首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Mediterranean climates, seedlings are frequently shaded in the nursery to avoid heat damage and save water. However, the impact of this shading on the seedling quality and transplanting performance of Mediterranean species is not well known. We studied the effect of nursery shading on pre-planting features and post-planting performance of two Mediterranean tree species: the shade-intolerant pioneer Pinus halepensis and the shade-tolerant late-successional Quercus ilex. We grew one-year-old seedlings of both species under 100, 40 and 5% full sunlight. Shade had a low impact on the morphology and physiology of Q. ilex seedlings. In pines, only the deep shade treatment produced low quality seedlings with poor root development. In both species, transference to high light at planting in autumn did not impose any additional stress than that caused by frosts, but initial root growth was impaired in the two shaded treatments in pine. Post-planting growth and survival of oak seedlings showed no difference between treatments. Pine seedlings grown in deep shade showed higher mortality and lower growth after planting than those grown in full sun and intermediate light treatments, while intermediate light only reduced growth. For the nursery culture of Q. ilex seedlings, we advise using low light levels during summer to save water without impairing field performance. In P. halepensis, seedlings should be cultured under full sunlight conditions to maximize post-planting growth, but they can be cultured under intermediate light without impairing survival.  相似文献   

2.
Mediterranean oaks frequently have poor performance in forest restoration projects. We analyzed if nitrogen (N) fertilization during nursery cultivation enhances the outplanting performance of two ecologically distinct oaks, Quercus coccifera L. an evergreen shrub, and Quercus faginea L., a deciduous tree. Additionally, we compared the sufficiency N levels of both oaks and if root growth capacity (RGC) and photosynthesis testing at low air temperature better discriminated among fertilization treatments than testing at mild temperature. Plants were cultivated under five N fertilization rates (0, 30, 75, 150 and 200 mg N plant?1) for one growing season. At the end of the cultivation period several plant material and performance attributes were measured. RGC and photosynthesis were assessed at mild temperature and cool conditions in Q. coccifera, while in Q. faginea these attributes were only analyzed at mild temperature conditions. Q. coccifera seedlings were transplanted into four terraces that imposed increasing drought stress, while Q. faginea seedlings were transplanted into an abandoned wheat cropland. Sufficiency level was higher for the tree (150 mg N plant?1) than for the shrub (75 mg N plant?1) Nitrogen-deprived Q. coccifera plants had higher frost damage than remaining treatments, which did not differ among them. Fertilization in Q. faginea did not affect photosynthesis rate but it delayed leaf senescence and abscission. RGC increased with fertilization in both species. Testing temperature did not change the effect of fertilization on RGC in Q. coccifera. Photosynthesis in cool conditions discriminated N-deprived seedlings from the remaining treatments, but treatments did not differ in photosynthesis at mild temperature. Fertilization enhanced outplanting survival in Q. coccifera, primarily in the terraces imposing stronger drought stress, while fertilization only increased growth in the terraces imposing mild drought stress. Overall, survival and growth was positively related to seedling size at planting in both oaks. Additionally, Q. coccifera survival was also positively related to RGC in the harsh planting conditions. Field growth was positively related to RGC and plant N concentration in both oaks but the relation was weak or nonexistent under harsh conditions in Q. coccifera. We conclude that fertilization in the nursery is an important tool for improving the success of oak plantations in Mediterranean continental sites, and that large and N-rich seedling have greater field performance than small and low tissue N concentration seedlings, especially in harsh field sites.  相似文献   

