首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Key message

Multiple lines of evidence suggest acoustic wave velocity (AWV) would provide a rapid and efficient method to indirectly select for superior pulp yield in Eucalyptus globulus breeding programs.

Context

Eucalyptus globulus is one of the most widely planted hardwood species in temperate regions of the world and is primarily grown for pulpwood.

Aims

To determine if acoustic wave velocity (AWV) can be used to indirectly select for kraft pulp yield in E. globulus.

Methods

Genetic group effects, additive and non-additive variance components, and genetic correlations were estimated for AWV and pulpwood traits, including Kraft pulp yield. In a separate trial, the relative position of quantitative trait loci (QTL) for these traits was compared.

Results

Estimated narrow-sense heritabilities for AWV and pulp yield were both 0.26, and these traits were strongly genetically correlated (0.84). Furthermore, co-located QTL for these traits were identified. Further evidence that AWV could be used to indirectly select for pulp yield was provided by the ranking of genetic groups—Otways and King Island had the highest AWV and pulp yield and Strzelecki and Tasmania the lowest. There was no evidence of dominance variation in wood property traits.

Conclusion

Together, these findings suggest that AWV could be used as a selection criterion for kraft pulp yield in E. globulus breeding programs.
  相似文献   

3.

Key message The application of the ITOC model allows the estimation of available biomass potentials from forests on the basis of National Forest Inventory data. The adaptation of the model to country-specific situations gives the possibility to further enhance the model calculations.

Context

With the rising demand for energy from renewable sources, up-to-date information about the available amount of biomass on a sustainable basis coming from forests became of interest to a wide group of stakeholders. The complexity of answering the question about amounts of biomass potentials from forests thereby increases from the regional to the European level.

Aims

The described ITOC model aims at providing a tool to develop a comparable data basis for the actual biomass potentials for consumption.

Methods

The ITOC model uses a harmonized net annual increment from the National Forest Inventories as a default value for the potential harvestable volume of timber. The model then calculates the total theoretical potential of biomass resources from forests. By accounting for harvesting restrictions and losses, the theoretical potential of biomass resources from forests is reduced and the actual biomass potentials for consumption estimated.

Results

The results from ITOC model calculations account for the difference between the amounts of wood measured in the forests and the actual biomass potentials which might be available for consumption under the model assumptions.

Conclusion

The gap between forest resource assessments and biomass potentials which are available for consumption can be addressed by using the ITOC model calculation results.
  相似文献   

4.

Key message

Growth and wood chemical properties are important pulpwood traits. Their narrow-sense heritability ranged from 0.03 to 0.49 in Eucalyptus urophylla × E. tereticornis hybrids, indicating low to moderate levels of genetic control. Genetic correlations were mostly favorable for simultaneous improvement on growth and wood traits. Additive and non-additive genetic effects should be considered in making a hybrid breeding strategy.

Context

Eucalypt hybrids are widely planted for pulpwood production purposes. Genetic variations and correlations for growth and wood chemical traits remain to be explored in Eucalyptus interspecific hybrids.

Aims

Our objectives were to clarify the heritability of growth and wood chemical traits and determine the genetic correlations between traits and between trials in E. urophylla × E. tereticornis hybrids.

Methods

Two trials of 59 E. urophylla × E. tereticornis hybrids derived from an incomplete factorial mating design were investigated at age 10 for growth (height and diameter) and wood chemical properties (basic density, cellulose content, hemi-cellulose content, lignin content, and syringyl-to-guaiacyl ratio). Mixed linear models were used to estimate genetic parameters.

Results

Narrow-sense heritability estimates were 0.13?0.22 in growth and 0.03?0.49 in wood traits, indicating low to moderate levels of additive genetic control. Genetic correlations were mostly positively significant for growth with basic density and cellulose content but negatively significant with hemi-cellulose and lignin contents, being favourablefavorable for pulpwood breeding purpose. Type-B correlations between sites were significant for all the traits except diameter and lignin content.

Conclusion

Hybrid superiority warrants the breeding efforts. An appropriate breeding strategy should be able to capture both additive and non-additive genetic effects.
  相似文献   

5.

Key message

A new system of additive tree biomass equations was developed for juvenile white birch plantations based on tree diameter at breast height (DBH) and tree height (HT). Compared with previous equations developed for natural white birch forests, the new system included one more biomass component and provided more accurate predictions.

