Warm Current is significantly associated with average monthly sea surface temperatures in the fishing grounds and consistent with migration routes revealed by tagging experiments in previous studies. These associations indicate the spatiotemporal catch pattern in the Tsushima Warm Current region partly reflects seasonal migration. Knowledge of the possible associations among fish migration, environmental factors and spatiotemporal distribution of the catch will contribute to future management of this species.  相似文献   

16.
Alternative error distributions were evaluated for calculating indices of relative abundance for non-target species using catch and effort data from commercial fisheries. A general procedure is presented for testing the underlying assumptions of different error distributions. Catch rates, from an observer program, of billfish caught mainly as bycatch in a pelagic tuna longline fishery in the Western Central Atlantic were standardized. Although catches of billfishes are not common in pelagic tuna longline fisheries, these fisheries are one of the main sources of fishing mortality for these stocks in the central Atlantic due to the magnitude and spatial extent of longline fishing effort. Billfish CPUE data are highly skewed with a large proportion of zero observations. Delta distribution models can accommodate this type of data, and involve modeling the probability of a non-zero observation and the catch rate given that the catch is non-zero separately. Three different Delta models were compared against other error distributions, including the lognormal, log-gamma, and Poisson. Diagnostic checks and deviance table analyses were performed to identify the best error distribution and the set of factors and interactions that most adequately explained the observed variability. The results indicated that the Delta-lognormal model (a binomial error distribution for the probability of a non-zero catch and lognormal error for the positive catch rates) complied best with the underlying characteristics of the data set. Analyses of catch rates for blue marlin, white marlin and sailfish confirmed the spatio-temporal nature of their distribution in the central Atlantic and Caribbean Sea. Also, the analyses indicated that catch rates of billfish differed among fishing vessel types; larger vessels had a higher probability of catching blue marlin, the more oceanic-oriented species, and lower probabilities of catching the more coastal-oriented species white marlin and sailfish. Standardized catch rates indicated in general a lower relative abundance for blue and white marlin in the most recent years, although estimated confidence intervals overlap through the years especially for white marlin.  相似文献   

17.
Reducing sea turtle by-catch in pelagic longline fisheries   总被引:6,自引:0,他引:6  
Reducing by‐catch of sea turtles in pelagic longline fisheries, in concert with activities to reduce other anthropogenic sources of mortality, may contribute to the recovery of marine turtle populations. Here, we review research on strategies to reduce sea turtle by‐catch. Due to the state of management regimes in most longline fisheries, strategies to reduce turtle interactions must not only be effective but also must be commercially viable. Because most research has been initiated only recently, many results are not yet peer‐reviewed, published or readily accessible. Moreover, most experiments have small sample sizes and have been conducted over only a few seasons in a small number of fisheries; many study designs preclude drawing conclusions about the independent effect of single factors on turtle by‐catch and target catch rates; and few studies consider effects on other by‐catch species. In the US North Atlantic longline swordfish fishery, 4.9‐cm wide circle hooks with fish bait significantly reduced sea turtle by‐catch rates and the proportion of hard‐shell turtles that swallowed hooks vs. being hooked in the mouth compared to 4.0‐cm wide J hooks with squid bait without compromising commercial viability for some target species. But these large circle hooks might not be effective or economically viable in other longline fisheries. The effectiveness and commercial viability of a turtle avoidance strategy may be fishery‐specific, depending on the size and species of turtles and target fish and other differences between fleets. Testing of turtle avoidance methods in individual fleets may therefore be necessary. It is a priority to conduct trials in longline fleets that set gear shallow, those overlapping the most threatened turtle populations and fleets overlapping high densities of turtles such as those fishing near breeding colonies. In addition to trials using large 4.9‐cm wide circle hooks in place of smaller J and Japan tuna hooks, other fishing strategies are under assessment. These include: (i) using small circle hooks (≤ 4.6‐cm narrowest width) in place of smaller J and Japan tuna hooks; (ii) setting gear below turtle‐abundant depths; (iii) single hooking fish bait vs. multiple hook threading; (iv) reducing gear soak time and retrieval during daytime; and (v) avoiding by‐catch hotspots through fleet communication programmes and area and seasonal closures.  相似文献   

18.
大西洋中上层鲨鱼资源状况的初步探讨   总被引:2,自引:1,他引:2       下载免费PDF全文
戴小杰 《水产学报》2003,27(4):328-333
据1994—2001年4个航次在金枪鱼延绳钓渔船对热带大洋性中上层鲨鱼资源进行调查,并分析国际大西洋金枪鱼资源保护委员会提供的关于中上层鲨鱼的渔业数据。结果表明:延绳钓渔业共兼捕13种鲨鱼,其中,尖吻鲭鲨和大青鲨是优势种类。尖吻鲭鲨在第1、第2和第4航次的CPUE分别为每千钩0.3502、0.1754和0.0642尾,呈下降趋势。大青鲨在第1~3航次的的CPUE达到每千钩5~7尾,而在第4航次下降为每千钩0.8尾。研究报告了中国金枪鱼船队自1993年开始在大西洋兼捕尖吻鲭鲨和大青鲨的渔获量,并根据捕捞死亡系数和大西洋总渔获量数据,初步探讨了尖吻鲭鲨和大青鲨年平均资源量,影响CPUE的因素和大西洋中上层资源状况。  相似文献   

19.
基于贝叶斯概率的印度洋大眼金枪鱼渔场预报   总被引:1,自引:0,他引:1  
本文采用贝叶斯概率为模型基础框架,利用来自印度洋金枪鱼管理委员会(IOTC)的大眼金枪鱼延绳钓历史渔获统计数据和美国国家海洋大气管理局(NOAA)的海温最优插值再分析数据,进行适用于印度洋金枪鱼延绳钓渔场的模型参数估算与预报模型构建。模型回报精度验证结果表明,印度洋大眼金枪鱼延绳钓渔场综合预报的准确率达到了65.96%。模型预报结果用概率百分比来表示,符合渔业资源分布的客观特点。利用中分辨率成像光谱仪MODIS提供的SST产品进行业务化运行的渔场预报,利用模型结果每周生成印度洋大眼金枪鱼延绳钓渔场概率预报图,用不同大小的圆形来表示渔场概率的高低,可以为印度洋区域的远洋渔业生产提供信息支持。  相似文献   

20.
渔场捕捞强度信息可以为渔业资源评估和管理提供帮助。本研究结合2017年10—11月船舶自动监控系统(AutomaticIdentificationSystem,AIS)信息和同期中国中西太平洋延绳钓渔船捕捞日志数据,通过挖掘延绳钓渔船作业航速和航向特征,建立渔场作业状态识别模型,提取渔场捕捞强度信息。以3~9节为航速阈值和0°~10°及300°~360°为航向阈值,渔船作业状态识别准确率为68.29%。阈值识别和日志记录的捕捞强度信息在空间上相关性很高(0.96),基于AIS信息挖掘的渔船捕捞强度空间分布特征和实际非常相似。阈值识别和日志记录的捕捞强度信息在空间上与单位捕捞努力量渔获量(catch per unite of effort, CPUE)、渔获尾数、渔获重量和投钩数的空间相关系数均大于0.62,基于AIS信息挖掘的渔船空间捕捞强度也可替代用于渔业资源分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号