首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对五四农场新围垦区存在的渍害问题,进行了两年的田间试验,结果表明,控制内河水位,实施暗管排水具有明显的降渍脱盐,增产效果,将大麦受渍时间缩短为3天,1m土体含盐量由试验前的0.235%降到0.15%以下,大麦增产20%以上。  相似文献   

2.
泉渍稻田暗管排水的改土增产效果   总被引:1,自引:0,他引:1  
暗管排水工程是治理泉渍田的有效措施。本文依据连续三年试验观察结果,系统分析了泉渍田治理前后水土环境状况的变化及作物增产的机理,对我国山区广泛开展泉渍田的治理具有一定的借鉴作用。  相似文献   

3.
暗管排水工程是治理泉渍田的有效措施。本文依据连续三年试验观测结果,系统分析了泉渍田治理前后水土环境状况的变化及作物增产的机理,对我国山区广泛开展泉渍田的治理具有一定的借鉴作用。  相似文献   

4.
波形薄板排水降渍节地技术的研究与应用   总被引:2,自引:0,他引:2  
节水节地是我国当前农田水利工程建设中的热点与难题。农田水利建设是用地大户,其田问沟渠路占地率较大,一般为15%~20%,为了科学地建设农田水利工程.优化田间排水降渍系统,高邮市采用特制的波形薄板,装配成多层管道,打成梅花眼孔埋置于田间的导渗沟与隔水沟中。该项技术的研究与应用为农田暗排暗降工程增添了新内容,收到了节地排水降渍的显著效果。  相似文献   

5.
淮北平原涝渍兼治的组合排水工程形式   总被引:2,自引:0,他引:2  
由于淮北平原砂姜黑土区的气候、地形、地貌、水文地质、土壤等多方面原因,致使旱、涝、渍频繁,且涝渍灾害往往是紧密相连,先涝后渍,涝渍相随.造成大面积减产.甚至绝收,旱、涝、渍灾害一直困扰着本区的农业发展。通过试验及调查,从治理涝渍效果、提高农业产量、投入产出等方面进行综合分析,提出了几种适宜于本区的组合排水形式。  相似文献   

6.
旱作物涝渍排水研究动态分析   总被引:7,自引:0,他引:7  
在总结分析国内外有关研究的基础上,指出涝渍地旱作排水研究有5大趋势:①由重视农田排涝发展到重视农田排渍;②由静态排水指标研究发展到动态排水指标研究;③由涝、渍分别研究发展到涝渍综合研究;④从排水指标仅考虑作物产量发展到既考虑产量又重视品质;⑤由单一涝渍过程对作物的影响研究发展到多个涝渍过程对作物的复合影响研究。  相似文献   

7.
10.种子磁化技术经过磁化处理后的种子,表现出旺盛的生命力,具有发芽率高、出苗快、根系发达、有效分蘖率高、植株粗大、抗倒伏、抗病害和抗旱涝能力强等优势。据试验表明,采用种子磁化技术可使小麦平均增产10%~12%,玉米增产12%~15%,大豆增产18%,花生增产22%~25%,而处理1kg种子只多花0.10元。11.小麦精少量播种技术小麦精少量播种技术是将传统的“大肥、大水、大播量、大群体”栽培技术改为“足肥、足水、小播量、适宜群体”机械化种植技术,即在地力和肥水条件较好的基础上,利用机械播种,并控…  相似文献   

8.
温室蕃茄生产施用沼肥的试验   总被引:12,自引:5,他引:7  
以纯化肥、化肥加农家肥(猪粪尿)、化肥加沼肥三组肥料分区作蕃茄生产试验,结果表明:沼肥区的单果重最重,病果率最低,增产效果最明显,比纯化肥区增产18.0%。  相似文献   

9.
多阶段受涝渍综合影响的农田排水指标试验研究   总被引:7,自引:1,他引:6  
通过对棉花2年(2003~2004年)的涝渍兼治农田排水试验,研究了作物在全生育阶段均受涝渍影响的农田排水指标,还对多阶段涝渍共同作用下的作物水分生产函数进行了研究。通过对2年的实测数据的分析可以看出:用涝渍共同作用下的农田排水指标与棉花的相对产量之间有较好的相关关系,并对各生育阶段对涝渍的敏感性进行了排序,可供涝渍综合影响下排水系统的设计与运行管理参考。  相似文献   

