首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest restoration projects with Holm oak (Quercus ilex) have had limited success, mostly due to water stress after planting and poor plant quality. Recent studies indicated that large and nutrient rich plants perform better in Mediterranean areas, suggesting that late-season fertilization may improve plant quality and field performance. The purpose of this study was to assess the effect of late-season fertilization on the quality of Holm oak seedlings, as determined by morphological, nutritional, and water relations analyses. We grew Holm oak nursery seedlings under 5 different late-season fertilization regimes and then analyzed morphological characteristics, nutritional status, and water relations parameters of the fertilization groups at the end of the nursery period. We also analyzed the effect of fertilization on nutritional status by use of vector nomograms. Our results indicated that late-season NPK fertilization improved shoot and root growth, and the overall nutritional status of seedlings. The lack of late-season fertilization leads to nutrient deficiency in plants, whilst the application of imbalanced fertilization treatments may trigger nutrient luxury consumption and nutrient dilution, pointing out the importance of NPK proportions in the fertilizer. Moreover, late-season fertilization with nitrogen might improve the drought resistance of seedling by enhancing their osmotic adjustment.  相似文献   

2.
With over 1.5 billion forest tree seedlings produced annually in the USA, seedling quality assessment is critical to ensure reforestation success. While height and root-collar diameter are the most common traits evaluated during seedling quality assessment, above-ground morphology is not always an accurate predictor of performance after outplanting. Root system morphology and physiological status may provide a more accurate indication of seedling potential. However, relatively few studies have attempted to quantitatively assess root system quality in relation to outplanting success. Large root volume, high root fibrosity, and an increased number of first-order lateral roots have shown some correlation to improved field performance. Physiological seedling quality assessment is commonly practiced through evaluation of root growth potential. Other tests, such as root electrolyte leakage, have also shown some potential as measures of seedling physiological quality. This review identifies current methods of assessing seedling root system quality and discusses potential shortcomings of these methods. An increased understanding of the suitability of current tests, coupled with the development of new tests and multiple parameter relationships, may foster the development of species and site-specific targets for seedling root system quality assessment. The production of seedlings with root systems that meet high morphological and physiological standards better enables seedlings to rapidly establish and thrive upon outplanting.  相似文献   

3.
The planting environment of Mediterranean areas is highly challenging as summer drought and winter frost jeopardize survival, and soil infertility limits establishment success. We review the potential for seedling nutrient loading to alleviate these post-planting stresses. A growing body of evidence indicates that nitrogen (N) rich seedlings have improved field performance in Mediterranean environments, due to their ability to grow new roots rapidly and out-compete weeds. In addition, frost resistance during hardening is crucial for relatively cold inland nurseries; recent research shows a positive relationship between N and shoot frost resistance though a knowledge gap exists regarding the influence of nutrition on root frost resistance. Some new evidence also implicates phosphorus as an important driver of seedling response in the Mediterranean due to its influence on root growth and physiology. Nutrient status influences other functional attributes critical to survival in Mediterranean areas, such as drought tolerance, root hydraulic conductivity, and mycorrhization. In light of the apparent benefits of high nutrient reserves for seedling performance in Mediterranean areas, we also review techniques for nursery nutrient loading. Exponential fertilization can be applied when species’ growth patterns match this application regime. However, many Mediterranean species exhibit episodic growth indicating that constant or fall fertilization could be more effective in reaching loading. In particular, late-season fertilization has shown good potential to avert nutrient dilution in the fall and increase frost resistance. Several needs for future research are identified, with special emphasis on the necessity to match fertilization regimes to species ecological traits and planting conditions.  相似文献   

4.
With increasing knowledge about how nutrient and water availability affect tree growth, and with new techniques of genetic manipulation becoming known, it seems appropriate to ask whether the two can be combined. Is it possible or worthhile to produce genotypes tailored for specific nutrient or water conditions?