3.
Tube shelters were designed to protect against browsing, but they improve seedling survival in Mediterranean dry climates. Mechanisms for this response, however, are not fully understood and this knowledge can be useful to help design optimal tube shelters for Mediterranean species and climates. Our objective in this study was to determine if the positive effect of tube shelters is due to enhanced growth during the wet season or to reduced light stress during the dry season. We performed two independent experiments. In the first, we assessed root growth during the wet season in two Mediterranean species with contrasting light tolerance (Quercus ilex L. and Pinus halepensis Mill.) growing in tubes with varying light transmissivity. In the second experiment, we studied the response of a Quercus ilex plantation to different shelter treatments. Root growth during the wet season was reduced with decreasing light transmissivity in the shade intolerant P. halepensis, but not in the shade tolerant Quercus ilex. Survival of Q. ilex shaded by a mesh shelter only during summer was higher than in unsheltered seedlings and similar to the survival in tube and mesh shelters during the whole season. This suggests that shade during the dry period was the main factor explaining survival in this species. This effect could be related to the lower leaf temperature recorded in sheltered seedlings. We conclude that Q. ilex (and perhaps other late successional, shade tolerant Mediterranean species) should be planted in tubes with the currently used light transmissivity because these shelters reduce light stress in summer without impairing root growth in the wet season. However, current tubes impair root growth in P. halepensis (and likely other pioneer, shade intolerant Mediterranean species), so higher transmissivity tubes may be necessary. Optimal transmissivity for tube shelter in Mediterranean climates is species-specific and identifiable as the point that minimizes light stress during summer without impairing root growth in the wet season.  相似文献   

4.
It has become apparent that some interventions are required to aid the regeneration of woody species in the Sudanian savanna. Direct seeding has been ineffective, thus planting high quality seedlings may be a viable alternative. In this study, we examined the stock quality of two valuable Sudanian savanna species, Acacia macrostachya and Pterocarpus erinaceus. Different nursery production periods were tested as well as the species’ field performance under well-watered and stressed conditions. The results showed that older seedlings (9-month) were morphologically distinct from younger ones (3-month), particularly in the case of P. erinaceus. Eighteen months after planting out, survival and growth of seedlings were not affected by initial seedling size; this was the result of the high root to shoot ratio of seedlings in all age groups at the time of planting. Seedling mortality as high as 30% was observed and attributed to both drought stress and other factors such as herbivory. Regression analyses revealed that initial shoot height was a poor predictor of field performance for both species, but initial root collar diameter accounted for 25% of the variation in diameter of P. erinaceus in the field. We conclude that initial seedling size does not affect survival and growth in the field provided that all sizes of seedling have a high root to shoot ratio at the time of planting. The prediction of field performance could be improved by developing a model that incorporates a wide range of root collar diameter.  相似文献   

5.
Mediterranean ecosystems are characterized by large arid areas where the patchy distribution of trees offers little protection against harsh climate conditions for seedling establishment. Climate change is predicted to result in an increase in these arid regions, with pronounced effects on vegetation. Production of seedlings with developed ectomycorrhizas is a promising strategy for minimizing the initial transplant shock, thereby increasing plant survival and growth during the first, most critical years of a plantation. One important species in the Mediterranean basin is Quercus suber (cork oak), which occurs, together with other evergreen oak species, in an agro-silvo-pastoral system that represents an example of sustainable land use in Europe. In this study, a Pisolithus tinctorius isolate was used for ectomycorrhizal colonization of cork oak nursery seedlings, and the effects on aboveground plant growth and leaf structural and physiological parameters were investigated. Ectomycorrhizal development resulted in a significant increase in leaf area, dry weight, nitrogen content, and photosynthetic pigments, and mycorrhizal plants showed a higher photosynthetic capacity and water use efficiency. Nursery-inoculated plants established in the field showed increased survival and growth during the first year after transplant. These results indicate a potential for further enhancing the use of mycorrhizal inoculation as a cultivation practice in forest nurseries. Considering the difficulty of soil restoration under limiting environmental conditions, nursery inoculation with ectomycorrhizal fungi can be an important advantage for improving the quality of seedling stock and its performance after out-planting in the field, benefiting the regeneration of arid regions and the reintroduction of inocula of ectomycorrhizal fungi into these areas.  相似文献   

