首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth and development of Pinus pinea seedlings grown in different containers was followed through one growing season in the nursery and 3 years following outplanting in the field. The variables studied in the nursery were height, diameter, biomass of shoots and roots, nutrient uptake and root density. The measured field variables, height and diameter increment and survival, were correlated with the nursery variables. Container volume had the greatest influence on plant morphology. Containers with larger rooting volume had seedlings with larger height and diameter, greater nutrient content, and better field performance. Growing density was correlated with seedling morphology and nutrient concentration in the nursery. Among the variables that influenced container volume, the diameter of the container was the most important, while the depth of the container had a minor influence on seedling morphology.The best indicator of seedling development in the nursery was the ratio of container depth to container diameter, and the optimum ratio was 4. All containers produced seedlings with some root spiralling, including those containers with ribs. There was no relationship between either the number of spiralling roots or the angle of spiralling and container characteristics. Furthermore, root spiralling did not influence seedling performance following outplanting. Root density (root biomass/cm3) was inversely correlated with container volume but there was no correlation with either depth or growing density. The largest plants were produced with container volumes of 300–400 cm3, depth/diameter ratios of 4, and growing densities of 200–300 seedlings/m2. These growing conditions will result in larger Pinus pinea seedlings coming out of the nursery, which will increase growth following outplanting.  相似文献   

2.
Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.  相似文献   

3.
Holm oak is the hardwood most used for reforestation in Mediterranean Spain, which makes the development of stock quality standards in order to improve establishment success, a priority. However, its nursery culture is characterized by a wide range of practices resulting in stock heterogeneity and a potentially varied outplanting performance. Previous research has focused on specific seedling quality attributes, obviating the integral effect of nursery culture on overall quality. We studied growing regime, seedling quality, and field performance in nine holm oak stocklots produced in commercial nurseries during two consecutive growing years. Results proved variations in field performance were related to stocklot quality and, hence, to the growing regime practised. This dependence on stock quality may vary with planting site weather: in the drier year, survival was related to attributes like height, water status and K concentration, while, in the second, milder year, only growth performance was related to nutrient concentrations, plant size and water status. Results indicated the following quality standards for height: 12–17 cm, diameter: 3.5–4.8 mm, shoot and root weights: 1.3–1.6 and 2.8–4.7 g, respectively, N–P–K foliar concentrations: over 10–0.9–3.7 mg g−1, respectively and in water status parameters: EMX < 5 MPa and SWDTL > 15%. These attributes can be adjusted using nursery cultural practices in order to meet seedling quality standards for holm oak for planting across similar sites.  相似文献   

4.
Zaczek  James J.  Steiner  Kim C.  Bowersox  Todd W. 《New Forests》1997,13(1-3):177-191
A northern red oak plantation was established in 1988 in a recently clearcut mixed oak stand to evaluate outplanting performance relative to type of planting stock (1--0, 2--0, 1--1, 2--1, 2-year-old containerized, and direct-seeded) and other cultural factors (undercutting in the nursery, raising stock in an extended growing season in Alabama vs a local Pennsylvania nursery, top-clipping at planting time, and tree shelters). Six years after outplanting, seedlings grown from 2-year-old containerized stock were tallest (averaging 3.3 m) and had excellent survival. Among other treatments, 2--0 bareroot stock, especially if undercut in the nursery and top-clipped at planting, performed best and averaged 3.0 m height and 100% survival. Remaining treatments, especially 1--0, were smaller and had reduced survival. Seedlings from direct-seeding were as tall as most 1--0 treatments. Undercutting, top-clipping, nursery transplanting, raising stock in different nurseries, and tree shelters minimally affected the height or survival of seedlings. Seedlings above average in height 3 years after outplanting when fencing was removed and herbiciding ceased, were most likely to survive after 6 years.  相似文献   