Interactions between genotypes and the environments in which they grow have frequently been shown to be statistically significant for a wide range of tree species in many environments. However, the practical importance of the interactions is highly questionable as additional genetic gains to be had through using the interactions are very small in relation to the overall gains themselves. Interactions seem very large for seedling experiments in glasshouse trials, but are much less in field trials even when the environments are extensively modified by fertilizers. For the genotypes to be matched to environments, those environments must be well-defined and repeatable.

Sites where there are specific problems tend to be well-defined and repeatable. Matching genotypes to such sites may provide a useful solution to those problems. The genotypes may be produced as seed from crosses or as clones from tissue culture or, more conventially, from stem cuttings. Selection in vitro for particular traits requires a level of knowledge about the traits generally absent for forest trees. When the ways in which diseases or poor adaptation effect trees are better known, such selection may become practicable. We do not believe it is practicable at present for diseases or for nutrient or water relations.  相似文献   


5.
Early establishment of seedlings in reclaimed oil sand areas is often limited by low nutrient and water availability due to factors such as strong understory vegetation competition. Management practices such as nursery fertilization and field weed control could help early establishment of planted seedlings and reclamation success. We investigated the effect of nursery nutrient loading and field weed control on the growth, nitrogen (N) retranslocation within seedling components, and plant N uptake from the soil for white spruce (Picea glauca [Moench] Voss) seedlings planted on a highly competitive reclaimed oil sands site for two years. Exponential fertilization during nursery production increased the root biomass but not the nutrient reserve in the seedling. In the field experiment, on average across the treatments, 78 and 49% of the total N demand of new tissue growth in the first and second year were met by N retranslocation, respectively. Though exponential fertilization did not affect N retranslocation, it increased the percent height and root collar diameter growth. Weed control increased not only the growth of seedlings by increasing soil N availability, but also N retranslocation within the seedlings in the second year after outplanting. We conclude that vegetation management by weed control is feasible in improving the early growth of white spruce seedlings planted on reclaimed soils and facilitate tree establishment in the oil sands region. Optimization of the nursery exponential N fertilization regime for white spruce may further help with early revegetation of reclaimed oil sands sites.  相似文献   

6.
Reduction in size and tissue nutrient concentration is widely considered to increase seedling drought resistance in dry and oligotrophic plantation sites. However, much evidence indicates that increase in size and tissue nutrient concentration improves seedling survival in Mediterranean forest plantations. This suggests that the ecophysiological processes and functional attributes relevant for early seedling survival in Mediterranean climate must be reconsidered. We propose a ecophysiological conceptual model for seedling survival in Mediterranean-climate plantations to provide a physiological explanation of the frequent positive relationship between outplanting performance and seedling size and nutrient concentration. The model considers the physiological processes outlined in the plantation establishment model of Burdett (Can J For Res 20:415–427, 1990), but incorporates other physiological processes that drive seedling survival, such as N remobilization, carbohydrate storage and plant hydraulics. The model considers that seedling survival in Mediterranean climates is linked to high growth capacity during the wet season. The model is for container plants and is based on three main principles, (1) Mediterranean climates are not dry the entire year but usually have two seasons of contrasting water availability; (2) summer drought is the main cause of seedling mortality; in this context, deep and large roots is a key trait for avoiding lethal water stress; (3) attainment of large root systems in the dry season is promoted when seedlings have high growth during the wet season. High growth is achieved when seedlings can divert large amount of resources to support new root and shoot growth. Functional traits that confer high photosynthesis, nutrient remobilization capacity, and non-structural carbohydrate storage promote high growth. Increases in seedling size and nutrient concentration strongly affect these physiological processes. Traits that confer high drought resistance are of low value during the wet season because hinder growth capacity. We provide specific evidence to support the model and finally we discuss its implications and the factors that may alter the frequent increase in performance with increase in seedling size and tissue nutrient concentration.  相似文献   