10.
本文根据在田排水的任务,对农田除涝排水标准、防渍排水标准和控制盐碱化排水标准等三方面概述了已有调查总结和试验研究工作,在此基础上提出了在排水标准中有待研究解决的问题。  相似文献   

11.
A field experiment was conducted during the 1996/1997 season at the University of Jordan Research Station near Al-Muwaqqar village to investigate the effects of sand columns, sand column spacing, soil ridges, and supplemental irrigation on soil water storage, redistribution, and barley yields. The experimental site represents a typical Jordanian arid environmental soil suffering from surface crust formation overlaying impermeable material. In the 600-mm-depth soil profile, soil water storage was improved significantly by 59%, 45%, and 38% in the 1-m, 2-m, and 3-m sand column spacing treatments, respectively, compared with soil water storage in the control treatment (no sand columns). Sand columns increased the moisture stored in all four soil layers (0–150, 150–300, 300–450, and 450–600 mm). Moisture stored in the 450–600 mm soil layer increased significantly by about 188%, 147%, 88%, and 29% in the 1-m, 2-m, 3-m, and 4-m sand column spacing treatments, respectively, compared with moisture stored in the same soil layer of the control treatment. Increasing soil water storage also increased barley consumptive use significantly from 130 mm in the control treatment to an average of about 185 mm in sand column treatments. Without supplemental irrigation, barley grain and straw yields were negligible and almost zero. Barley yields in the control treatment, with 167 mm supplemental irrigation were low, being 0.19 ton/ha and 1.09 ton/ha of barley grain and straw, respectively. Sand columns increased barley grain and straw yields significantly compared with the control treatment to a maximum of 0.68 ton/ha and 3.97 ton/ha, respectively, with the 1-m sand column spacing. Soil ridges perpendicular to the land slope had no significant effect on increasing soil water storage due to lateral runoff and loss along the ridge. In general, sand columns minimize surface runoff and evaporation by allowing water to infiltration through the strong surface crust. Sand columns act as a sink for surface water, enhance subsurface lateral water movement, and reduce the possibility of surface crust formation in the vicinity of the sand column opening by preventing surface ponding. Received: 3 October 1997  相似文献   

12.
Two alternative in situ area rainwater conservation practices (tied ridging and mulching) were evaluated for four seasons (2004, 2007, 2008 and 2009) at an experimental station in Mekelle, Ethiopia. The objectives were to evaluate the performance of barley as influenced by mulch and tied ridge and to understand the relationships of rainfall and runoff on barley fields. About 16-30% of the seasonal rainfall resulted in runoff when barley was grown without water conservation, whereas the in situ conservation practices resulted in significantly low runoff. Tied ridging and mulching increased the soil water in the root zone by more than 13% when compared with the control. Consequently, grain yield and rainwater use efficiency increased significantly with tied ridging but not with mulching. Tied ridging increased the grain yield over the control at least by 44% during below average rainfall years. Neither mulching nor tied ridging were significantly different from the control when the seasonal rainfall was above average. Since rainfall is often unreliable, we recommend tied ridging as a water conservation technique for loams in the study area in order to mitigate the effect of drought stress in barley. However, tied ridges could be carefully opened when excess water is expected to cause waterlogging.  相似文献   

