首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed root and shoot development of bareroot and container Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedling stocktypes were compared during the first growing season after outplanting. The study was installed in raised beds with ideal environmental conditions and at a field reforestation site. Survival at both sites was 98% and did not differ between stocktypes. Seedlings were excavated in spring (5, 8, 12, and 16 weeks after planting) and in fall (35, 40, and 45 weeks after planting). In spring, container seedlings had more numbers of new roots and greater new root and shoot biomass than bareroot seedlings at both sites. In fall, bareroot seedlings consistently averaged more new root growth (though nonsignificant) than container seedlings suggesting that stocktype differences may not continue long-term. Container seedlings had significantly greater water percent than bareroot seedlings at the field site (all sample dates) and the raised bed site (weeks 5, 8, and 40 only). Regardless of environmental conditions or season, seedlings at both sites maintained water percent between 60 and 70% of fresh weight. Seedlings grown in the raised beds had much greater growth than those grown in the field. However, relative growth patterns for the two stocktypes were very similar on each site. The data generated establish baseline differences between stocktypes for root initiation, growth, and allometry during the first year after planting. Challenges associated with root development research are discussed.  相似文献   

2.
Tolerance of bareroot and container-grown seedlings of black spruce (Picea mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), and eastern white pine (Pinus strobus L.) to competition from herbaceous vegetation was examined in the first five years after planting on a site in the Great Lakes/St. Lawrence forest of Ontario, Canada. Shoot and root morphological characteristics of various stocktypes were measured before planting and correlated with 5-year survival and growth following control and no control of herbaceous vegetation. For black spruce and jack pine, medium-sized bareroot stocktypes had greater relative 5-year stem volume growth in the presence of herbaceous vegetation than did container stock of either species or large bareroot stock of spruce. Relative volume growth was measured as the ratio of the cumulative stem volume increment in the presence of vegetation (Veg) to that in the absence of vegetation (NoVeg), i.e., the Veg:NoVeg ratio. In white pine, the Veg:NoVeg ratio of volume increment of medium container and large bareroot stocktypes exceeded that of small container and medium bareroot stocktypes. In jack pine, root collar diameter at planting and number of first-order lateral roots were positively correlated with 5-year Veg:NoVeg ratio of volume increment. In white pine, the Veg:NoVeg ratio was also positively correlated with root collar diameter at planting and with root volume. In black spruce, the ratio was not related to pre-plant morphology. Thus, for white pine and jack pine, certain pre-plant morphological features may be useful in forecasting the relative ability of different stocktypes to grow under herbaceous competition conditions in the field.  相似文献   

3.
This one-time greenhouse study examined the phenology, morphology, frost hardiness and response to moisture stress of three Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stocktypes from the same seed lot. The types were mini-plugTM transplants (MPT), 1+1 bareroot transplants (1+1), and 2+0 bareroot seedlings (2+0). In late summer and fall before lifting, 2+0 seedling set bud before 1+1 seedlings, 1+1 seedlings before MPT seedlings. The 2+0 seedlings appeared slowest to acquire frost hardiness in fall and seemed to deharden most rapidly in spring. Although the 2+0 seedlings were taller than the MPT stocktype, MPT and 2+0 seedlings were relatively similar in other morphological respects, but 1+1 seedlings were much larger. All stocktypes were potted on January 20, 1989, placed in a greenhouse, and subjected to 39%, 18%, 16%, or 6% soil water content (% dry weight) until the end of the experiment in mid-July 1990. The largest decrease in pre-dawn xylem water potential occurred with 16% and 6% soil water content; pre-dawn xylem water potential averaged over the three stocktypes generally declined 219% from low to high soil moisture stress. The 1+1 seedlings used more water than the other two stocktypes, and at maximum soil moisture stress, plant moisture stress increased in the order: MPT <2+0<1+1. During the 6-month greenhouse experiment, the larger 1+1 stocktype showed the most absolute growth, but the smaller stocktypes grew more on a relative scale. Growth of the stocktypes appeared to be related to differences in morphology and water-use patterns as the seedlings competed for available water within each pot. The results show that MPT seedlings, a new stocktype, performed as well as the more traditionally used 2+0 and 1+1 seedlings and that stocktype selection is important in reforestation efforts.  相似文献   