7.
The effects of test environments (dry versus wet) on estimation of genetic parameters in seedling traits were studied in 160 open‐pollinated families of Douglas‐fir (Pseudotsuga menziesii (Mirb.) Franco) from southwestern Oregon. Seedlings from four populations were grown in two test environments for two growing seasons. Between test environments, ‐9 bars of water potential difference were created in both growing seasons. Estimated genetic variances in most growth and phenology traits were considerably higher for seedlings grown in the wet environment than for those in the dry. Estimated genetic correlations between the same traits measured in different test environments indicated that most seedling traits studied for two growing seasons are genetically stable in both environments—i.e., suggesting that genotype by environment interaction in these traits are weak. However, the effect of test environment on estimation of genetic parameters in seedling traits, especially in adaptive seedling traits, should be evaluated very carefully when early evaluation of genetic entries is practiced in Douglas‐fir since these traits (budburst timing, lammas growth and free growth) appear to be plastic traits.  相似文献   

8.
苗木质量评价的研究现状与趋势   总被引:9,自引:0,他引:9  
如何正确评价苗木质量的问题正受到普遍关注。本文对苗木质量评价的研究现状做了简要介绍。评价苗木质量的指标主要有苗木水分状况,矿物质含量,碳水化合物储量,芽休眠状态,形质指标,根生长潜力,抗冻性和抗逆性等。文章对以上指标的测定方法及各自的特点做了简述,并分析了存在的问题与发展方向。  相似文献   

9.
We conducted a study to find out if arbuscular mycorrhizal (AM) fungi (Acaulospora scrobiculata, Scutellospora calospora) and phosphate solubilizing bacteria (PSB, Paenibacillus polymyxa) inoculation either individually or in combinations can improve Acacia auriculiformis seedling growth, uptake of nutrients and quality in a phosphorus deficient tropical Alfisol. The seedlings were assessed for various growth and nutrient uptake parameters after 60 days of treatment. Inoculation with P. polymyxa stimulated mycorrhizal formation. Seedling height, stem girth, taproot length, number of leaves and leaf area, plant dry matter production, nodulation, and nodular dry weight were significantly higher for seedlings that were either dual inoculated or triple inoculated compared to individual inoculation of AM fungi or PSB, and uninoculated seedlings. Dual and triple application of AM fungi and PSB also significantly improved the nutrient contents of shoots and roots and nutrient uptake efficiencies. The calculated seedling quality indexes of the AM fungi and PSB inoculated seedling were 25–208% higher than uninoculated seedlings. These findings show that A. auriculiformis seedlings when dual inoculated or triple inoculated performed better than seedlings inoculated with the microbes individually and compared with uninoculated control seedlings. We conclude that bioinoculation is important for the production of high-quality A. auriculiformis seedlings in tree nurseries for planting in nutrient deficient soils.  相似文献   

10.
Reforestation efforts in dryland ecosystems frequently encounter drought and limited soil productivity, although both factors usually interact synergistically to worsen water stress for outplanted seedlings. Land degradation in drylands (e.g. desertification) usually reduces soil productivity and, especially, soil water availability. In dry sub-humid regions, forest fires constitute a major disturbance affecting ecosystem dynamics and reforestation planning. Climate change projections indicate an increase of drought and more severe fire regime in many dryland regions of the world. In this context, the main target of plantation technology development is to overcome transplant shock and likely adverse periods, and in drylands this is mostly related to water limitations. In this paper, we discuss some selected steps that we consider critical for improving success in outplanting woody plants, both under current and projected climate change conditions including: (1) Plant species selection, (2) Improved nursery techniques, and (3) Improved planting techniques. The number of plant species used in reforestation is increasing rapidly, moving from a reduced set of well-known, easy-to-grow, widely used species, to a large variety of promising native species. Available technologies allow for reintroducing native plants and recovering critical ecosystem functions for many degraded drylands. However, climate change projections introduce large uncertainties about the sustainability of current reforestation practices. To cope with these uncertainties, adaptive restoration approaches are suggested, on the basis of improved plant quality, improved techniques for optimizing rain use efficiency in plantations, and exploring native plant species, including provenances and genotypes, for their resilience to fire and water use efficiency.  相似文献   