6.
One of the main constraints of reforestation in the Mediterranean region is low summer water availability during the first years after out planting. Plant water availability depends on the precipitation regime, but also on the physical properties of the soil. Higher survival rates result when seedlings are soil acclimated. Our main goal was to describe the morpho-physiological responses of 6-, 10- and 18-month-old Quercus coccifera seedlings growing in a natural soil (terra rossa) or a standard nursery growing medium, and to assess in the nursery if seedlings growing in natural soil were more resistant to deficit irrigation. The high growth rate achieved after 10?C18 months by terra rossa-grown seedlings in contrast with those grown in the nursery substrate suggests that the former were acclimated to the soil. Higher photosynthetic rate (A), transpiration (E) and stomatal conductance (gs) were observed in terra rossa seedlings, mainly during the first months. The higher carbon availability may account for the higher root nitrogen concentration in terra rossa-grown seedlings, which could favor their later field growth. Low-watered seedlings showed a certain degree of hardening, since after 18 months, they showed higher A, E, gs and lower photoinhibition than well-watered seedlings, likely attributable to the sharp leaf-to-root biomass ratio reduction. Carbon isotope discrimination (??) values were similar to those of well-watered plants and indicated a non-stomatal component as the main factor controlling photosynthesis in these leaves. Eighteen-month-old low irrigated seedlings had the highest mortality. Overall, results suggest that nursery terra rossa-acclimated Q. coccifera seedlings with improved physiological status and hydraulic soil-root continuity would have a higher survival rate in the field.  相似文献   

7.
The growth and development of Pinus pinea seedlings grown in different containers was followed through one growing season in the nursery and 3 years following outplanting in the field. The variables studied in the nursery were height, diameter, biomass of shoots and roots, nutrient uptake and root density. The measured field variables, height and diameter increment and survival, were correlated with the nursery variables. Container volume had the greatest influence on plant morphology. Containers with larger rooting volume had seedlings with larger height and diameter, greater nutrient content, and better field performance. Growing density was correlated with seedling morphology and nutrient concentration in the nursery. Among the variables that influenced container volume, the diameter of the container was the most important, while the depth of the container had a minor influence on seedling morphology.The best indicator of seedling development in the nursery was the ratio of container depth to container diameter, and the optimum ratio was 4. All containers produced seedlings with some root spiralling, including those containers with ribs. There was no relationship between either the number of spiralling roots or the angle of spiralling and container characteristics. Furthermore, root spiralling did not influence seedling performance following outplanting. Root density (root biomass/cm3) was inversely correlated with container volume but there was no correlation with either depth or growing density. The largest plants were produced with container volumes of 300–400 cm3, depth/diameter ratios of 4, and growing densities of 200–300 seedlings/m2. These growing conditions will result in larger Pinus pinea seedlings coming out of the nursery, which will increase growth following outplanting.  相似文献   

8.
In Mediterranean arid regions, relatively small planting stock has traditionally been used in an attempt to reduce drought susceptibility, though few studies have examined influences of initial seedling morphology and nutrition on long-term plantation establishment. We fertilized Pinus halepensis Mill. seedlings in the nursery with controlled release fertilizer (CRF) varying in formulations and rates; 9-13-18 and 17-10-10 (N-P-K) formulations at 3, 5 and 7 g l−1 substrate plus an unfertilized control and we evaluated growth and survival 7 years after planting in arid conditions in Almería province, southeast Spain. Interactions between initial height and fertilizer treatments occurred during the first 3 years; initial size advantages of specific fertilizer treatments (7 g l−1 of 9-13-18 and 17-10-10 at 3 g l−1) persisted after 7 years. The largest and most nutrient-rich seedlings from 9-13-18 at 7 g l−1 (41.0 cm tall, 4.4 mg of P per g of root tissue at time of planting) exhibited the highest survival after 7 years (79%), while survival declined to 42% for non-fertilized plants (12.9 cm tall and 0.6 mg of P per g of root tissue). Initial seedling morphological parameters were most consistently correlated with field performance. Root P concentration was the nutrient variable most closely related to survival. Our data emphasizes importance of longer-term experiments to accurately assess influences of nursery treatments on field responses, particularly in arid areas. We suggest that larger seedlings with greater nutrient reserves than are currently being used should be incorporated into Mediterranean plantations.  相似文献   