4.
Successful regeneration of northern red oak (Quercus rubra L.) on productive sites is problematic in eastern North American forests. Natural and artificial regeneration often cannot compete with fast-growing, shade intolerant species such as yellow-poplar (Liriodendron tulipifera L.). This study examines 5-year survival, growth, and competitive ability of planted northern red oak seedlings in various group selection harvest sizes in south-central Indiana, USA. Seedling stocktypes consisted of high (BHD; 75 seedlings m?2) and low (BLD; 21 seedlings m?2) nursery-bed-density bareroot seedlings, and small (CS; 11.4 L) and large (CL; 18.9 L) container seedlings. Group selection openings included large (0.400 ha), medium (0.100 ha), and small (0.024 ha) circular gaps in four stands. Larger stocktypes and gap sizes improved seedling height, diameter, and growth; ANOVA indicated only gap size was significant for seedling survival. Logistic regression showed survival was positively correlated to diameter at year 1, and aspect, gap size, and stocktype were significant predictors of survival. Our data indicated no differences in density of natural regeneration among gap sizes, although trends suggest greater numbers of bigger competitors in larger gaps sizes. Yellow-poplar regeneration was the tallest competitor of more than 50% of all northern red oak seedlings. Competitive status of seedlings after 5 years differed only by stocktype, with large container stock in a better competitive position than bareroot stock. However, less than 20% of seedlings in all stocktypes in each gap treatment were considered competitive (i.e., ≥80% of the height of tallest competitor) against their tallest competitor. The use of larger planting stock may offer greater opportunities for successfully regenerating northern red oak seedlings on productive sites but likely would have to be accompanied by treatments to reduce woody competition.  相似文献   

5.
Larch tree species (Larix Mill.) are both ecologically and commercially valuable in their native range and are the focus of many restoration, afforestation, and commercial reforestation efforts in the boreal forests of the northern hemisphere. Land use change, shifting climate, and poor natural regeneration are making it increasingly difficult to establish the species; therefore, artificial regeneration is critical to ensure this timber species maintains its productive role on the landscape. New stocktypes are continually being developed to aid target seedlings for difficult sites, and critical, non-confounding evaluations of them are needed for target seedling development. This research evaluates the effect of container parameters on potential target seedlings. It examines tolerance thresholds of western larch (Larix occidentalis Nutt.) with respect to moisture and temperature status in the rhizosphere during early establishment. A suite of morphological measurements was used to assess seedling quality and relative performance following transplant. Modifying a commercially available container developed four distinct stocktypes of 111, 143, 175 and 207 ml that were paired with a volume-dependent nutrient regime at two culturing densities. Seedling phenotype was affected to a greater extent by container density than by container volume. Despite changes to container volume, root:shoot were found to be similar, indicating benefits of a tailored nutrient regime during nursery culture. Simulated field trials revealed that a low density growing arrangement improved post-transplant seedling growth, specifically root growth. Also, the 207 ml container facilitated greater growth in dry soil conditions compared to smaller containers. Lower (10 °C) rhizosphere temperature hindered root growth; however, seedling survival was 100 %, warranting the testing of earlier outplanting windows for this species. This evaluation of stocktype performance contributes to a greater body of work with this species and its congeners, which will ultimately benefit reforestation and afforestation efforts alike.  相似文献   

6.
In order to determine the effect of stocktype and cultivation treatment on the field performance (survival and growth) and physiological status of Picea abies in cutaway peatlands, small bare-root, large bare-root and containerised seedlings were planted in a deep ploughed and a control site. Survival after 2 years was good across all treatment (>90%) except for the large bare-root seedlings growing in the control site (84%). For all the morphological characteristics assessed in this study, there was no significant interaction between stocktype and cultivation treatment indicating that the growth response to site cultivation was not stocktype dependent. After two growing seasons, all Norway spruce seedlings performed better in the deep ploughed site and displayed also better nutritional and physiological status. Regardless of cultivation treatment, mean height, diameter and volume increment were significantly smaller for the large bare-root seedlings while the small bare-root seedlings displayed the greatest growth rates. In order to promote early height growth in container and small bare-root stock, large diameter is important. Other initial characteristics such as foliar nitrogen content may also have a strong influence on first year field performance. The physiological status of the seedlings during the first year after outplanting was assessed using chlorophyll fluorescence (CF) measurements. CF measurements detected a higher level of stress for the large-bare root stock (low Fv/Fm). On the other hand, small bare-root stock displayed highest maximum potential photochemical activity which corresponded to greatest growth rates. Container seedlings demonstrated higher capacity for photosynthetic electron transport during the first five months after planting suggesting that they recovered from planting stress quicker and optimised better light interception and utilization than bare-root stock. It can be concluded that intensive management systems including deployment of best-adapted stocktype and site cultivation can be used to enhance early height growth of Norway spruce on cutaway peatlands.  相似文献   