11.
Why seedlings survive: influence of plant attributes   总被引:4,自引:2,他引:2  
Seedling survival and successful forest restoration involves many silvicultural practices. One important aspect of a successful forest restoration program is planting quality seedlings with high survival capability. Thus the nursery needs to create seedlings with plant attributes that allow for the best chance of success once a seedling is field planted. Since the mid-twentieth century, research foresters have critically examined plant attributes that confer improved seedling survival to field site conditions. This review describes the value of commonly measured seedling quality material (i.e. shoot height, stem diameter, root mass, shoot to root ratio, drought resistance, mineral nutrient status) and performance (i.e. freezing tolerance and root growth) plant attributes defined as important in answering the question of why seedlings survive after planting. Desirable levels of these plant attributes can increase the speed with which seedlings overcome planting stress, become ‘coupled’ to the forest restoration site, thereby ensuring successful seedling establishment. Although planting seedlings with these desirable plant attributes does not guarantee high survival rates; planting seedlings with desirable plant attributes increases chances for survival after field planting.  相似文献   

12.
Second-year Norway spruce seedlings [Picea abies (L.) Karst.] grown in containers were divided into three fertilization levels in August [5, 15 and 25 mg nitrogen (N) seedling?1]. The resulting foliar concentrations of N were 11.0, 13.1 and 15.8 g kg?1, respectively. Seedling height (mean 26.0 cm) did not differ among treatments. The next spring, the seedlings were tested in two experiments. (1) The seedlings were transplanted into pots containing sandy soil in the greenhouse, where they were fertilized with either pure water or nutrient solution (22 mg N l?1). (2) The outplanting performance of the autumn-fertilized seedlings was tested on a sandy field. In the greenhouse experiment, the autumn fertilization level affected height growth and root egress of the seedlings significantly, but less than fertilization with a nutrient solution after planting. In the field experiment, during the first season after transplanting shoot growth of the seedlings increased with the level of autumn fertilization. After the second and third seasons, the seedling stem volume was highest with the highest level of autumn fertilization. These results suggest that, by improving the preplanting nutrient status of seedlings, the growth of shoot, stem diameter and root biomass can be enhanced after planting, especially on nutrient-poor soils. However, heavier autumn fertilization than that used here may yield a greater and more persistent increment in growth.  相似文献   

13.
Successful forest restoration requires planting quality seedlings with optimal growth potential. Thus, nurseries need to produce seedlings with plant attributes that favor the best chance of successful establishment once they are field planted. From the mid-twentieth century on, research foresters have critically examined plant attributes that confer improved seedling growth under various restoration site conditions. This review examines the value of commonly measured seedling quality attributes (i.e., height, diameter, root mass, shoot-to-root ratio, drought resistance, freezing tolerance, nutrient status, root growth potential, and root electrolyte leakage) that have been recognized as important in explaining why seedlings with improved attributes have better growth after planting. Seedlings with plant attributes that fall within the appropriate range of values can increase the speed with which they overcome planting stress, initiate growth, and become “coupled” to the forest restoration site, thereby ensuring successful seedling establishment. Although planting high quality seedlings does not guarantee successful seedling establishment, it increases chances for successful establishment and growth.  相似文献   

14.
林木容器育苗底部渗灌技术研究现状与展望   总被引:1,自引:0,他引:1  
林业苗圃容器育苗采用上方喷灌易造成水分浪费、养分淋溶流失及环境污染。容器苗底部渗灌技术是利用育苗基质毛细管作用从容器下方吸收水分对苗木进行灌溉。该系统由储水箱、水泵、施水槽等设备形成水分封闭回流系统,可实现灌溉水循环利用,是一种有效管理容器苗水肥的方法。文中介绍了容器苗底部渗灌技术形成背景与系统组成,并从苗木质量、水肥利用效率、基质EC值和pH值以及病虫害等方面对容器苗底部渗灌系统进行评述,同时对该技术的深入研究和应用提出了展望。  相似文献   