9.
Pinus halepensis is a widely distributed species in the Mediterranean basin. It is generally well adapted to regenerate after wildfire, except when fire intervals are too short (≤15 years). In these latter situations, direct seeding could be a good alternative for restoring pine woodland after fire. Under dry climate, low seedling growth and survival can greatly limit the use of seeding. Early studies have shown that seedlings grown from large seeds have higher seedling establishment, growth and survival. Seed size grading may however reduce the genetic diversity of a seed lot by eliminating part or all of the families with relatively small seeds. An alternative to improve seed lot quality without losing genetic variability could be collecting and sieving seeds from each family separately. In order to explore the influence of seed mass on P. halepensis seedling performance, seeds from five half-sib families differing in mean seed mass were sown under greenhouse and field conditions. Final seedling emergence was unrelated to seed mass and half-sib family. The time of emergence was also unrelated to seed mass but it varied among families. Seed mass showed a positive effect on seedling height and diameter, both at population level and within family throughout the study period (9 months under greenhouse conditions and 20 months under field conditions). We also observed a negative relationship between seed mass and relative growth rate for seedling diameter, but it was not high enough to fully compensate the initial differences due to seed mass at the end of the 20-month study period. Seedling predation had a considerable impact on seedling survival, and it was not related to seed mass. When seedlings killed by predation were excluded from the survival analysis, larger seedlings, coming from larger seeds, showed slightly better survival, but only during the first growing period. The small advantages obtained from large seed mass in seedling development do not seem to justify the increased operational costs derived from seed mass selection for each family.  相似文献   

10.
The Mediterranean evergreen woody plants Quercus coccifera and Pinus halepensis grow in a range of environments where selection by drought, heat and high irradiance can drive genetic and phenotypic differentiation of populations. However, the role of these stresses in filtering out maladaptive genotypes remains unknown. We hypothesize that this filtering is an important process for woody Mediterranean species due to their low phenotypic plasticity reported in previous studies. We have studied the response of saplings of Q. coccifera and P. halepensis, originating from two contrasting populations (a rock outcrop and a garrigue formation), to water stress. Isozyme characterization of genetic diversity was done to determine whether populations were genetically distinct. Water response analysis was based on water relations, gas exchange, chlorophyll a fluorescence, pigment content, antioxidant status and morphological and structural parameters. Ecotypic differentiation was found for both Q. coccifera and P. halepensis populations, with a higher population isozyme similarity and a higher frequency of dominance of a few genotypes at the rock outcrop in both the species. P. halepensis exhibited small but significant differences between populations for plastic responses to water, with lower phenotypic plasticity in saplings from the rock outcrop. Although it was not found in Q. coccifera, this pattern suggests that ecotypic differentiation rendering stress-tolerant ecotypes involves a decreased plasticity. Phenotypic plasticity was not high but it explained over 75% of the total variability among individual plants. Thus, and although evidence for ecotypic divergence was found in both the species, saplings were plastic enough to blur ecotypic differentiation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.

Ruil (Nothofagus alessandrii) is an endangered keystone species from the Mediterranean climate zone of Chile. Ruil’s fragile state of conservation urges development of restoration programs, but specific protocols for nursery production and field establishment that ensure plant survival are largely unknown. Therefore, we examined the effect on nitrogen (N) fertilization and container size during nursery production in combination with the use of mesh shelters after outplanting on survival and growth during the first growing season in the field. First year outplanting survival of nursery-grown container seedlings was enhanced when seedlings were given nitrogen (N) during nursery production and deployed with mesh tree shelters in the field. The volume of the container had no effect on outplanting survival and growth. Increasing N from zero to 200 mg N L?1 provided sufficient N levels, resulting in increased seedling height, root-collar diameter, shoot biomass, and total seedling N and phosphorous concentrations. Additional N provided by the 400 and 600 mg N L?1 treatments underwent luxury consumption by the seedlings with no further benefits in field performance. Improved growth in the nursery, along with the use of mesh tree shelters after outplanting, especially during the typical summer drought, may be responsible for increased survival during the first growing season. Increasing the performance of nursery-grown ruil seedlings is essential to restoring this endangered, vulnerable, and foundation species within the highly biodiverse, yet seriously threatened endemic Maulino Costero Forest of the Mediterranean climate of central Chile.

