首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-term (three to four years) effects of forest harvesting on soil solution chemistry were investigated at two Norway spruce sites in southern Norway, differing in precipitation amount and topography. Experimental plots were either harvested conventionally (stem-only harvesting, SOH) or whole trees, including crowns, twigs and branches were removed (whole-tree harvesting, WTH), leaving residue piles on the ground for some months before removal. The WTH treatment had two sub-treatments: WTH-pile where there had been piles and WTH-removal, from where residues had been removed to make piles. Increased soil solution concentrations of NO3–N, total N, Ca, Mg and K at 30?cm depth, shown by peaks in concentrations in the years after harvesting, were found at the drier, less steep site in eastern Norway after SOH and WTH-pile, but less so after WTH-removal. At the wetter, steeper site in western Norway, peaks were often observed also at WTH-removal plots, which might reflect within-site differences in water pathways due largely to site topography.  相似文献   

2.
Whole-tree harvesting (WTH), where logging residues are removed in addition to stems, is widely practised in Fennoscandian boreal forests. WTH increases the export of nutrients from forest ecosystems. The extent of nutrient removals may depend on tree species, harvesting method, and the intensity of harvesting. We developed generalized nutrient equations for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten), and birch (Betula pendula Roth and Betula pubescens Ehrh.) stands to be able to calculate the amounts of nitrogen, phosphorus, potassium, and calcium in stems and above-ground biomass (stem and crown) as a function of stand volume. The equations were based on Fennoscandian literature data from 34 pine, 26 spruce, and 5 birch stands, and they explained, depending on the tree species and nutrient, 61–99% and 56–87% of the variation in the nutrient amounts of stems and above-ground biomass, respectively. The calculations based on the equations showed that nutrient removals caused by stem-only harvesting (SOH) and WTH per harvested stem m3 were smaller in pine than in spruce and birch stands. If the same volume of stem is harvested, nutrient removals are, in general, nearly equal at thinnings and final cuttings in SOH, but larger in thinnings than final cuttings in WTH. If the principal aim is to minimize the nutrient removals per harvested stem m3, the harvesting should be done at mature pine stands. The effect of biomass removal on overall site nutrient status depends on site-specific factors such as atmospheric deposition, weathering of minerals, and the size of the nutrient pools in the soil.  相似文献   

3.
Feeding by pine weevil (Hylobius abietis L.) causes severe damage to newly planted conifer seedlings in most parts of Scandinavia. We investigated the effect of planting time and insecticide treatment on pine weevil damage and seedling growth. The main objective was to study if planting in early autumn on fresh clear-cuts would promote seedling establishment and reduce the amount of damage caused by pine weevil the following season. The experiment was conducted in southern Sweden and in south-eastern Norway with an identical experimental design at three sites in each country. On each site, Norway spruce seedlings with or without insecticide treatment were planted at four different planting times: August, September, November and May the following year. In Sweden, the proportion of untreated seedlings that were killed by pine weevils was reduced when seedlings were planted at the earliest time (August/September) compared to late planting in November, or May the following year. This pattern was not found in Norway. The average length of leading shoot, diameter growth and biomass were clearly benefited by planting in August in both countries. Insecticide treatment decreased the number of seedlings killed or severely damaged in both Norway and Sweden.  相似文献   

4.
The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH + CoF) and normal nitrogen-based (CH + F or WTH + F) fertilisation were also studied. A series of 22 field experiments were established during 1977-1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10-13 years at 11 experimental sites. Seven experiments were followed for 25 years.Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response.Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10-year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site.If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH + CoF), the volume increment was equal to that in the CH plots. Nitrogen (150-180 kg ha−1) or N + P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13 m3 ha−1, followed by a negative response of 5 m3 ha−1 during the second 10-year period. The fertilisation effect of WTH + F and WTH + CoF on basal area increment was both smaller and shorter than with CH + F.  相似文献   

