首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用籼稻组合珍汕97B/密阳46的衍生材料,针对水稻第6染色体短臂色素原基因C的可能位置,筛选到在C基因周围区间呈不同基因型组合的7个剩余杂合体,收获种子建立F2∶3群体。在各个植株上,稃尖颜色和叶鞘颜色的表现完全相同。通过各个群体颜色表现与原剩余杂合体基因型的比较,将C基因定位于微卫星标记RM314与RM253之间。在该基础上,应用两个分离群体共1279个样本,经标记检测和连锁分析,进一步将C基因定位于RM111和RM253之间, 与RM111和RM253的遗传距离分别为0.7 cM和0.4 cM。最后,应用区间内的另外6个微卫星标记和1个源于C基因候选基因OsC1的标记,检测在RM111 C基因 RM253区间内发生了重组的22个个体,将C基因定位于一个大小为59.3 kb、涵盖C基因候选基因OsC1座位的区间中。  相似文献   

2.
Fine Mapping of C(Chromogen for Anthocyanin) Gene in Rice   总被引:1,自引:1,他引:0  
Seven residual heterozygous lines (RHLs) displaying different genotypic compositions in the genomic region covering probable locations of C (Chromogen for anthocyanin) gene on the short arm of rice chromosome 6 were selected from the progenies of the indica cross Zhenshan 97B/Milyang 46. Seeds were harvested from each of the seven plants, and the resultant F2:3 populations were used for fine mapping of C gene. It was shown in the populations that the apiculus coloration matched to basal leaf sheath coloration in each plant. By relating the coloration performances of the populations with the genotypic compositions of the RHLs, the C locus was located between rice SSR markers RM314 and RM253. By using a total of 1279 F2:3 individuals from two populations showing coloration segregation, the C locus was then located between RM111 and RM253, with genetic distances of 0.7 cM to RM111 and 0.4 cM to RM253. Twenty-two recombinants found in the two populations were assayed with seven more markers located between RM111 and RM253, including six SSR markers and one marker for the C gene candidate, OsC1. The C locus was delimited to a 59.3-kb region in which OsC1 was located.  相似文献   

3.
太湖流域粳稻地方品种黑壳子粳抗稻瘟病基因的分子定位   总被引:4,自引:2,他引:2  
以广谱、高抗稻瘟病的太湖流域粳稻地方品种黑壳子粳与感病品种苏御糯杂交,产生F1、F2、F2∶3及F5∶6重组自交系群体,用日本稻瘟病鉴别菌系北1接种鉴定。黑壳子粳对北1的抗性是由1对显性主效基因控制的,定名为Pi hk1(t) 。根据不同杂交世代群体对北1的抗、感反应,结合SSR分子标记,将黑壳子粳中的Pi hk1(t) 基因定位在水稻第11染色体长臂末端,与RM7654和RM27381两个标记的遗传距离分别为0.9 cM和1.6 cM。  相似文献   

4.
Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant   总被引:1,自引:0,他引:1  
A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.  相似文献   

5.
An F2 population derived from the cross Zhong 9NR68 was used to map the fertility-restoring (Rf) gene for ID-type cytoplasmic male sterility (CMS).Two bulks (a fertile bulk and a sterile bulk) were constructed by pooling equal amount of ten highly fertile lines and ten highly sterile lines,respectively.Four hundred and thirteen pairs of simple sequence repeat (SSR) primers,which evenly distributed on 12 chromosomes of rice,were selected for analyzing polymorphisms between the parents and between the two bulks.The primer RM283 on chromosome 1 and the primers RM5756,RM258,RM6100 and RM171 on chromosome 10 were found to be polymorphic between the parents and between the two bulks.These five SSR markers were linked to fertility-restoring genes.A total of 82 excessive sterile lines were selected from Zhong 9NR68 F2 population to estimate the genetic distance between five SSR markers and fertility-restoring genes respectively.The results indicated that one Rf gene was linked to RM283 located on chromosome 1 at a distance of 6.7 cM,and the other Rfgene was mapped to the long arm of chromosome 10 flanked by RM258 and RM6100 at the distances of 8.0 cM and 2.4 cM,respectively.  相似文献   