13.
The effects of supplemental irrigation, sand columns and blocked furrows on soil water distribution and barley yield were studied on arid soils affected by surface crusts. The sand columns were 50 mm diameter, 600 mm deep, and filled with sand of 0.375 mm mean diameter. The blocked furrows were trenches about 250 mm deep, 300 mm wide, and 6 m long established perpendicular to the slope direction. Sand column and furrow treatments significantly increased soil water storage compared with natural or control treatments. Soil water storage significantly increased by about 210% and 230% near the center of the sand column and the furrow treatments, respectively, relative to the control treatment. For sand column treatments, soil water storage decreased linearly with distance from the center of the sand column to about 2.5 m, while for the furrow treatment soil water storage decreased logarithmically to a distance of about 1.0 m, beyond which the soil water storage was not significantly different from the natural or control treatments. The furrow and sand column treatments significantly increased the water application efficiency, seasonal consumptive use and barley grain and straw yields compared with natural and control treatments. Increasing furrow spacing increased the catchment area and consequently crop production per furrow, but decreased crop production per unit total (cultivated and catchment) area. Decreasing sand column spacing reduced surface runoff and increased soil water storage and consequently barley grain and straw yields. Supplemental irrigation is essential for grain production in limited rainfall areas. Soil management is also required to overcome the problems of the soil surface crusting and the low permeability of subsurface soil layers for maximum rainwater efficiency, and for optimal crop production with minimum supplemental irrigation water. Where agricultural land is not limited, furrowed soil surfaces appear to be the most suitable technique for barley grain production. Sand columns with sprinkler irrigation might be more suitable for growing barley as forage crop where agricultural land is limited. Received: 19 October 1998  相似文献   

14.
Response of timely and late seeded wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) to three levels of irrigation and four rates of nitrogen was investigated under pre-seeding irrigation. Water extraction pattern and water use of these crops varied markedly. Barley outyielded wheat by 27 and 9%, but used 9 and 21 mm less water, when one and two irrigations were given at critical stages, respectively. These results indicate the possibilities of considerable saving of water (100 mm) for barley without any decrease in grain yield and increased water-use efficiency (WUE) of wheat and barley by irrigating at critical stages as compared to irrigation at 75% depletion of available soil water (ASW). In general WUE decreased with increase in irrigation frequency and delay in seeding.Nitrogen fertilization with marginal additional water use (4–9%) increased yield linearly (45–98%) and thus increased WUE of wheat and barley. This additional water was extracted from below 60 cm depth at tensions ? 1.5 MPa and particularly in maximum growth and reproductive stages. These results suggest that barley should be preferred to wheat under medium to severe water stress and late seeding conditions.  相似文献   

15.
不同生育期水分亏缺对春青稞水分利用和产量的影响   总被引:6,自引:0,他引:6  
对不同生育期水分亏缺程度对春青稞(Hordeum vulgare)水分利用效率和产量的影响进行了桶栽试验研究。试验处理设充分灌溉处理(2个水分控制下限和秸秆覆盖)以及在全生育期和5个不同生育期的4个水分亏缺程度(轻度、中度、重度和极度)处理,共27个处理。结果表明,在充分灌溉条件下,75%田间持水率水分下限控制处理的春青稞收获指数、籽粒产量和作物水分利用效率大于80%水分处理;秸秆覆盖处理的籽粒产量和水分利用效率在所有试验处理中最大。在全生育期水分亏缺条件下,春青稞籽粒产量均小于充分灌溉处理,且随着水分亏缺程度的增大而显著减小;轻度至重度水分亏缺处理可获得更大的作物收获指数和水分利用效率,但极度水分亏缺却导致最低的籽粒产量、收获指数和水分利用效率。除成熟期水分亏缺处理外,不同生育期水分亏缺处理条件下,春青稞籽粒产量和作物水分利用效率基本随着水分亏缺程度的增大而减小;拔节期、分蘖期和灌浆期水分亏缺对籽粒产量的不利影响较大。地表秸秆覆盖或全生育期轻度至重度水分亏缺处理可提高春青稞水分利用效率。  相似文献   