  相似文献   

12.
Abstract

Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field heights and diameters, survival, browse, and top dieback of five species – cherrybark oak (Quercus pagoda Raf.), green ash (Fraxinus pennsylvanica Marsh.), Nuttall oak (Q. nuttallii Palmer), sweet pecan (Carya illinoensis (Wangenh.) K. Koch), and water oak (Q. nigra L.). Seedlings were obtained from three regional nurseries (Arkansas, Louisiana, and Mississippi), planted on three sites (Arkansas, Louisiana, and Mississippi), and treated with or without chemical weed control. Site×nursery interaction and weed control (without interactions) usually affected survival, whereas site×weed control interaction and nursery (without interactions) influenced second year heights and diameters. Weed control generally increased survival rates, as well as second year height and diameter. Effects of initial morphological characteristics on field survival and height and diameter growth were generally dependent on the other morphological parameters. Target morphological characteristics were identified as 99, 84, and 82 in height/diameter ratios (equal units) for cherrybark oak, green ash, and Nuttall oak, respectively; mean initial height of 40–43 cm in sweet pecan; and mean initial fresh mass/root volume of 2.7 g ml?1 in water oak. Seedlings with means above these values may be more susceptible to dieback or mortality after outplanting, likely associated with excessive shoot relative to root biomass.  相似文献   

13.
We analysed the physiological bases that explain why large and high nitrogen (N) concentration seedlings frequently have improved survival and growth relative to small seedlings in Mediterranean woodland plantations. Large seedlings of Aleppo pine (Pinus halepensis Mill.) and holm oak (Quercus ilex L.) with high N concentration (L+), and small seedlings with either high (S+) or low (S−) N concentration, were planted on two sites of different weed competition intensity that created contrasting stress conditions. Seedling survival, growth, gas exchange, N remobilization (NR) and uptake (NU), and water potential were assessed through the first growing season. Weeds reduced survival and growth, but seedling response to weed competition varied among phenotypes and between species. At the end of the first growing season, L+ Aleppo pine seedlings had higher survival than both small seedling types in presence of weeds but no differences were observed in absence of weeds. Mortality differences among phenotypes occurred in spring but not in summer. L+ Aleppo pines grew more than small Aleppo pines independently of weed competition. No holm oak seedling type survived in presence of weeds and no mortality differences among phenotypes where observed in absence of weeds, although L+ holm oak seedlings grew more than small seedlings. Mortality and growth differences in Aleppo pine were linked to marked physiological differences among phenotypes while physiological differences were small among holm oak phenotypes. L+ Aleppo pines had greater root growth, gas exchange, NR, and NU than small seedlings, irrespective of their N concentration. Seedling size in Aleppo pine had a greater role in the performance of transplanted seedlings than N concentration. The functional differences among oak phenotypes were small whereas they were large in pine seedlings, which led to smaller differences in transplanting performance in holm oak than in pine. This suggests that the nursery seedling quality improvement for planting in dry sites could depend on the species-specific phenotypic plasticity and functional strategy. Improved transplanting performance in large Aleppo pine seedlings relative to small seedlings was linked to greater gas exchange, root growth and N cycling.  相似文献   

14.
Single and multiple linear regression techniques were used to explain the capacity of initial seedling root volume (Rv) and first-order lateral roots (FOLR) relative to shoot height, diameter, and fresh mass to serve as important indicators of stock quality and predictors of first- and second-year height and diameter on an afforestation site in southern Indiana, USA. This was accomplished for northern red oak (Quercus rubra L.), white oak (Quercus alba L.), and black cherry (Prunus serotina Ehrh) seedlings graded into four Rv categories at establishment. Field survival was high (85–97%) for all species. Initial diameter, height, fresh mass, and Rv provided similar predictive ability of second-year field response for absolute height (R2 = 0.59–0.77) and diameter (R2 = 0.50–0.73) for both oak species. Initial seedling Rv was a better predictor of field response than FOLR for both oak species, though not for cherry. Multiple-variable models accounted for a greater proportion of the total variation in seedling field height and diameter than did single-variable equations. The high R2 (up to 0.95) of regression models suggests field performance of these species can be reliably predicted and confirms the importance of initial seedling morphology in dictating early plantation performance.  相似文献   