Context

Accurate estimates of tree component and total biomass are necessary for evaluating alternative forest management strategies for biomass feedstock, carbon sequestration, and products. Previous biomass equations developed for white birch trees in natural stands provided substantially biased predictions for white birch plantations.

Aims

A new system of additive tree biomass equations was developed for juvenile white birch plantations in the northeastern China.

Methods

With destructive biomass sampling data from 501 trees sampled from white birch provenance and family trails at ages 7, 9, 10, and 13 in three provinces, a system of nonlinear additive tree biomass equations based on DBH and tree height was developed using the nonlinear seemingly unrelated regressions (NSUR) approach.

Results

Compared with previously published equations developed for natural white birch forests, the new system provided more accurate predictions of white birch tree component and aboveground and total biomass, especially of branch, foliage, and root biomass.

Conclusion

The new system extended the applicability of biomass equations to white birch plantations in the northeastern China.
  相似文献   

6.

Key message

Tree heights in the central Congo Basin are overestimated using best-available height-diameter models. These errors are propagated into the estimation of aboveground biomass and canopy height, causing significant bias when used for calibration of remote sensing products in this region.

Context

Tree height-diameter models are important components of estimating aboveground biomass (AGB) and calibrating remote sensing products in tropical forests.

Aims

For a data-poor area of the central Congo Basin, we quantified height-diameter model performance of local, regional and pan-tropical models for their use in estimating AGB and canopy height.

Methods

At three old-growth forest sites, we assessed the bias introduced in height estimation by regional and pan-tropical height-diameter models. We developed an optimal local model with site-level randomizations accounted for by using a mixed-effects modeling approach. We quantified the error propagation of modeled heights for estimating AGB and canopy height.

Results

Regional and pan-tropical height-diameter models produced a significant overestimation in tree height, propagating into significant overestimations of AGB and Lorey’s height. The pan-tropical model accounting for climatic drivers performed better than the regional models. We present a local height-diameter model which produced nonsignificant errors for AGB and canopy height estimations at our study area.

Conclusion

The application of general models at our study area introduced bias in tree height estimations and the derived stand-level variables. Improved delimitation of regions in tropical Africa with similar forest structure is needed to produce models fit for calibrating remote sensing products.
  相似文献   

7.

Key message

We demonstrate that, beyond leaf phenology, the phenological cycles of wood and fine roots present clear responses to environmental drivers in temperate and boreal trees. These drivers should be included in terrestrial ecosystem models.

Context

In temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits, and reserve compounds.

Aims

Here, we review both the role of environmental drivers in determining the phenology of tree organs and the models used to predict the phenology of tree organs in temperate and boreal forest trees.

Results

Temperature is a key driver of the resumption of tree activity in spring, although its specific effects vary among organs. There is no such clear dominant environmental cue involved in the cessation of tree activity in autumn and in the onset of dormancy, but temperature, photoperiod, and water stress appear as prominent factors. The phenology of a given organ is, to a certain extent, influenced by processes in distant organs.

Conclusion

Inferring past trends and predicting future trends of tree phenology in a changing climate requires specific phenological models developed for each organ to consider the phenological cycle as an ensemble in which the environmental cues that trigger each phase are also indirectly involved in the subsequent phases. Incorporating such models into terrestrial ecosystem models (TEMs) would likely improve the accuracy of their predictions. The extent to which the coordination of the phenologies of tree organs will be affected in a changing climate deserves further research.
  相似文献   

8.

?Key message

Pattern recognition has become an important tool to aid in the identification and classification of timber species. In this context, the focus of this work is the classification of wood species using texture characteristics of transverse cross-section images obtained by microscopy. The results show that this approach is robust and promising.

?Context

Considering the lack of automated methods for wood species classification, machine vision based on pattern recognition might offer a feasible and attractive solution because it is less dependent on expert knowledge, while existing databases containing high-quality microscopy images can be exploited.

?Aims

This work focuses on the automated classification of 1221 micro-images originating from 77 commercial timber species from the Democratic Republic of Congo.

?Methods

Microscopic images of transverse cross-sections of all wood species are taken in a standardized way using a magnification of 25 ×. The images are represented as texture feature vectors extracted using local phase quantization or local binary patterns and classified by a nearest neighbor classifier according to a triplet of labels (species, genus, family).