16.
Salinity in topsoil and subsoil is one of the major abiotic environmental stresses to crop production. To investigate the comparative tolerance ability of wheat, barley, canola and chickpea to subsoil NaCl salinity and its impact on water uptake, water use efficiency, plant growth and ionic balance, a pot experiment was conducted on a heavy texture soil (sodic vertosol) having 20 ESP (exchangeable sodium percentage), 3.5 dS/m ECe and 400 mg/kg Cl with additional NaCl applied in subsoil at 500, 1000, 1500 and 2000 mg/kg soil. Plants were harvested 40 days after sowing and assessed for different parameters. Increasing levels of subsoil NaCl salinity had significant depressing effect on shoot and root biomass, root/shoot ratio, water uptake and water use efficiency (shoot biomass production with a unit amount of applied water), leaves K:Na ratio and Ca:Na ratio of all the four species, but the magnitude of effect varied considerably among the species. Chickpea was affected most followed by wheat, barley and canola at the highest level of subsoil NaCl salinity. There was 64%, 49%, 37% and 34% reduction in shoot dry weight of chickpea, wheat, barley and canola respectively by highest subsoil salinity. Similarly water uptake declined by 61%, 36%, 31% and 26% respectively in chickpea, wheat, barley and canola. Water use efficiency of four species was in order of barley > canola > wheat > chickpeas on this sodic vertosol. The cumulative effects of reduced osmotic potential of soil solution, ion toxicity (high concentrations of Cl and Na) in soil/plants and ionic imbalance (reduced K:Na and Ca:Na ratio) within plant system under increased subsoil NaCl salinity contributed to reduce water uptake and plant growth in all the four crops, and the effects were more severe in chickpeas. Wheat despite having considerably lower Na and Cl in their leaves suffered greatly in plant growth and water uptake compared with barley and canola indicating better tolerance ability of barley and canola to high Cl and Na build up at tissue level. Results suggest chickpea to be the most sensitive to subsoil NaCl salinity. The growing of comparatively tolerant species like barley and canola may be the better option for sustaining crop production and higher water use efficiency on sodic vertosols with high subsoil NaCl salinity.  相似文献   

17.
Crops grown in semiarid rainfed conditions are prone to water stress which could be alleviated by improving cultural practices. This study determined the effect of cropping system, cultivar, soil nitrogen status and Rhizobium inoculation (Rz) on water use and water use efficiency (WUE) of chickpea (Cicer arietinum L.) in semiarid environments. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown in no-till barley, no-till wheat, and tilled-fallow systems and under various rates of N fertilizer (0, 28, 56, 84, and 112 kg N ha−1) coupled with or without Rz. The study was conducted at Swift Current and Shaunavon, Saskatchewan, from 2004 to 2006. On average, chickpea used about 10 mm of water from the top 0-15 cm soil depth. In the tilled-fallow system, chickpea extracted 20% more water in the 15-30 cm depth, 70% more in the 30-60 cm depth, and 156% more in the 60-120 cm depth than when it was grown in the no-till systems. CDC Xena had WUE of 5.3 kg ha−1 mm−1 or 20% less than the average WUE (6.6 kg ha−1 mm−1) of the three other cultivars, even though these cultivars used the same amounts of water. Water use efficiency increased from 4.7 to 6.8 kg ha−1 mm−1 as N fertilizer rate was increased from 0 to 112 kg N ha−1 when chickpea was grown in the no-till barley or wheat systems, but chickpea grown in the tilled-fallow system did not respond to changes in the fertilizer N rates averaging WUE of 6.5 kg ha−1 mm−1. In the absence of N fertilizer, the application of Rz increased WUE by 33% for chickpea grown in the no-till barley system, 30% in the no-till wheat system, and 9% in the tilled-fallow system. Chickpea inoculated with Rhizobium achieved a WUE value similar to the crop fertilized at 84 kg N ha−1. Without the use of Rz, chickpea increased WUE in a linear fashion with increasing fertilizer N rates from 0 to 84 kg N ha−1. Cropping system, cultivar, and inoculation all had greater impact on WUE than on the amount of water extracted by the crop from the soil. The improvement of cultural practices to promote general plant health along with the development of cultivars with improved crop yields will be keys for improving water use efficiency of chickpea in semiarid environments.  相似文献   