6.
Grain size, determined chiefly by grain length, is one of the main factors affecting the grain yield in rice production. To study the trait of rice grain size, F1 and F2 populations were developed from crosses Shuhui 881/Y34 and Shuhui 527/Y34, and genetic analysis for minute grain was performed. The F1 populations showed minute grains, and grain size segregations in the two F2 populations were both in accordance with the ratio of 3:1, indicating that minute grain in Y34 was controlled by a completely dominant gene. By using the F2 population from Shuhui 881/Y34, this dominant gene, tentatively designated as Mi3(t), was mapped based on SSR markers in the interval between RM282 (genetic distance of 5.1 cM) and RM6283 (genetic distance of 0.9 cM) on the short arm of chromosome 3.  相似文献   

7.
水稻显性小粒基因Mi3(t)的遗传定位   总被引:1,自引:0,他引:1  
 对一份水稻小粒材料Y34进行了遗传研究及基因定位。Y34与长粒型水稻蜀恢881和蜀恢527的杂交F1表现为小粒,表明小粒性状受完全显性基因控制;同时,其F2群体小粒性状遗传分离规律均符合3∶1的分离比例,表明小粒性状受1对显性基因控制。利用蜀恢881/Y34 F2群体和微卫星标记,将该基因定位在第3染色体短臂上RM6283和RM282两个标记之间,其遗传距离分别为0.9 cM和5.1 cM,并将该基因初步命名为Mi3(t)。  相似文献   

8.
一个水稻颖壳扭曲突变体的遗传分析与基因定位   总被引:4,自引:0,他引:4  
 从水稻育种后代材料中获得1个颖壳扭曲突变体Osth (twisted hull)。遗传分析结果表明,该突变性状由单核基因隐性突变造成。以突变体与颖壳正常籼稻R725杂交的F2群体为基因定位群体,利用SSR标记将突变位点定位在第2染色体上的SSR标记RM14128与RM208之间,遗传距离分别为1.4 cM 和2.7 cM。这些结果为该基因的精细定位和克隆以及研究水稻花发育的分子机理奠定了基础。  相似文献   

9.
The discovery of thermo-sensitive genic male sterility(TGMS) has led to development of a simple and highly efficient two-line breeding system. In this study, genetic analysis was conducted using three F_2 populations derived from crosses between IR68301 S, an indica TGMS rice line, and IR14632(tropical japonica), Supanburi 91062(indica) and IR67966-188-2-2-1(tropical japonica), respectively.Approximately 1:3 ratio between sterile and normal pollen of F_2 plants from the three populations revealed that TGMS is controlled by a single recessive gene. Bulked segregant analysis using simple sequence repeat(SSR) and insertion-deletion(InDel) markers were used to identify markers linked to the tms gene. The linkage analysis based on the three populations indicated that the tms locus was located on chromosome 2 covering the same area. Using IR68301S × IR14632 F_2 population, the results showed that the tms locus was located between SSR marker RM12676 and InDel marker 2gAP0050058. The genetic distance from the tms gene to these two flanking markers were 1.10 and 0.82 cM, respectively.InDel marker 2gAP004045 located between these two markers showed complete co-segregation with the TGMS phenotype. In addition, InDel marker vf0206114052 showed 2.94 cM linked to the tms gene using F_2 populations of IR68301S × Supanburi 91062. These markers are useful tool for developing new TGMS lines by marker-assisted selection. There were ten genes located between the two flanking markers RM12676 and 2gAP0050058. Using quantitative real-time PCR for expression analysis, 7 of the 10 genes showed expression in panicles, and response to temperatures. These genes could be the candidate gene controlling TGMS in IR68301S.  相似文献   

10.
一个水稻新黄绿叶突变体基因的分子定位   总被引:17,自引:1,他引:16  
在水稻品种武运粳7号中发现了一个黄绿叶自然突变体,经过多代自交形成了稳定的突变系。该突变系和武运粳7号的正反交F2代的遗传分析表明该材料的黄绿叶由1对隐性基因控制,命名为 ygl 2。利用已有的微卫星(SSR)标记和新发展的SSR标记将 ygl 2基因定位于RM1340、RM7269、RM6298、SSR6 16和RM7434、SSR6 5、SSR6 9、RM5957之间,排列位置为RM1340-RM7269-RM6298-SSR6 16 -ygl 2-RM7434-SSR6 5、SSR6 9-RM5957,它们之间的遗传距离分别为238、0.37、0.00、0.62、0.74、0.49、0.86和1.62 cM,这为 ygl 2基因的分子标记辅助选择育种和图位克隆奠定了基础。  相似文献   