5.
Damage caused by pine weevil (Hylobius abietus L.) to planted seedlings and cuttings of Norway spruce (Picea abies (L.) Karst.) was studied at five clearcut sites in south-eastern Sweden. The main objective was to compare the two types of stock in terms of attack frequency and mortality due to pine weevil feeding. Cuttings and seedlings with the same initial stem-base diameter (4 mm) were compared. Two sites were harvested and scarified shortly before planting, two were harvested shortly before planting, but were not scarified, and one was harvested 2 years before and scarified the autumn before planting. The total mortality 5 years after planting was highest, greater than 90%, at the new, non-scarified sites, and lowest, 23%, at the old, scarified site. More than 90% of the mortality was caused by pine weevil feeding. Attack frequency and pine weevil induced mortality were significantly higher among seedlings than among cuttings. Mortality due to pine weevil damage was 4–43% higher in seedlings than in cuttings after the fifth year. Of the cuttings and seedlings that were attacked in the first year, a significantly higher frequency of the seedlings were girdled. The higher resistance of cuttings to pine weevil damage may partly explain the more rapid growth of cuttings reported in other studies. However, the causes of their higher resistance need to be further investigated. The thicker bark and needles on the stem base of the cuttings could be important in this respect.  相似文献   

6.
Abstract

The pine weevil Hylobius abietis L. is major threat to forest regeneration in the Nordic countries. The persistence of the deltamethrin insecticide used against pine weevil on Norway spruce seedlings was studied after the seedlings were dipped or sprayed. Insecticide application was timed to occur either before or after frozen storage. Bioassays with the stems of Norway spruce seedlings were used to determine the effect of the insecticide against feeding by the pine weevil. The measures of the control effect were reduction in area of gnawed bark and the state of health of the pine weevils. The concentration of deltamethrin decreased rapidly in seedlings, especially after spraying treatment, which did not efficiently protect seedlings against the pine weevil 6 weeks after planting. There were no signs of degradation of deltamethrin or of an effect on seedling height after frozen storage. In bioassay, the amount of deltamethrin that efficiently prevented feeding by the pine weevil was 5.5 µg g?1 fresh weight. After one growing season in the field, about 1.76–2.24 µg g?1 (13–15% of the initial level) of dipped deltamethrin remained in the seedlings. In seedlings treated by spraying, 0.93–0.98 µg g?1 (7–8% of the initial level) of the deltamethrin remained. According to bioassays, these amounts were no longer sufficient to protect seedlings from feeding by the pine weevil. Therefore, in the first summer, dipping was a significantly more efficient method of application for control of pine weevils.  相似文献   

7.
Abstract

Pine weevil (Hylobius abietis L.) damage to seedlings after overstorey removal was investigated in a survey study in six shelterwoods in the south–central part of Sweden. The shelterwoods predominantly consisted of Scots pine, except at one site where the shelter trees mainly consisted of Norway spruce. Before final cutting, 10 plots were laid out at each site and measurements of shelter trees and marked seedlings were taken. The seedlings were examined during the 2 years after final cutting. The study showed that removal of shelter trees increases the risk of severe damage by pine weevil and the variable that was most strongly correlated with the risk was the seedling root collar diameter. Both Scots pine and Norway spruce seedlings were severely damaged by pine weevil, and most of the feeding occurred during the first year after cutting. The amount of debarked area was significantly larger for Scots pine than for Norway spruce seedlings. Vitality (growth of the leading shoot before final cutting) of the seedlings also affected the probability of damage. Seedlings with high vitality were less damaged by pine weevil than seedlings with low vitality. For Scots pine the shelterwood density before final cutting was correlated to the intensity of pine weevil feeding after cutting. In conclusion, after the final cutting of a pine or spruce shelterwood, pine weevils will probably invade the area. To avoid serious damage, Norway spruce and Scots pine seedlings should have reached a diameter of at least 10–12 mm.  相似文献   

8.
Replanting at appropriate times after harvesting a coniferous forest stand can help efforts to suppress seedling mortality caused by the pine weevil Hylobius abietis, but optimal times are uncertain. We hypothesized that planting in June rather than May in the third season after harvest would reduce feeding damage by the pine weevil and increase seedling survival rates in central Sweden, where new-generation weevils mainly fly away from their development sites in May/early June. An experimental test of the hypothesis in eight clear-cuts confirmed that planting in June instead of May reduced proportions of seedlings attacked by pine weevil, bark removal from seedlings’ stems, and proportions of seedlings killed by feeding damage. These differences between seedlings planted in May and June declined to some extent with time but still remained significant after two growing seasons. The total seedling mortality after two seasons did, however, not differ significantly between seedlings planted in May and June. Overall, 29% of all seedlings were killed by pine weevil, 4.0% by Hylastes bark beetles, and 2.3% by drought. The results indicate that replanting in spring during the third season after harvest can advantageously continue until mid-June with respect to damage and mortality.  相似文献   