15.
Seedling emergence and initial survival were compared for two evergreen broad-leaved species, Quercus glauca and Symplocos prunifolia. The relationships between the two seedling dynamics variables and environmental factors for the two species were also investigated. The number of seedlings that emerged in the study period was larger for S. prunifolia than for Q. glauca, while the survival rate was lower for S. prunifolia, presumably due to the closed canopy of this site. Models were selected for each species to determine the combination of variables explaining the most variation in emergence and survival of seedlings. The model selected for seedling emergence of Q. glauca showed that more seedlings emerged in lower hillslope positions and where the canopy in winter was more open. The model selected for S. prunifolia showed that fewer seedlings emerged on steeper slopes and that more emerged under a more open canopy in winter. With respect to seedling survival, models with only the proportion of open canopy in summer were selected for both species. These models showed that the survival rate was higher where the canopy in summer was more open. This is to be expected as both species are regarded as pioneer or mid-successional species. Q. glauca seemed to have the ability to persist as a dominant in the secondary forest at this site for longer than S. prunifolia due to the former’s better seedling survival rates and the rarity of climax species such as Castanopsis cuspidata.  相似文献   

16.
The morphological responses of seedlings of eight African provenances of Vitellaria paradoxa (Shea tree or Karité) to imposed draught stress were compared under nursery experimental conditions. The potted seedlings were subjected to three different watering regimes (87 days after sowing): no water stress (100% of the field capacity, C), moderate water stress (75% of C) and severe water stress (50% of C). Before the application of the stress, we observed genotypical differences in the morphological variables at the scale of leaves and of above-ground parts. The six-month water stress affected aerial growth: all provenances responded to drought by down-regulating growth (in height and in diameter), leaf number and area. Katawki provenance of Uganda performed relatively poorly, possibly of it being a nilotica subspecies, contrary to the others (paradoxa subspecies). There was a lack of correlation between climate of seeds origin, seed characteristics, seeds germination and survival rate of seedlings. The study confirmed the importance of leaf area in the vigor of the initial growth in this species. Thus, Tamale and Karaba provenances performed better than other West African provenances due to their larger leaf area, which was found to be a determining factor of relative growth in height at the seedling stage.  相似文献   

17.
Five exotic tree species (Acacia angustissima (Mil.) Kuntze, A. mangium Wild, Gliricidia sepium (Jacq.) Alp., Leucaena hybrid (L×L), and Leucaena leucocephala (Lam.) de Wit) were investigated to determine whether parameters of nursery seedling stock quality could be used to predict their field performance in a plantation irrigated with treated waste-water to produce fodder and wood. Plants were grown in the nursery in two contrasting rooting substrates (ordinary nursery soil and sand), predicted to have different effects on resource allocation. Three categories of morphological indicators were measured, i.e., plant dimensions (height, diameter, root length), plant weights (shoot, root and whole plant weights) and indices (sturdiness quotient ‘SQ’, shoot:root dry weight ratio ‘SRR’ and Dickson’s quality index ‘DQI’). In the nursery, all species performed better in the ordinary nursery soil for all growth parameters except root length. Thus ordinary nursery substrate appeared superior to sand in terms of plant quality. However, a follow up at plantation phase revealed that only some morphological attributes or ratios were suitable to predict field performance for the five tested species in irrigated plantation. In addition, the effect of the substrate observed at the nursery stage had disappeared 12 months after out planting due to the availability of water and nutrients provided by the treated waste water used for the irrigation. The results showed that root collar diameter and DQI appeared to be the most appropriate indicators to predict the outplanting performance of the five tested species in a short-rotation irrigated plantation in semi-arid Burkina Faso. The former measure is simpler and non-destructive.  相似文献   

18.
Forest restoration projects with Holm oak (Quercus ilex) have had limited success, mostly due to water stress after planting and poor plant quality. Recent studies indicated that large and nutrient rich plants perform better in Mediterranean areas, suggesting that late-season fertilization may improve plant quality and field performance. The purpose of this study was to assess the effect of late-season fertilization on the quality of Holm oak seedlings, as determined by morphological, nutritional, and water relations analyses. We grew Holm oak nursery seedlings under 5 different late-season fertilization regimes and then analyzed morphological characteristics, nutritional status, and water relations parameters of the fertilization groups at the end of the nursery period. We also analyzed the effect of fertilization on nutritional status by use of vector nomograms. Our results indicated that late-season NPK fertilization improved shoot and root growth, and the overall nutritional status of seedlings. The lack of late-season fertilization leads to nutrient deficiency in plants, whilst the application of imbalanced fertilization treatments may trigger nutrient luxury consumption and nutrient dilution, pointing out the importance of NPK proportions in the fertilizer. Moreover, late-season fertilization with nitrogen might improve the drought resistance of seedling by enhancing their osmotic adjustment.  相似文献   