?Results

The classification combining both local phase quantization and linear discriminant analysis results in an average success rate of approximately 88% at species level, 89% at genus level and 90% at family level. The success rate of the classification method is remarkably high. More than 50% of the species are never misclassified or only once. The success rate is increasing from the species, over the genus to the family level. Quite often, pattern recognition results can be explained anatomically. Species with a high success rate show diagnostic features in the images used, whereas species with a low success rate often have distinctive anatomical features at other microscopic magnifications or orientations than those used in our approach.

?Conclusion

This work demonstrates the potential of a semi-automated classification by resorting to pattern recognition. Semi-automated systems like this could become valuable tools complementing conventional wood identification.
  相似文献   

9.

Context and aim

This study aimed to examine the effect of the tension wood G‐layer on the viscoelastic properties of wood.

Methods

Tension wood and opposite wood samples were obtained from six French Guianese tropical rainforest species (Sextonia rubra, Ocotea guyanensis, Inga alba, Tachigali melinoni, Iyranthera sagotiana and Virola michelii); the tension wood of the former three of these species had a G‐layer, whilst the tension wood from the latter three had no G‐layer. Tensile dynamic mechanical analysis (DMA) was performed on green never dried wood samples in the longitudinal direction with samples submerged in a water bath at a temperature (30°C) and frequency (1 Hz) representative of the conditions experienced by wood within a living tree. Then, DMA was repeated with samples conditioned to an air-dried state. Finally, samples were oven-dried to measure longitudinal shrinkage.

Results

Tension wood did not always have a higher longitudinal storage (elastic) modulus than opposite wood from the same tree regardless of the presence or absence of a G‐layer. For the species containing a G‐layer, tension wood had a higher damping coefficient and experienced a greater longitudinal shrinkage upon drying than opposite wood from the same species. No difference was found in damping coefficients between tension wood and opposite wood for the species that had no G‐layer.

Conclusion

It is proposed that the different molecular composition of the G-layer matrix has an influence on the viscoelasticity of wood, even if a biomechanical gain is not yet clear. This study shows that rheological properties and longitudinal shrinkage can be used to detect the presence of a G‐layer in tension wood.
  相似文献   

10.

Key message

Industrial computed tomography scanning of logs provides detailed information on timber quality prior to sawing. A sawing simulation—considering log rotation angle and knot size accuracy—revealed an average value increase of up to 20% for the best angle compared to the conventional horns-up position.

Context

Computed tomography (CT) scanning has the potential to improve the value of products sawn from logs and meets the increasing demands of the wood industry for detailed information on log quality prior to processing.

Aims

In a validation step, automated measurements of knot cluster variable DAB (DIN 4074-1:2012-06) using CT were compared with manual measurements. In a second optimization step, the hypothesis that the value of the sawn products is increased by sawing at the best rotation angle as opposed to the horns-up position was tested.

Methods

A sample of 36 Douglas-fir logs were scanned in an industrial CT scanner, and sawn into boards. Knots on the boards were manually measured, and compared with the corresponding knots on virtual boards created from the CT data. The error of the DAB was measured by comparing CT data to manual measurements. An optimized sawing simulation was performed, using the measured DAB error to account for CT measurement errors, as well as a rotational error to account for errors in the log turning equipment. Using the results of the sawing simulation, Monte Carlo simulations were performed to show the potential and benefit of an industrial CT scanner.

Results

The three largest DABs measured by the CT showed good correlation to the measurements on the manual boards. The simulation revealed an average increase of value from 4 to 20% compared to the conventional horns-up position depending on the relative price differences between the strength grades.

Conclusion

By using a CT scanner to optimize sawing, sawmill owners can process logs in a better way to produce final products with increased added value.
  相似文献   

11.

Key message

A multiphasic response to water deficit was found in Scots pine primary and secondary metabolism. First, an increase of terpenoids coincided with the stomatal closure. Second, an accumulation of proline, ABA, and shikimic acid was detected when photosynthesis was negligible.

Context

Drought-induced mortality is characterized by a major needle yellowing followed by severe defoliation and whole branch death. Before these external visual symptoms of drought stress take place, different alterations occur in plant metabolism.