9.
In northern Europe, there are high risks of severe pine weevil (Hylobius abietis) damage to newly planted conifer seedlings. Site preparation is one of the most important measures for reducing these risks and as several studies have shown the damage is highly dependent on the amount of pure mineral soil around the seedlings. We investigated effects of three site preparation techniques: (1) disc trenching with a conventional Bracke T26, (2) MidiFlex unit and (3) soil inversion with a Karl Oskar unit on characteristics of the planting spots, growth and pine weevil damage and survival rates of untreated and insecticide treated planted Norway spruce (Picea abies) seedlings. All three site preparation techniques reduced pine weevil damage in comparison with no site preparation, and the proportion of spots with pure mineral soil they created was inversely related to the rate of mortality caused by pine weevil. The results indicate that the quality of the planting spots depends on the technique used. In areas where pine weevil is the major threat to seedling survival, the amount of mineral soil in the planting spots is the most important factor in order to protect the seedling from damage. Without site preparation most planting spots consisted of undisturbed humus. Generally, the Karl-Oskar created the most spots with pure mineral soil, but on very stony soils the Bracke T26 created more mineral soil spots than other methods. Site preparation is a valuable tool in order to improve survival in regeneration areas and it is of great importance to make the right choice of technique depending on the particular circumstances on the actual site.  相似文献   

10.
Damage by the large pine weevil, Hylobius abietis (L.), is a major threat to conifer plantations throughout Eurasia, but damage is usually less severe in northern areas. However, pine weevil damage seems to increase if the sites are burnt. The aim of this study was to determine the effects of variations in the time of planting (with respect to the total age of the clear-cut and the time since burning) on pine weevil damage to seedlings on burnt sites in northern Sweden. The study also explored whether there is an optimal time for planting at which damage levels are reduced to acceptable levels. Ten sites were selected in an inland area of northern Sweden where pine weevils are normally scarce. The sites were dry–mesic and represented a range of times since clear-cutting and since burning. The sites were planted in June 1998, 1999 and 2000 with 1-year-old container-grown seedlings of Norway spruce [Picea abies (L.) Karst.]. Pine weevil damage was reduced if planting was done no earlier than 3 years after clear-cutting and no earlier than 2 years after burning. Planting too soon after burning, irrespective of the age of the clear-cut, resulted in unacceptably high damage levels.  相似文献   

11.
Large areas of northern coniferous forests once naturally maintained by stand-replacing wildfires have shifted to an anthropogenic disturbance regime of clearcut harvesting followed by natural or artificial regeneration, with unknown consequences for soil biogeochemical processes. We used a comparative approach to investigate the effects of whole-tree harvesting (WTH) vs. stand-replacing wildfire (WF) on soil C and nutrient availability, and nutrition and growth of the succeeding stand, in jack pine (Pinus banksiana) forests of northern Lower Michigan. We compared total carbon (C), total nitrogen (N), potential N mineralization, and extractable phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) among stands regenerated via WTH or WF in two age classes (4–7 years and 12–18 years). We also measured jack pine foliar nutrition and height growth in these same stands, as well as estimating the contribution of legacy dead wood to ecosystem nutrient capital in young stands. We found some evidence in support of our hypothesis that WTH would leave behind greater pools of soil C and N, but lower pools of P and base cations. However, the differences we observed were confined entirely to surface organic horizons, with the two disturbance regimes indistinguishable when viewed cumulatively to our maximum sampling depth of 30 cm. Estimates of nutrient pools in legacy wood inherited by young jack pine stands were also small in comparison to total soil pools (ranging from 1 to 9% depending on the element), suggesting that decomposition and nutrient release from this material is not likely to result in noticeable differences in soil fertility later in stand development. Similar levels of soil nutrients between WTH- and WF-origin stands were reflected in our measures of jack pine foliar nutrition and height growth, which were both unaffected by mode of stand origin. Results from this study suggest that soil nutrient levels following WTH fall within the natural range of variation produced by WF in these jack pine forests; however, comparison with a similar study on boreal jack pine suggests that latitudinal effects on O-horizon nutrient capital may influence the degree to which WTH matches the effects of WF on soil nutrient availability.  相似文献   