19.
The goal of this study was to develop management strategies favouring establishment and survival of holm oak (Quercus ilex L.) and downy oak (Quercus pubescens Willd.)??two species co-occurring in Southern France??in mature Allepo pine forests (Pinus halepensis Mill subsp. halepensis). An experimental design was assessed in a partially cut mature stand of Aleppo pine in which five soil and vegetation treatments??chopping, chopping followed by scarification in one or two directions, prescribed burning, control??and two slash treatments (presence/absence) were applied. A total of 1,600 sowing points, each composed of 3 Q. ilex or Q. pubescens acorns, were installed in the different treatments in November of two consecutive years at 6 and 18 months, after the end of treatments. Survival was monitored 3 and 2 years after sowing, soil surface at the sowing points was characterized at different dates, and predawn leaf water potentials were measured during the dry season. High mortality occurred after the first summer, but survival after 1 year was 2.3?C5.2 higher in Q. ilex than in Q. pubescens, confirming that Q. ilex was better adapted to the drier parts of the Mediterranean area. Survival was significantly influenced by the treatments, but there was a variable response between the two sowing years under most of the treatments. Only intense fire proved the most beneficial treatment for seedling survival in both years. The micro-local soil cover conditions induced by the treatments played a major role in explaining oak survival. In particular, grass cover (mainly Brachypodium retusum) proved to be largely unfavourable to seedling survival and growth, and this detrimental effect was also confirmed by lower predawn leaf water potential values with increasing grass cover. Acorn introduction designed to diversify mature Aleppo pine forest after soil and vegetation treatments therefore has to be considered for treatments that most efficiently impair the pre-existing competing grass cover such as prescribed high-intensity fire treatment.  相似文献   

20.
Recurrent problems with regeneration of oaks (Quercus spp.) have been documented across a wide range of ecosystems. In oak-dominated forests of the central and Appalachian hardwood regions of the United States, a lack of competitive oak regeneration has been tied, in part, to fire suppression in these landscapes, and managers throughout the region are using prescribed fire to address this concern. To examine fire effects on oak regeneration, researchers have generally relied on inventories or population studies of existing seedlings. These studies are valuable but do not permit examination of the role of fire in enhancing the establishment and growth of new oak seedlings stemming from oak mast events. In this study, white (Quercus alba) and chestnut oak (Quercus prinus) acorn mast crops serendipitously occurred in year three (fall 2005) of a landscape-scale prescribed fire experiment. We examined establishment, survival, height and diameter of new seedlings on sites on the Cumberland Plateau in eastern Kentucky. Treatments were fire exclusion, a single prescribed fire (1x-burn; 2003), and repeated prescribed fire (3x-burn; 2003, 2004, and after acorn drop in 2006), all conducted in late spring. Initial densities of newly established chestnut and white oak seedlings were statistically similar across treatments (P = 0.42), despite fires on the 3x-burn site having occurred after acorns were on the ground. Oak seedling density was significantly predicted by oak basal area on all sites (R2 = 0.12–0.46), except for chestnut oak on fire-excluded sites (R2 = 0.04). Litter depth was less on 3x-burn sites compared to 1x-burn and fire-excluded sites, whereas canopy openness was greater on both burn treatments compared to fire-excluded sites. Seedling mortality was generally higher on fire-excluded sites compared to burn sites, especially for white oak. Oak seedling mortality in the first two growing seasons was significantly predicted by initial litter depth and open sky, with greater litter depth and lower percent open sky leading to higher mortality. In the third growing season none of the measured variables predicted chestnut oak seedling survival; for white oak, percent open sky remained a significant predictor of mortality. Initially, seedlings on the fire-excluded sites had similar height but smaller diameter; after three growing seasons there were few differences in seedling height or diameter among treatments. Our findings suggest a potential role for prescribed fire in establishing forest floor and light conditions that may enhance the success of new oak germinants, although different responses among species may suggest the need to target management for individual oak species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号