5.
Mediterranean oaks frequently have poor performance in forest restoration projects. We analyzed if nitrogen (N) fertilization during nursery cultivation enhances the outplanting performance of two ecologically distinct oaks, Quercus coccifera L. an evergreen shrub, and Quercus faginea L., a deciduous tree. Additionally, we compared the sufficiency N levels of both oaks and if root growth capacity (RGC) and photosynthesis testing at low air temperature better discriminated among fertilization treatments than testing at mild temperature. Plants were cultivated under five N fertilization rates (0, 30, 75, 150 and 200 mg N plant?1) for one growing season. At the end of the cultivation period several plant material and performance attributes were measured. RGC and photosynthesis were assessed at mild temperature and cool conditions in Q. coccifera, while in Q. faginea these attributes were only analyzed at mild temperature conditions. Q. coccifera seedlings were transplanted into four terraces that imposed increasing drought stress, while Q. faginea seedlings were transplanted into an abandoned wheat cropland. Sufficiency level was higher for the tree (150 mg N plant?1) than for the shrub (75 mg N plant?1) Nitrogen-deprived Q. coccifera plants had higher frost damage than remaining treatments, which did not differ among them. Fertilization in Q. faginea did not affect photosynthesis rate but it delayed leaf senescence and abscission. RGC increased with fertilization in both species. Testing temperature did not change the effect of fertilization on RGC in Q. coccifera. Photosynthesis in cool conditions discriminated N-deprived seedlings from the remaining treatments, but treatments did not differ in photosynthesis at mild temperature. Fertilization enhanced outplanting survival in Q. coccifera, primarily in the terraces imposing stronger drought stress, while fertilization only increased growth in the terraces imposing mild drought stress. Overall, survival and growth was positively related to seedling size at planting in both oaks. Additionally, Q. coccifera survival was also positively related to RGC in the harsh planting conditions. Field growth was positively related to RGC and plant N concentration in both oaks but the relation was weak or nonexistent under harsh conditions in Q. coccifera. We conclude that fertilization in the nursery is an important tool for improving the success of oak plantations in Mediterranean continental sites, and that large and N-rich seedling have greater field performance than small and low tissue N concentration seedlings, especially in harsh field sites.  相似文献   

6.
Container volume and irrigation management affect seedling growth in the nursery and field. We evaluated the effects of container volumes (D40, 656?ml; D60, 983?ml) and subirrigation schedules (85%, 75%, 65%, and 55% of 100% total substrate moisture content, TSMC) on seedling growth in a greenhouse and outplanting performance of Chinese cork oak (Quercus variabilis Blume) for one growing season. In the greenhouse, morphological attributes of seedlings grown at 85% and 75% TSMC in D60 were greater than those grown at 65% and 55% TSMC in D40. After outplanting, seedlings grown at 75% TSMC in D60 were tallest but not different than those grown at 65% TSMC. Shoot (9.2?g), root (28.0?g), and total (37.2?g) biomass of seedlings subirrigated at 55% TSMC in D60 reached maximum values, but shoot biomass for seedlings grown at either 65% or 55% TSMC was similar. Root and total N and K contents of seedlings subirrigated at 65% and 55% TSMC were greater than those grown at 85% and 75% TSMC. Our results suggest that reducing the subirrigation schedule threshold and using a container with more volume could improve oak seedling growth and nutrient accumulation during the first growing season of outplanting.  相似文献   

7.
[目的]探讨控释肥和灌溉方式对栓皮栎(Quercus variabilis Bl.)容器苗生长、养分含量、基质电导率(EC)及2年造林效果的影响,为培育高质量苗木提供参考。[方法]以栓皮栎容器苗为研究对象,采用双因素完全随机试验设计,设置5个施肥水平(以N元素含量为基准,5个施肥水平分别为:25、75、125、175、225 mg·株~(-1))和2种灌溉方式(上方喷灌(O)、底部渗灌(S)),测定栓皮栎容器苗形态指标、养分含量、根系生长、基质EC值及连续2年造林效果。[结果]表明:(1)施肥量和灌溉方式二者对苗木形态指标影响存在交互效应,225-O处理的苗木地径、根生物量、单株生物量最大,但根生物量、单株生物量在225-O、125-S、175-O处理之间差异不显著。225-S处理的苗高、茎生物量、茎根比最大,茎生物量在225-S与225-O之间差异不显著。(2)苗木茎、根的氮磷钾浓度和含量随施肥量的增加而增大,施肥量125、175、225 mg·株~(-1)处理之间的根氮、磷含量及单株磷含量差异不显著。(3)增加施肥量促进苗木根系的生长,施肥量为125、175、225 mg·株~(-1)处理之间的根系表面积、体积差异不显著。(4)基质EC值随施肥量的增加而增大,底部渗灌显著提高了基质上层、下层的EC值,基质上层、下层的最大EC值分别为4. 69、0. 56d S·m-1,没有对苗木生长产生不利影响。(5)和上方喷灌相比,底部渗灌显著地促进造林第1年幼树的树高、地径生长;造林第1年、第2年的树高和地径均随施肥量的增加而增大,造林第2年,施肥量125、175、225 mg·株~(-1)处理之间的树高、地径差异不显著。[结论]底部渗灌提高了栓皮栎容器苗体内的养分含量,促进了造林第1年幼树树高、地径的生长。施加控释肥有利于苗期苗木质量的提高及造林后苗木的快速生长。综合考虑苗木质量、经济效益、环境利益,培育栓皮栎容器苗可选择底部渗灌和控释肥量为125 mg·株~(-1)的组合(以N元素含量为基准)。  相似文献   