12.
Sahlén  Kenneth  Goulet  France 《New Forests》2002,24(3):175-182
This study was carried out in northern Sweden to determine the effects of frost heaving on the establishment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings in relation to planting methods. For this purpose, one year old containerised seedlings were planted on two sites and on two dates: during the spring (early planting) and during the fall (late planting). In each case, two planting depths (normal and deep planting) and four planting sites (in mineral soil in the depressions, in the scalp/trench area, on the top of the mound and in the untreated humus layer) were used. On each site, 50 seedlings were planted for each treatment. Frost heaving was observed and measured during two years. The amount of heaving was highest in the hole and almost insignificant on the top of the mound and in the humus layer. Planting depth influenced the degree of heaving only for Scots pine planted in the hole and was not related to the planting time.  相似文献   

13.
Successful regeneration of conifer forests by planting is, in large parts of Europe, highly dependent on the effective suppression of damage caused by the pine weevil Hylobius abietis. We investigated the effectiveness of various combinations of control measures against pine weevil damage under boreal forest conditions in Sweden. In particular, we aimed to determine whether satisfactory regeneration could be obtained without the use of insecticides. The experimental study was established on ten new clear-cuts in each of three consecutive years. We studied the use of chemical and physical methods to protect seedlings directly, and investigated the influence of seedling type, age of clear-cut, and a number of soil factors as affected by preparation of the planting site, on the mortality and level of damage suffered by protected and unprotected seedlings. After two seasons, mortality due to pine weevil was 16% among unprotected seedlings, 6% for seedlings treated with the insecticides cypermethrin or imidacloprid, and less than 1% for those physically protected by a coating of Conniflex. However, the Conniflex, which consists of fine-grained sand embedded in a flexible acrylate matrix, was applied manually, and this may have enhanced its effectiveness compared to that achieved during large-scale, commercial application. Two types of containerized Norway spruce seedlings, which differed mainly in their stem diameter (average 2.6 mm and 3.5 mm), were used in the experiments. Among the unprotected seedlings, the narrower stemmed type was more frequently attacked (34% vs. 28%) and killed (19% vs. 12%) by pine weevil. Mortality caused by pine weevil among unprotected seedlings was higher on 1-year-old than on 2-year-old clear-cuts (20% vs. 12%). Soil preparation around unprotected seedlings had a substantial effect on the proportion attacked and killed by pine weevil as well as on the total mortality, with the highest level of feeding damage and mortality occurring on seedlings in undisturbed humus, and the lowest levels occurring on seedlings planted in pure mineral soil (26% vs. 7% for unprotected seedlings). This study demonstrates that acceptable levels of seedling survival can be achieved in regenerations of North European boreal forest without the use of insecticides. Mortality of unprotected seedlings can be reduced to acceptable levels if they are mostly planted in pure mineral soil. Damage can be further reduced by using seedlings with a somewhat larger stem diameter. Insecticides or a physical barrier of Conniflex alone appear to provide a sufficient level of protection.  相似文献   

14.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

15.
Abstract

This study compares two principally different harvesting systems used for the thinning of Norway spruce [Picea abies (L.) Karst.] plantations in the Alps. The first system was whole-tree harvesting (WTH), producing only whole-tree chips for energy purposes. This system minimizes the production costs by simplifying the harvesting process. The other system was cut-to-length (CTL) mechanical harvesting with an excavator-based harvester. This system maximizes value recovery by producing both short sawlogs and quality fuel chips. Trials were conducted on two similar sites in the Dolomites, in northern Italy, and demonstrated that the CTL system resulted in slightly higher harvesting costs, and also higher revenue. The price differences between the different products determine which system offers the best economic results. If the delivered price of sawlogs does not exceed [euro]25 t?1, WTH and CTL harvesting offer very similar economic performances, and become profitable only if the delivered price of raw chip wood exceeds [euro]40 t?1. If the delivered price of sawlogs increases to [euro]50 t?1, the mechanized CTL system always becomes preferable, and it will turn some profits when the price of raw biomass exceeds [euro]35 t?1. The CTL system is less sensitive to long extraction and transport distances than the WTH system.  相似文献   