Aims

This study aims to detect changes in primary and secondary metabolism of Pinus sylvestris L. in response to a decrease in soil water availability.

Methods

We analyzed needle water potential, photosynthetic characteristics, and concentrations of proline, terpenoids, shikimic acid, total polyphenols, and abscisic acid (ABA) in P. sylvestris through a 55-day soil water deficit period.

Results

Concentrations of most metabolites varied with the decrease in soil water availability, but changes in different compounds were triggered at different times, highlighting a multiphasic response. Increases in monoterpene and sesquiterpenoid content at moderate water deficit coincided with stomatal closure which preceded the accumulation of proline, ABA, and shikimic acid under severe water deficit when net photosynthesis was negligible.

Conclusion

This work confirms that most of the secondary metabolites under investigation in Pinus sylvestris did not increase until a moderate to severe water deficit was experienced, when photosynthesis was limited by stomatal closure.
  相似文献   

12.

Key message

Mature Caragana stenophylla shrubs facilitated intraspecific sapling establishment by two mechanisms: microhabitat amelioration and protection against herbivory. Facilitation was mediated by climate, grazing, and sapling age.

Context

Pre-existing shrubs could facilitate sapling establishment of woody plants; however, how these facilitation vary across abiotic and biotic stress gradients and the underlying mechanisms remain unclear.

Aims

The aim of this study is understanding the facilitation of shrub on sapling establishment and how the two underlying mechanisms, microhabitat amelioration and protection against herbivory, vary across climatic aridity gradients, grazing gradients, and sapling age.

Methods

We conducted field sowing experiments to examine the facilitation of mature Caragana stenophylla Pojark on intraspecific sapling establishment.

Results

Facilitation of C. stenophylla on sapling survival increased as drought stress, grazing intensity, and sapling age increased. Microhabitat amelioration increased as drought stress and sapling age increased. Similarly, protection against herbivory increased as drought stress, grazing intensity, and sapling age increased. Relative importance of microhabitat amelioration increased as drought stress increased, and relative importance of protection against herbivory increased as grazing intensity and sapling age increased.

Conclusion

Facilitation of shrub on sapling establishment involves both microhabitat amelioration and protection against herbivory. Facilitation, the two mechanisms, and relative importance between the two mechanisms would all be affected by climatic aridity, grazing intensity, and sapling age. Shrub establishment has a positive feedback effect.
  相似文献   

13.

Key message

The disturbance of a research plot by a windstorm allowed us to study the role of the seedling bank in the regeneration processes. The released advance regeneration dominated among the saplings; taller individuals retained their position until the end of the study. Pioneer species occurred sporadically. Seven years after the disturbance, the windthrow was covered by a dense thicket of young trees.

Context

The dominant role played by advance regeneration in natural regeneration processes after intense wind disturbances is still a matter of dispute.

Aims

We took advantage of a windstorm in one of our research plots to study the role of the seedling bank released by the disturbance in the regeneration processes.

Methods

We collected data in 70 plots, recording the survivorship of seedlings, annual height growth, and signs of browsing. The height ranking was analyzed with Kendall’s concordance coefficient, and the height growth rates were compared using Dunn’s test.

Results

The density of seedlings increased from 6.7/m2 in 2008 to 8.1/m2 in 2010 and then decreased to 1.2/m2 in 2015. The density of saplings increased continuously from 0.14 to 1.9/m2. The highest size differentiation occurred in sycamore maple; the individuals which were taller before the windstorm retained their position until the year 2015. The only species that was recruited mainly from germinants was European hornbeam.

Conclusion

The advance regeneration released by the windstorm played a major role in the regeneration process, while pioneer species occurred only sporadically. Seven years after the disturbance, the windthrow was already covered by a dense thicket of young trees.
  相似文献   