8.
Cold storing bareroot pine (Pinus spp.) seedlings grown in the southern U.S. for as little as 1 week in a cooler (just above freezing) in the fall (November to mid‐December) has been shown to reduce seedling survival after outplanting. In contrast, survival of container‐grown seedling is typically not affected when stored for 4 weeks in coolers in November and December. Wounds sustained by seedlings as they are lifted from nursery beds may allow Pythium spp. to infect bareroot seedling roots. Once in the cool, moist storage environment, Pythium multiplies and may result in seedling mortality after outplanting. Bareroot loblolly pine (Pinus taeda) and container‐grown loblolly, longleaf (Pinus palustris), slash (Pinus elliottii) and shortleaf pine (Pinus echinata) seedlings were inoculated with either Pythium dimorphum or Pythium irregulare, cold stored with or without peat moss and monitored for survival after outplanting. Peat moss did not increase bareroot loblolly pine survival or reduce Pythium populations when seedlings were inoculated with Pythium prior to storage. Pythium irregulare reduced survival of longleaf and shortleaf pine grown in peat moss and perlite, respectively. Pythium did not affect loblolly or slash pine, but wounding their roots did reduce seedling survival when grown in containers.  相似文献   

9.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

10.
The field performance of conifer and hardwood species inoculated with different inoculation treatments was evaluated 5 or 3 years after outplanting in the field trials established in the Canadian Prairie Provinces. In conifer trials, the growth of white spruce, black spruce, lodgepole pine, and larch seedlings observed on different sites varied greatly to different inoculation treatments depending on plant and fungal species involved. Five years after outplanting, most of the introduced fungi were replaced by several indigenous ectomycorrhizal fungal species except for Laccaria bicolor strain. Survival rates of most of the inoculated seedlings were not significantly different from control seedlings naturally colonized by other resident fungi. In hardwood trial, the effects of nursery inoculation of different poplar clones, aspen and balsam poplar were very limited. Growth and survival data were combined into seedling volume and plot volume index (PVI) for measurement of total growth response of seedlings. Our results demonstrated that certain inoculated plant-fungus combinations have played a positive role during the initial establishment of these seedlings in the field, which was reflected on significantly greater stem volume and PVI compared to non-inoculated control seedlings. The results from this study provided useful information on field evaluation for potential benefits of mycorrhizal inoculation in nursery.  相似文献   

11.

Improving drought tolerance of container seedlings of Japanese larch is of high importance to afforestation. We hypothesized that adequate nitrogen (N) and limited water supply would increase the tolerance of container seedlings to water-deficit stress, circumventing photoinhibition, by means of (i) enhanced photosynthetic capacity with higher leaf N and (ii) decreased water loss from leaves with lower biomass allocation into aboveground parts. Container seedlings of Japanese larch were grown under the treatment combinations of adequate (+?N: 300 mg N container?1) or limited (??N: 150 mg N container?1) N and adequate (+?W: daily irrigation) or limited (??W: twice-a-week irrigation) water. Then, seedlings were subjected to a progressive drought treatment. Higher leaf N was observed in container seedlings grown under?+?N and???W. During progressive drought, lower stomatal conductance and net photosynthetic rate were observed in leaves with higher leaf N at a given predawn leaf water potential. Furthermore, the maximum efficiency of PSII photochemistry (Fv/Fm) was lower in leaves with higher leaf N, suggesting that higher leaf N might impair intrinsic tolerance to drought at the leaf level contrary to expectations. Conversely,???N and???W seedlings with lower shoot biomass delayed soil drying as a whole-plant response via a reduction in leaf transpiration, leading to delayed photoinhibition as indicated by a decline in Fv/Fm. To circumvent stress at the initial stage of water deficit, lower leaf N via limited N regime and smaller shoot biomass driven by limited N and water regimes would be important.