16.
Increasing demand for renewable energy and limiting CO2 emissions have stimulated much interest in wood-based biofuels. Unfortunately, expanding the utilization of forest biomass may cause nutrient depletion in forested environments. This study investigates the element content from various parts of the tree. Comparisons were made between different harvesting scenarios and their impact on the amount of nutrients removed from the forest environment. The harvesting scenarios were: stem-only harvesting (SOH), branch and stem harvesting (BSH), and two variants of whole-tree harvesting (WTH). The elements taken into account were: carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), sulphur (S), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), zinc (Zn), cadmium (Cd), chromium (Cr) and lead (Pb). To make the results comparable, the same amount of removed biomass was taken into calculation. The differences between harvesting scenarios were significant. The amounts of removed elements formed similar pattern: the lowest level was found in SOH, average in BSH, and highest in both variants of WTH. This confirms that the application of WTH is connected with increased risk of nutrient depletion, even when the volume of harvest would be equal to other variants.  相似文献   

17.
A series of 15 field experiments was established to quantify the growth response of first‐thinning stands of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst) to whole‐tree harvesting and to estimate the need for nutrient compensation. The experiments were undertaken in Finland, Norway and Sweden and represent a wide range of site conditions. The site index (H 100) of Scots pine stands varied from 19 to 29 m, and that of Norway spruce stands from 28 to 36 m. Total amounts of biomass and nutrients removed were calculated based on data obtained from felled sample trees. During the first 5‐yr period the growth response to the removal of logging residues varied considerably in both pine and spruce stands. Regression analyses did not reveal any functions that explained the variation in results satisfactorily. In cases where whole‐tree harvesting influenced tree growth negatively, this effect was counteracted by compensatory fertilization. It was concluded that to determine the response of remaining trees to harvesting intensity reliably, the post‐harvest period analysed must be longer than 5 yrs.  相似文献   

18.
Abstract

Effects of stump harvesting on the properties of surface soil and on the density, structure and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands were estimated in a field trial in western Finland. The experiment was established in 1977 and measured in 2010. Stems and logging residues were harvested after clear-cutting, and stumps were lifted and removed from half of the experimental area. Sixteen plots were planted with pine seedlings and 16 with spruce. The main effects of stump harvesting were improved survival of planted trees and an increase in natural regeneration. No clearly negative effects were noted in the stand development. Stump harvesting had no or minimal effects on the properties of the organic layer and those of the 0- to 10-cm mineral-soil layer. Soil properties did not differ between tree species. Pine production was higher on plots with stump removal compared to plots without soil treatment.  相似文献   

19.
Damage to planted conifer seedlings by the pine weevil, Hylobius abietis (L.), is considered to be less severe in shelterwoods than in clear-cuttings. To evaluate possible reasons for this reduction, this study investigated the relationship between seedling damage and pine weevil population density in the presence and absence of shelter trees. Assessments of seedling damage throughout a full growth season and absolute population density estimates were made at a fresh clear-cutting and an adjacent shelterwood (1 ha each). A grid of 100 pitfall traps was placed over each area, and population estimates were made using the mark–recapture technique. Pine weevil damage to seedlings was about twice as high in the clear-cutting, whereas pine weevil density was estimated to be higher in the shelterwood or about the same in the two treatments (~14?000 weevils ha?1). Existing differences in microclimate between the shelterwood and clear-cutting did not seem to be the cause of the differences in damage levels. Thus, the hypothesis that seedling damage is reduced in shelterwoods because of increased availability of alternative food remains a candidate for further testing.  相似文献   

20.
Abstract

An experiment was established in 1978 in two Norway spruce [Picea abies (L.) Karst.] plantations in southern Sweden to study yield after mortality in patches with and without supplementarily planted (SP) seedlings. Gaps of different sizes were created by removing the originally planted seedlings. The gaps were either left unplanted or a supplementary planting was performed with one of four species [Norway spruce, Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl.) or hybrid larch (Larix deciduas Mill×L. Leptolepis Gord.)] 2 (at Knäred) or 6 years (at Ullasjö) after the original plantation. In 2002, most of the SP Scots pine, lodgepole pine and hybrid larch seedlings were dead or severely damaged by roe deer and moose. Survival was high among SP Norway spruces, but they had slower growth than the originally planted spruces. Growth was lower at Ullasjö than at Knäred. In Ullasjö, growth was lower in small gaps than in large gaps. Trees in original regeneration in areas surrounding unplanted gaps were larger than trees surrounding gaps with SP seedlings, which in turn were larger than originally planted trees in plots without gaps. In conclusion, because the original plantation surrounding unplanted gaps used a large part of the open space and growth of SP seedlings was slow, supplementary planting resulted in an insignificant growth increase. However, supplementary planting may increase the timber quality of trees surrounding the gaps, although this effect remains to be quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号