18.
Iran's groundwater resources have been over-exploited, often at the expense of deteriorating water and land quality, and there is limited room for expanding its irrigation agriculture. Thus, the possible use of Caspian Sea water, whose salinity is well below that of open seas, for supplementary irrigation has some appeal. The impact of irrigation with diluted Caspian Sea water on the growth and yield of barley and on the characteristics of soil was investigated in field plots and in pot experiments during the 2001–2002 growing season. Three irrigation regimes of well water alone (I0); Caspian Sea water diluted with well water and used at stem elongation (I1); and the same diluted sea water used at ear formation (I2). A rainfed treatment (Ir) was also added to the field experiments. The results of both pot and field experiments show that a 1:1 mixture of Caspian Sea and well water can be used for irrigation without a significant reduction in the growth and yield of barley, provided that it is not applied earlier than the time of ear formation. This would amount to a significantly reduced demand on the limited ground water resources of the region for agricultural use. However, when this mixture was applied at the earlier time of stem elongation, significant yield reduction occurred. All other growth components of barley plants were also adversely affected by this early application of diluted sea water. Soil analysis after harvest showed that the electrical conductivity of the saturation extract had increased significantly in both diluted sea water treatments. This may suggest that the mixing of sea and ground waters at the rates used in these experiments may not be sustainable over a long period of time and soil salinization may occur unless soils are of light texture and sufficient good quality fresh water or winter rain is available to lower the salinity of soil between successive crops. No significant interaction between irrigation salinity and fertiliser treatments was observed.  相似文献   

19.
【目的】构建西藏高原地区多因子作用下的青稞动态生长模型。【方法】于2016─2017年在西藏农牧学院农田水利试验场,监测了不同水分和氮素状态下的青稞动态生长过程,基于方差分析法研究了水分和氮素对青稞动态过程的交互作用,在此基础上构建了包括4个自由度、描述土壤水分和氮素对春青稞干物质形成以及累积过程函数关系,构建了多因子作用条件下的青稞动态关系模型,分别采用2016年和2017年的试验资料对模型进行了参数率定和验证。【结果】西藏高原地区青稞动态生长过程受到了多种因素的影响,青稞的干物质增量和累积量与土壤水分和氮素投入量表现出非线性响应关系;采用偏相关系数能够有效地反映青稞的产量与干物质指标关系。模拟不同水分和氮素条件下的青稞生长过程与实测结果相比,全生育内Nash-Sutcliffe系数平均值为0.873;5%的显著水平下,不存在系统性偏差。【结论】构建的青稞动态生长关系模型能够描述西藏地区气候和土壤条件对青稞生长动态过程影响机理,具有较高的模拟精度。  相似文献   

20.
保水剂对土壤持水性影响及在不同土壤中效果比较   总被引:3,自引:0,他引:3  
为分析保水剂对土壤持水性的影响以及对不同土壤持水效果进行比较,按保水剂质量占土壤质量百分比设计0.10%、0.30%、0.50%、1.00%、以及对照(土壤不加保水剂)5个处理进行室内试验。结果表明:保水剂可提高土壤的持水性,土壤保水率随保水剂用量增加而增大,3种土壤施用比例为0.10%~1.00%的保水剂,经过7h恒温蒸发后土壤平均保水率较对照提高103%~187%。但是,当保水剂达到一定用量后,保水率增幅效果不显著。综合3种土壤平均保水率,保水剂比例为0.10%时,恒温蒸发7h后与对照差异显著,当比例增大至0.30%时,虽然与对照相比存在显著差异,但与比例为0.10%时相比无显著差异,当比例逐渐增大至0.50%和1.00%时,与比例为0.30%时相比,相互间也无显著差异。保水剂对提高不同土壤持水性方面的功效存在差异,且差异的大小与水分蒸发时间及保水剂用量有关。土壤水分蒸发初期(1~2h),不同保水剂用量,3种土壤的保水率无明显差异;土壤水分蒸发后期(2h后),保水剂对提高不同土壤持水效果的差异逐渐显现,总体上在黏粒含量较低的壤沙土中的应用效果要好于黏粒含量较高的沙黏壤土和壤土。3种土壤施用比例为0.10%~1.00%,经过7h恒温蒸发后保水率较对照提高分别为:壤沙土293.08%~591.29%,沙黏壤土181.85%~249.78%,壤土29.53%~73.03%。针对本试验所测试的壤沙土、沙黏壤土和壤土3种土壤,保水剂更适宜在黏粒含量较低的壤沙土中使用,用量以保水剂占土壤质量百分比为0.10%为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号