  相似文献   

12.
In Mediterranean arid regions, relatively small planting stock has traditionally been used in an attempt to reduce drought susceptibility, though few studies have examined influences of initial seedling morphology and nutrition on long-term plantation establishment. We fertilized Pinus halepensis Mill. seedlings in the nursery with controlled release fertilizer (CRF) varying in formulations and rates; 9-13-18 and 17-10-10 (N-P-K) formulations at 3, 5 and 7 g l−1 substrate plus an unfertilized control and we evaluated growth and survival 7 years after planting in arid conditions in Almería province, southeast Spain. Interactions between initial height and fertilizer treatments occurred during the first 3 years; initial size advantages of specific fertilizer treatments (7 g l−1 of 9-13-18 and 17-10-10 at 3 g l−1) persisted after 7 years. The largest and most nutrient-rich seedlings from 9-13-18 at 7 g l−1 (41.0 cm tall, 4.4 mg of P per g of root tissue at time of planting) exhibited the highest survival after 7 years (79%), while survival declined to 42% for non-fertilized plants (12.9 cm tall and 0.6 mg of P per g of root tissue). Initial seedling morphological parameters were most consistently correlated with field performance. Root P concentration was the nutrient variable most closely related to survival. Our data emphasizes importance of longer-term experiments to accurately assess influences of nursery treatments on field responses, particularly in arid areas. We suggest that larger seedlings with greater nutrient reserves than are currently being used should be incorporated into Mediterranean plantations.  相似文献   

13.
This review examines the published work on bareroot and container stocktypes in forest restoration programs. The objective was to define overall trends between these two stocktypes and describe what they mean in terms of available information on their nursery and field performance. Stock quality assessments show bareroot seedlings have larger shoot systems because they are typically grown at lower densities, and in many instances longer timeframes, than container seedlings. Container systems typically produce seedlings having a lower shoot to root ratio and a greater root growth potential, conferring greater drought avoidance potential. However, assessments of stress resistance and nutrition found no conclusive evidence that either stocktype has a performance advantage, other than the container plug acting as a source of water and nutrient storage available for outplanting performance. Bareroot seedlings are more sensitive to handling practices of lifting, storage, transport and planting and these practices can negatively affect their performance. Container seedlings can have a higher level of field survival which is related, in part, to their greater drought avoidance potential, thereby overcoming planting stress. Bareroot and container seedlings have comparable survival rates on sites with minimal planting stress. Once seedlings are established, bareroot and container seedlings can have comparable field performance. In many instances where plant competition is the main limiting site variable, larger sized bareroot and container stocktypes have the best chance for successful stand establishment. The lack of a natural root form and root distribution for both stocktypes is a debated mechanical stability issue, though risks of windthrow have not been consistently demonstrated for either stocktype.  相似文献   

14.
We tested the effects of exponential nutrient loading and springtime carbon loading during nursery culture on the field performance of black spruce (Picea mariana (Mill.) B.S.P.). Seedlings were grown from seed with a conventional, fixed dose fertilizer (10 mg N seedling−1) or an exponential nutrient loading regime (75 mg N seedling−1). The following spring, seedlings were exposed for two weeks to either ambient (370 ppm) or elevated levels of CO2 (800 ppm) and then planted in the field; seedling growth was followed for the next six years. Exponential nutrient loading increased seedling height, stem diameter and leader growth, with the largest increases in height and leader length occurring in the first three years after outplanting. Carbon loading increased seedling height and leader length, but only in seedlings that had been exponentially nutrient loaded. A combination of carbon and nutrient loading increased shoot height 26%, stem diameter 37% and leader length 40% over trees that received neither treatment. These results demonstrate that the growth enhancement seen under exponential nutrient loading is maintained under field conditions for at least six years. Carbon loading just before outplanting was a useful supplement to nutrient loading, but was ineffective in the absence of nutrient loading.  相似文献   