14.
Winfried Schröder  Stefan Nickel  Simon Schönrock  Roman Schmalfuß  Werner Wosniok  Michaela Meyer  Harry Harmens  Marina V. Frontasyeva  Renate Alber  Julia Aleksiayenak  Lambe Barandovski  Oleg Blum  Alejo Carballeira  Maria Dam  Helena Danielsson  Ludwig De Temmermann  Anatoly M. Dunaev  Barbara Godzik  Katrin Hoydal  Zvonka Jeran  Gunilla Pihl Karlsson  Pranvera Lazo  Sebastien Leblond  Jussi Lindroos  Siiri Liiv  Sigurður H. Magnússon  Blanka Mankovska  Encarnación Núñez-Olivera  Juha Piispanen  Jarmo Poikolainen  Ion V. Popescu  Flora Qarri  Jesus Miguel Santamaria  Mitja Skudnik  Zdravko Špirić  Trajce Stafilov  Eiliv Steinnes  Claudia Stihi  Ivan Suchara  Lotti Thöni  Hilde Thelle Uggerud  Harald G. Zechmeister 《Annals of Forest Science》2017,74(2):31

Key message

Moss surveys provide spatially dense data on environmental concentrations of heavy metals and nitrogen which, together with other biomonitoring and modelling data, can be used for indicating deposition to terrestrial ecosystems and related effects across time and areas of different spatial extension.

Context

For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor.

Aims

This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3).

Methods

Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method.

Results

It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven.

Conclusion

Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.
  相似文献   

15.

Key message

The diversity of forest management systems and the contrasted competition level treatments applied make the experimental networks of the GIS Coop, a nationwide testing program in the field of emerging forestry topics within the framework of the ongoing global changes.

Context

To understand the dynamics of forest management systems and build adapted growth models for new forestry practices, long-term experiment networks remain more crucial than ever.

Aims

Two principles are at the basis of the experimental design of the networks of the Scientific Interest Group Cooperative for data on forest tree and stand growth (GIS Coop): contrasted and extreme silvicultural treatments in diverse pedoclimatic contexts.

Methods

Various forest management systems are under study: regular and even-aged stands of Douglas fir, sessile and pedunculate oaks, Maritime and Laricio pines, mixed stands of sessile oak, European silver fir, and Douglas fir combined with other species. Highly contrasted stand density regimes, from open growth to self-thinning, are formalized quantitatively.

Results

One hundred and eighty-five sites representing a total of 1206 plots have been set up in the last 20 years, where trees are measured regularly (every 3 to 10 years). The major outputs of these networks for research and management are the calibration/validation of growth and yield models and the drawing up of forest management guides.

Conclusion

The GIS Coop adapts its networks so that they can contribute to develop growth models that explicitly integrate pedoclimatic factors and thus also contribute to research on the sustainability of ecosystems under environmental and socio-economic changes.
  相似文献   

16.

Key message

When areas of interest experience little change, remote sensing-based maps whose dates deviate from ground data can still substantially enhance precision. However, when change is substantial, deviations in dates reduce the utility of such maps for this purpose.

Context

Remote sensing-based maps are well-established as means of increasing the precision of estimates of forest inventory parameters. The general practice is to use maps whose dates correspond closely to the dates of ground data. However, as national forest inventories move to continuous inventories, deviations between map and ground data dates increase.

Aims

The aim was to assess the degree to which remote sensing-based maps can be used to increase the precision of estimates despite differences between map and ground data dates.

Methods

For study areas in the USA and Norway, maps were constructed for each of two dates, and model-assisted regression estimators were used to estimate inventory parameters using ground data whose dates differed by as much as 11 years from the map dates.

Results

For the Minnesota study area that had little change, 7-year differences in dates had little effect on the precision of estimates of proportion forest area. For the Norwegian study area that experienced considerable change, 11-year differences in dates had a detrimental effect on the precision of estimates of mean biomass per unit area.

Conclusions

The effects of differences in map and ground data dates were less important than temporal change in the study area.
  相似文献   

17.

Key message

Mixing sessile oak and Scots pine in central France to reduce intraspecific competition for water resources did not improve the ability of these two species to withstand severe drought during the summer.

Context

In order to reduce the impact of increasingly extreme droughts on forests, managers must adapt their practices to future climate conditions. Maintaining a greater diversity of tree species in temperate forest ecosystems is one of the recommended options.

Aims

We addressed how interactions between sessile oak and Scots pine in mixed forests in central France affect their functional response to drought.

Methods

We characterized the carbon isotope composition (δ13C) in the tree growth rings formed during wet (2001, 2007) or dry (2003, 2004) summers for each of the two species growing both in pure and in mixed stands in order to compare the effect of stand composition on variations in carbon isotope discrimination (Δ13C) among contrasted years.