15.
Timmer  V.R. 《New Forests》1997,13(1-3):279-299
Reforestation efforts in Ontario have become increasingly more reliant on containerized planting stock since these seedlings are less costly to produce and plant than bare-root stock. Container seedlings, however, tend to be more susceptible to competing vegetation when planted on weed-prone sites often requiring release by chemical herbicides. We have developed cultural techniques to improve the competitiveness of containerized seedlings by promoting initial outplanting performance thus reducing the need for early vegetation control. The approach is based on two new preconditioning practices, exponential fertilization and nutrient loading, which induce a steady-state build up of nutrient reserves in seedlings for outplanting. Exponential nutrient loading integrates these practices with high dose fertilization inducing luxury consumption. Steady-state culture corresponds better with the competitive outplanting environment, since stable internal nutrient accumulation in the greenhouse phase conforms with steady-state nutrient uptake of natural exponentially growing vegetation in the field, and exponential nutrient delivery to container-restricted root systems also better simulates nutrient flux reached by expanding roots in a field soil with constant nutrient availability. Combined with nutrient loading, the higher nutrient reserves and improved nutrient balance in seedlings contribute to enhanced stress resistance and increased growth performance. This paper reviews the theory and practice of exponential nutrient loading during seedling culture, presents results of growth and nutritional responses of seedlings planted on competitive sites, and suggests appropriate criteria for quality testing of nutrient loaded stock.  相似文献   

16.
The spatial distribution of tree juveniles in relation to light environments may reflect species differences in growth, survival, and functional traits and will shape the nature of forest regeneration. Long-term field experiments are important to evaluate this issue because of the potentially very long juvenile period in trees. Here, we combine a 10-year seedling survival–growth data with the results of community ordination and multivariate analyses of functional traits to ask how observed juvenile light guilds are related to species functional traits and seedling performance. We transplanted seedlings at a standardized height of 11 cm into the shaded understory and quantified their growth and survival for 10-years. Using the community-wide stem distribution data, we categorized 33 species including the focal 11 species to understory vs. gap/edge guilds. Then, we determined differences between the two guilds in seedling survival, growth, as well as seed size, adult height, and a series of leaf traits, including toughness and chemical traits (fiber, protein, phenolics, tannins, alkaloids, saponins). Among the 11 non-pioneer species whose seedlings were planted into the understory, there was no significant difference in 10-year survival between light guilds, but species in gap/edge guild tended to achieve greater height than species in the understory guild. The leaf chemical traits of 33 species did not differ between the two juvenile light guilds, but gap/edge species had smaller seeds, taller adults, and tougher leaves than understory species. We used logistic regression as a complementary approach to assess the extent to which plant traits varied between light guilds and the most parsimonious model based on AICc ranking included only leaf toughness and had an Akaike weight of 0.52. In addition, across the 11 species planted as seedlings, these traits were not significantly related to survivorship or growth over 10 years. A Principle Components Analysis illustrated associations among traits. We conclude that light guilds in terms of juvenile stem distribution could not be explained by long-term field performance of post-establishment seedlings alone. Earlier seedling stage or later sapling stage may be more important in differentiation of light guilds. For the species examined difference in growth rates could be linked to seed size and adult stature, but not to the adult leaf chemical traits considered. These results suggest the importance of examining ontogenetic shifts and relationships among functional traits for a better understanding of regeneration strategies of tropical trees.  相似文献   