15.
Early establishment of seedlings in reclaimed oil sand areas is often limited by low nutrient and water availability due to factors such as strong understory vegetation competition. Management practices such as nursery fertilization and field weed control could help early establishment of planted seedlings and reclamation success. We investigated the effect of nursery nutrient loading and field weed control on the growth, nitrogen (N) retranslocation within seedling components, and plant N uptake from the soil for white spruce (Picea glauca [Moench] Voss) seedlings planted on a highly competitive reclaimed oil sands site for two years. Exponential fertilization during nursery production increased the root biomass but not the nutrient reserve in the seedling. In the field experiment, on average across the treatments, 78 and 49% of the total N demand of new tissue growth in the first and second year were met by N retranslocation, respectively. Though exponential fertilization did not affect N retranslocation, it increased the percent height and root collar diameter growth. Weed control increased not only the growth of seedlings by increasing soil N availability, but also N retranslocation within the seedlings in the second year after outplanting. We conclude that vegetation management by weed control is feasible in improving the early growth of white spruce seedlings planted on reclaimed soils and facilitate tree establishment in the oil sands region. Optimization of the nursery exponential N fertilization regime for white spruce may further help with early revegetation of reclaimed oil sands sites.  相似文献   

16.
After five years of growth at high-elevations (∼3000 m) in Utah, container lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) seedlings survived well (80–95%) and grew to similar heights regardless of nursery storage method and site preparation technique. Seedlings received one of three storage treatments: (1) spring-sown in the nursery, overwintered in cooler storage and outplanted in July; (2) spring-sown, overwintered in freezer storage, and outplanted in July; or (3) winter-sown, no storage, and hot-planted in late August. We outplanted seedlings at two locations that were clearcut and had received two treatments of surface organic matter (coarse wood, logging slash, and forest floor) removal: surface organic matter (OM) piled with a bulldozer and burned or surface OM remaining in situ. Compared to adjacent uncut stands, both site preparation treatments increased total soil bulk density, but retaining surface OM in situ maintained soil OM, carbon, and nitrogen levels. After one growing season, seedlings planted where surface OM had been bulldozed were taller and had more biomass, although survival was similar (≥96%) across site preparation treatments. The height growth advantage disappeared after five growing seasons and although overall survival was good, survival was highest where site preparation involved removal of surface OM and freezer-stored seedlings were planted. Total non-structural carbohydrates tended to be higher in roots than in shoots and were also higher in hot-planted seedlings than in stored seedlings. Our results indicate that nursery and forest managers have several options for successful nursery production and outplanting of container lodgepole pine seedlings in the central Rocky Mountains. Using hot-planted seedlings allows for a faster turnaround time (from seed to plantable seedling) and maintaining surface OM may be a cost-effective alternative to dozer piling and burning.  相似文献   

17.
In the last decades, reforestation and afforestation programs are being carried out mainly with containerized seedlings. Container design determines the morphological and physiological characteristics of seedlings. However, container characteristics are often the same for plant species with very different growth strategies. The most commonly used nursery containers are relatively shallow and limit tap root growth; consequently, species relying on the early development of a long tap root to escape drought, such as those of the Quercus genus, might need to be cultivated in deep containers. The aim of this paper was to compare the morphological and physiological characteristics of Quercus suber L. seedlings cultivated in shallow containers (CCS-18, depth 18 cm) with seedlings cultivated in deep containers (CCL-30, depth 30 cm). Both container types used were made of high-density polyethylene, cylindrical in shape, open-bottomed, with a diameter of 5 cm, two kinds of vertical ribs on the inside wall showing a cultivation density of 318 seedlings/m2. At the end of nursery culture, the seedlings cultivated in the CCL-30 deep container presented a longer tap root, higher shoot and root biomass and higher Dickson Quality Index (DQI). Moreover, the CCL-30 seedlings showed a higher root growth capacity (RGC), they reached deep substrate layers faster and they presented higher root hydraulic conductance. These morpho-functional advantages improved the CCL-30 seedling water status, which was expressed by higher stomatal conductance during an imposed drought period.  相似文献   