11.
用印尼水田谷型不育系中9A和恢复系R68配组,选取F2的高可育株和极端不育株构建2个基因池,用82个完全不育单株作为定位群体,利用分布于12条染色体的413对SSR引物对双亲和两池进行多态性分析。 位于第1染色体的RM283和位于第10染色体的RM5756、RM258、RM6100、RM171 在亲本、两池间存在多态性,用F2单株验证证明它们与恢复基因连锁。经典遗传分析和分子标记定位研究表明,印尼水田谷型细胞质雄性不育恢复系R68具有2对恢复基因,分别位于第1和第10染色体上。位于第1染色体的恢复基因与分子标记RM283的距离是6.7 cM,位于第10染色体的恢复基因与标记RM5756、RM258、RM6100和RM171间的距离分别是10.4、8.0、2.4和4.2 cM。  相似文献   

12.
大豆灰斑病1号生理小种抗性基因的SSR标记分析   总被引:15,自引:0,他引:15  
针对中国大豆灰斑病1号生理小种,以抗所有生理小种的品系东农40566为母本,以感1号生理小种的品种东农410为父本配制杂交组合,杂交得到F2代后连续自交3代得到F5代群体.该群体经人工接种灰斑病1号生理小种后,利用BSA法对500个SSR标记进行筛选,其中3个标记Satt565、SOYGPATR和Satt396在抗、感池间表现出稳定的多态性,并且在F2代个体中表现出抗性与多态性协同分离的趋势.这3个标记与抗性基因的连锁顺序为Satt565-SOYGPATR-Hrcs1-Satt396,它们与抗性基因的连锁距离分别为12.7cM、6.5cM、14.7cM.推测抗大豆灰斑病1号生理小种的基因可能位于C1连锁群上.  相似文献   

13.
 用粳型亚洲栽培稻品种WAB56-104与来自种间回交组合WAB56-/104/CG14∥WAB56-104///WAB56-104的3个栽培稻种间近等基因系杂交、回交,对3个BC1F1群体的花粉及小穗育性遗传研究表明,育性遗传符合单位点孢子体-配子体互作模型,来自非洲栽培稻的不育基因在与相同位点的亚洲栽培稻等位基因互作时,导致携带亚洲栽培稻等位基因的雌雄配子败育,而形成花粉及小穗的半不育,但本研究的3个组合中,并未导致所有携带亚洲栽培稻等位基因的雌配子完全败育,其作用介于配子消除与花粉灭杀之间。用微卫星标记对这3个群体的育性基因定位表明,它们都位于第6染色体短臂末端,但WAB450-2、WAB450-8携带的不育位点与紧密连锁的微卫星标记RM190、RM133共分离,且很可能与S1等位,而WAB450-7的不育基因则与位于相邻区间的RM253呈松散连锁,可能与WAB450-2、WAB450-8的育性位点不同。  相似文献   

14.
应用近等基因系初步定位粳稻孕穗期的耐冷基因   总被引:8,自引:1,他引:8  
 在昆明低温冷害条件下对十和田×(十和田5/昆明小白谷BC4F5)的BC5F2群体进行了耐冷性状的遗传研究。结果显示,穗期耐冷性受贡献率较大的基因控制。用平均分布于12条染色体的164个SSR标记对十和田、昆明小白谷、近等基因系池(NILP)进行筛选,在第5染色体长臂末端有2个SSR标记的扩增产物在十和田与昆明小白谷、NILP间有多态性。用这2个多态性标记对群体进行分子标记定位,单向方差分析表明RM31与耐冷基因连锁。再在RM31附近合成12个SSR标记在轮回亲本(RP)、近等基因系(NIL)间进行多态性筛选,只有RM7452有多态性, 单向方差分析表明该标记与耐冷基因连锁。耐冷基因与RM7452、RM31的遗传距离分别为4.8 cM和8.0 cM,主穗结实率能解释表型变异的10.50%;实粒数能解释表型变异的5.10%。暂将这个耐冷基因定名为Ctb(t)。  相似文献   