17.
Heiskanen  Juha  Rikala  Risto 《New Forests》1998,16(1):27-42
Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.) seedlings were grown in containers filled with growth media based on medium-textured sphagnum peat, coarse perlite and fine sand. The seedlings were then planted into fine and coarse sandy soils in 2.2 l pots, which were subjected to two water-content treatments (only one for birch). After the seedlings had grown five weeks in a greenhouse, rooting into the surrounding soil and shoot growth were measured. Addition of perlite and sand to peat medium slightly affected rooting; thus suggesting minor effects on seedling establishment. However, nitrogen concentration of the seedlings varied between growth media and correlated positively with rooting into the soil. The particle size and water content of the soil affected considerably rooting of the seedlings. Seedling height at the time of planting did not affect rooting or shoot growth. The fact that the fewest out-grown roots occurred in the dry fine sandy soil, suggests that dry soil together with high strength and resistance to root penetration reduce rooting and water uptake by container seedlings most and may thus cause water and nutrient stresses to seedlings after outplanting.  相似文献   

18.
Removal of logging residues causes significant nutrient losses from the harvesting site. Furthermore, collection of residues into piles could lead to small-scale differences in establishment conditions for seedlings. We studied the effects of stem-only (SOH) and aboveground whole-tree harvesting (WTH) on Norway spruce (Picea abies) seedling growth and pine weevil (Hylobius abietis) damage at two sites (SE and W Norway). We also compared two planting environments within the WTH plots (WTH-0: areas with no residues, WTH-1: areas where residue piles had been placed and removed before planting). In practice, one-third of the residues were left on site after WTH. After three growing seasons there were no differences for height or diameter increment between SOH and WTH (WTH-1 and WTH-0 combined) treatments. However, relative diameter increment was largest for WTH-1 seedlings and lowest for WTH-0 seedlings. Few seedlings sustained pine weevil attacks at the W Norway site, with no differences among treatments. At the SE Norway site, the percent of seedlings damaged by pine weevils and average debarked area were significantly higher after WTH (82% and 3.3?cm2) compared to SOH (62% and 1.7?cm2). We conclude that WTH may lead to spatial differences in establishment conditions.  相似文献   

19.
INTR0DUCTl0NCultivatingseedlingswithmycorrhizaistmiversallyacknowledgedasthethirdkeyelementincultivatioroffastgrowingandhigl1yeildforests.Seedlingswithmycorrhizatakenbymanycountfiesoftheworldasoneoftheeffectivcmeasurestthichcanincreaseyieldsin'agricultUreandforestry,hasbeenpaidclosedattentionextensivelyandutilizedinforestproduction.Inordertoenhancetechnologylevelofseedlingcultivationandsurvivalrateofplanta-tion,weestablishedaworkplaceintheCentraINursery,Chao3uanF0restBureautomakemycorrhi…  相似文献   

20.
The use of low quality planting material is one of the major reasons for the limited success of past reforestation programs in the Philippines and elsewhere in the tropics. In the Philippines, a national policy has been in place since 2010, which regulates the quality of seedlings. As part of the policy, government reforestation programs are required to use only high quality seedlings from accredited seedling suppliers. A survey of nurseries producing seedlings for the National Greening Program in Eastern Visayas and Northern Mindanao regions was carried out to determine the effectiveness and challenges in implementing the forest nursery accreditation policy. The survey identified factors that limit the effectiveness of seedling quality regulation including lack of auditing of seedling quality in accredited nurseries, insufficient monitoring of the seedling supply chain among the network of nurseries supplying seedlings for reforestation programs, inadequate seedling production schedules, and inappropriate criteria for seedling quality assessment. The limited sources of high quality germplasm, nursery operators’ limited information on the attributes of high quality planting materials and lack of knowledge about high quality seedling production technologies contributed to the widespread production of low quality seedlings. The lack of seedling quality checks makes the government’s bidding scheme of seedling purchases prone to favouring the proliferation of low quality seedlings that are usually sold at lower prices. Nursery accreditation represents a major initiative in promoting the success of Philippine reforestation but our study found that considerable improvement of the policy and of its implementation is necessary. From our study, key lessons can be learned for the implementation of forest landscape restoration initiatives in other tropical developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号