18.
Larch tree species (Larix Mill.) are both ecologically and commercially valuable in their native range and are the focus of many restoration, afforestation, and commercial reforestation efforts in the boreal forests of the northern hemisphere. Land use change, shifting climate, and poor natural regeneration are making it increasingly difficult to establish the species; therefore, artificial regeneration is critical to ensure this timber species maintains its productive role on the landscape. New stocktypes are continually being developed to aid target seedlings for difficult sites, and critical, non-confounding evaluations of them are needed for target seedling development. This research evaluates the effect of container parameters on potential target seedlings. It examines tolerance thresholds of western larch (Larix occidentalis Nutt.) with respect to moisture and temperature status in the rhizosphere during early establishment. A suite of morphological measurements was used to assess seedling quality and relative performance following transplant. Modifying a commercially available container developed four distinct stocktypes of 111, 143, 175 and 207 ml that were paired with a volume-dependent nutrient regime at two culturing densities. Seedling phenotype was affected to a greater extent by container density than by container volume. Despite changes to container volume, root:shoot were found to be similar, indicating benefits of a tailored nutrient regime during nursery culture. Simulated field trials revealed that a low density growing arrangement improved post-transplant seedling growth, specifically root growth. Also, the 207 ml container facilitated greater growth in dry soil conditions compared to smaller containers. Lower (10 °C) rhizosphere temperature hindered root growth; however, seedling survival was 100 %, warranting the testing of earlier outplanting windows for this species. This evaluation of stocktype performance contributes to a greater body of work with this species and its congeners, which will ultimately benefit reforestation and afforestation efforts alike.  相似文献   

19.
In Mediterranean climates, seedlings are frequently shaded in the nursery to avoid heat damage and save water. However, the impact of this shading on the seedling quality and transplanting performance of Mediterranean species is not well known. We studied the effect of nursery shading on pre-planting features and post-planting performance of two Mediterranean tree species: the shade-intolerant pioneer Pinus halepensis and the shade-tolerant late-successional Quercus ilex. We grew one-year-old seedlings of both species under 100, 40 and 5% full sunlight. Shade had a low impact on the morphology and physiology of Q. ilex seedlings. In pines, only the deep shade treatment produced low quality seedlings with poor root development. In both species, transference to high light at planting in autumn did not impose any additional stress than that caused by frosts, but initial root growth was impaired in the two shaded treatments in pine. Post-planting growth and survival of oak seedlings showed no difference between treatments. Pine seedlings grown in deep shade showed higher mortality and lower growth after planting than those grown in full sun and intermediate light treatments, while intermediate light only reduced growth. For the nursery culture of Q. ilex seedlings, we advise using low light levels during summer to save water without impairing field performance. In P. halepensis, seedlings should be cultured under full sunlight conditions to maximize post-planting growth, but they can be cultured under intermediate light without impairing survival.  相似文献   

20.
Maintaining proper seedling nitrogen status is important for outplanting success. Fall fertilization of evergreen conifer seedlings is a well-known technique for averting nitrogen (N) dilution caused by continued seedling growth during hardening. For deciduous seedlings, this technique is much less understood, and regardless of foliage type, the interaction of N status prior to fall fertilization and the rate of fall fertilization have yet to be fully explored. Therefore, we fertilized Quercus variabilis container seedlings with either 25, 100, or 150 mg total N seedling?1, applied exponentially, during a 23-week pre-hardening regime, followed by either 0, 12, or 24 mg total N seedling?1 applied during hardening (i.e., fall fertilization) in equal aliquots for 4 weeks. For seedlings without supplemental N during hardening, N concentration in stems and roots increased significantly despite substantial growth. The absence of N dilution was attributed to N translocation from foliage to these tissues, which was independent of pre-hardening N status. Overall, 32 % of foliar N was translocated and accounted for 75 % of the total N increase in stems and roots. Final stem N status was a function of pre-hardening fertilization, whereas root N concentration was affected by the interaction of pre-hardening and fall fertilization. Roots appear to be the main site of N storage, and root N content was significantly affected by pre-hardening and fall fertilization, but not their interaction. A combination of pre-hardening and fall fertilizer at a rate of 100 and 24 mg total N seedling?1, respectively, yielded seedlings with the largest root systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号