15.
To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S,some reciprocal crosses were made between Mian 9S and six indica rice materials,Yangdao 6,Luhui 602,Shuihui 527,Mianhui 725,Fuhui 838 and Yixiang 1B.Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene.Thus,the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S.By using SSR markers,the PGMS gene of Mian 9S was mapped on one side of the markers,RM6659 and RM1305,on rice chromosome 4,with the genetic distances of 3.0 cM and 3.5 cM,respectively.The gene was a novel PGMS gene and designated tentatively as pros4.In addition,the application of the pros4 gene was discussed.  相似文献   

16.
Genetic Analysis and Gene Mapping of a Rice Tiller Angle Mutant tac2   总被引:1,自引:0,他引:1  
Tiller angle, a very essential agronomic trait, is significant in rice breeding, especially in plant type breeding. A tiller angle controlling 2 (tac2) mutant was obtained from a restorer line Jinhui 10 by ethyl methane sulphonate mutagenesis. The tac2 mutant displayed normal phenotype at the seedling stage and the tiller angle significantly increased at the tillering stage. A preliminary physiological research indicated that the mutant was sensitive to GA. Thus, it is speculated that TAC2 and TAC1 might control the tiller angle in the same way. Genetic analysis showed that the mutant trait was controlled by a major recessive gene and was located on chromosome 9 using SSR markers. The genetic distances between TAC2 and its nearest markers RM3320 and RM201 were 19.2 cM and 16.7 cM, respectively.  相似文献   

17.
一个水稻金黄色颖壳和节间基因的遗传定位   总被引:3,自引:0,他引:3  
R68是带有金黄色颖壳和节间标记的籼稻恢复系。对来源于组合中9A/R68 的F2群体的遗传分析表明,R68的金黄色颖壳和节间性状由1对隐性基因控制。利用SSR分子标记,采用隐性群体分析法,把金黄色颖壳和节间基因定位在第3染色体上,位于RM1230、RM7000和RM227、RM514之间,遗传距离分别为8.7、3.3、2.7和4.7 cM,暂将该基因命名为 gh 5。  相似文献   

18.
 从甲基磺酸乙酯诱变的Kasalath突变体库中,在苗期筛选到一个水稻短根突变体 ksr1, 6 d苗龄时该突变体的根长只有野生型的20%左右,遗传分析表明该突变性状由一对隐性核基因控制。利用突变体与粳稻日本晴杂交发展的F2群体对突变基因进行了定位分析,初步定位结果显示目的基因 KSR1 与第4染色体上SSR标记RM1223连锁。在该标记附近进一步发展了8对SSR标记和2对InDel标记,将突变基因定位于InDel标记4 24725K和SSR标记RM17182之间,该区段物理距离为155 kb。  相似文献   

19.
A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B.It showed whole green-yellow plant from the seedling stage,reduced number of tillers and longer growth duration.The contents of chlorophyll,chlorophyll a,chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased,as well as the number of spikelets per panicle,seed setting rate and 1000-grain weight compared with its wild-type parent.Genetic analyses on F1 and F2 generetions of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene.Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys,and the mutant gene of 824ys was mapped on the shon arm of rice chromosome 3.The genetic distances from the target gene to the markers RM218,RM282 and RM6959 were 25.6 cM,5.2 cM and 21.8 cM,respectively.It was considered to be a now chlorophyll-deficit mutant gene and tentatively named as chl11(t).  相似文献   

20.
粳稻野败型细胞质雄性不育恢复系SWR78的恢复基因定位   总被引:1,自引:0,他引:1  
 利用野败(WA)型粳稻广亲和不育系苏秋A和广亲和广谱型恢复系SWR78配组,根据F2与BC1F1群体的育性分离情况,初步推测WA型苏秋A的育性恢复至少由3对基因控制。选取F2群体中无染色花粉植株,采用隐性基因组分析法进行恢复基因定位,将其中1个主效基因Rf4定位于第10染色体长臂上,与标记RM5629、RM5373、STS10 17和STS10 18分别相距0.17、0.03、0.03和0.07 cM。Rf4位于标记RM5373与STS10 17之间,两标记间的物理距离为78 kb。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号