Results

The severe drought in 2003 induced a strong decrease in Δ13C for all trees and in all stands as compared to 2001. This decrease was greater in pine than in oak. There was no significant difference between pure and mixed stands in the response of either species to drought.

Conclusion

Mixing sessile oak and Scots pine in stands in central France does not improve the ability of either species to withstand severe drought during the summer.
  相似文献   

18.

Key message

Pertinence of alternative adaptation strategies to business as usual, namely reactive, active, and robust adaptation strategies, can be evaluated by incorporating the expected costs and benefits of adaptation, climate change uncertainty, and the risk attitudes of decision-makers.

Context

Forest management is used to coping with risky and uncertain projections and estimates. However, climate change adds a major challenge and necessitates adaptation in many ways.

Aims

This paper highlights the dependency of the decisions on adaptation strategies to four aspects of forest management: (i) the costs of mitigating undesirable climate change impacts on forests, (ii) the value of ecosystem goods and services to be sustained, (iii) uncertainties about future climate trajectories, and (iv) the attitude of decision-makers towards risk (risk aversion level).

Methods

We develop a framework to evaluate the pertinence of reactive, active, and robust adaptation strategies in forest management in response to climate change.

Results

Business as usual may still be retained if the value of the forest and cost of climate impacts are low. Otherwise, it is crucial to react and facilitate the resilience of affected forest resources or actively adapt in advance and improve forest resistance. Adaptation should be robust under any future climate conditions, if the value of the ecosystem, the impacts from climatic changes, and the uncertainty about climate scenarios are very high.

Conclusion

The decision framework for adaptation should take into account multiple aspects of forest management under climate change towards an active and robust strategy.
  相似文献   

19.

? Key message

Long-term strict protection of woodland communities may lead to their compositional simplification and homogenisation.

? Context

In the past, it has often been postulated that structures and processes typical for natural forests should be mimicked by silvicultural activities in the case of managed tree stands.

? Aims

To determine which features and traits of natural woodland communities (alongside typical old-growth attributes) should be imitated in managed forests, as well as which should not (and for what reasons).

? Methods

Tree data from five permanent study plots (of a total area of 15.44 ha) established in 1936 in the core area of the Bia?owie?a National Park (NE Poland) are used to calculate several quantitative indices describing the temporal dynamics (in terms of stand structure and composition) of eight major woodland community types.

? Results

Most structural attributes revealed rather high stability over time. In contrast to these, during the observation period, noticeable changes in the composition of particular Bia?owie?a woodland communities have been taking place, related to declining occurrence and reduced roles characteristic for a large number of tree species.

? Conclusion

In many ways, natural forests can serve as an important model for managed forest stands. However, in certain circumstances, silvicultural treatments counteracting natural developmental trends may appear to be indispensable, especially when more diverse and stable tree species composition (at a given spatial and temporal scale) is indicated or desirable.
  相似文献   

20.

Key message

Apical dominance ratio (ADR), reported as a suitable indicator for the growth and development of Abies alba , is concurrently determined by morphological and functional plant traits. Structural equation modeling (SEM) proved here to be an effective multivariate technique to represent the contribution of different variables in explaining ADR variability.

Context

During the natural recruitment of understory tree saplings, the light environment and competition among individuals may change drastically as well as their growth patterns. To cope with this, saplings have a remarkable ability to accordingly modify their physiology and morphology. Therefore, understanding the ecological significance of plant structural patterns requires an integrated view of morphological, architectural, and physiological attributes of plants.

Aims

Here, we applied a SEM approach to understand the mechanisms influencing the ADR, recently reported as suitable indicator of the growth conditions favoring silver fir (Abies alba Mill.) natural regeneration in Mediterranean areas.

Methods

A series of plant traits (e.g., root-collar diameter, leaf mass per area, and isotope composition) were combined into two main latent variables, namely Morphology and Physiology, to account for their relative contribution in explaining the ADR variability.

? Results

Our results underline the importance of variables accounting for the photosynthetic capacity and leaf economics in determining ADR; among them, leaf mass per area (LMA) emerged as an important driving variable.

? Conclusion

SEM proved to be an effective multivariate technique to represent the coordination of different morphological and functional variables in explaining ADR variability in silver fir.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号