7.
Bareroot nursery practices that maximize root development and growth have been studied and documented over a number of years. Each nursery, however, has its own unique combination of climate, soils, species, and stocktypes for which site specific cultural practices are necessary. J. Herbert Stone Nursery, a USDA Forest Service nursery, located in Central Point, OR, has completed a variety of production trials to adapt general cultural practices to its site. These trials resulted in changes which include: developing a strategy to maintain a high soil porosity through the application of organic matter and tillage measures; sowing seed earlier in the winter for 1 + 0 stocktypes; lowering seedbed densities from 267 seedlings/m2 (25 seedlings/ft2) to between 161 and 195 seedlings/m2 (15 and 18 seedlings/ft2); transplanting seedlings in early fall instead of spring; and developing a miniplug + 1 stocktype.  相似文献   

8.
This research examined the first year growth characteristics of cold stored and transplanted nursery-produced aspen (Populus tremuloides) seedlings (container and bareroot (BR)) and compared it to the growth of seedlings that had not been transplanted (established from germinants in the field) and therefore had an unrestricted root system (UR). Prior to planting, nursery-produced seedlings were placed in cold storage (−3°C) and root growth potential (RGP) and total non-structural carbohydrate (TNC) root reserves were tested at 0, 10, 75 and after 150 (container) and 190 days (BR) of storage. Both container and BR stock had much lower root to shoot ratios (RSRs) and root carbohydrate reserves compared to UR seedlings after 170 days. During storage, root reserves in container stock declined faster than in the BR and UR seedlings. RGP in all nursery stock was the highest after 75 days of storage, while longer storage resulted in shoot dieback and reduced root growth. After the first growing season, UR seedlings were one tenth the size of the nursery stock; however, in the second growing season they had no stem dieback and grew twice the height and stem diameter. The higher RSRs and root reserves in the UR seedlings was likely caused by early bud set in its first year of growth. This suggests that inducing bud set earlier in the growing regime might allow seedlings to increase root mass and carbohydrate reserves.  相似文献   

9.
Root characteristics and field performance of container and bare-root seedlings of red oak (Quercus rubra L.) were compared during the first growing season after planting. Sixty seedlings of each stock type were planted on a clearfell and weed-free site near Restoule, Ontario. Twenty-four additional seedlings from each stock type were compared at the start of the study in terms of shoot and root parameters. Measurement of root and shoot parameters were repeated at three dates during the first growing season in the field. The root systems of container stock had a larger number of first order lateral long roots and were significantly more fibrous than bare-root stock. These differences were sustained throughout the first growing season. In terms of field performance, container seedlings had 100% survival and achieved significant increases in both biomass and shoot extension. Bare-root seedlings suffered 25% mortality, significant shoot dieback and more variable growth. The mean relative growth rate (RGR) of container seedlings increased throughout the study period to a maximum of 30 mg/g/day, whereas the mean RGR of bare-root stock remained close to or below zero. Overall, the container seedlings proved less prone to transplanting shock than the bare-root seedlings, most likely due to favourable root architecture and the pattern of root development. Further work may be warranted in container design, growing regimes and root architecture to fully realise the potential of container systems for the production of high quality red oak seedlings across a range of site conditions.  相似文献   

10.
This study examined the relationship between root collar diameter, plant moisture stress and budbreak in three morphological grades of bareroot 1+0 slash pine (Pinus elliottii Engelm.) nursery seedlings and assessed the role of these parameters in predicting field performance potential under operational conditions. Two months after outplanting seedlings with small (3.2 mm) diameters exhibited greater signs of moisture stress than those with the largest (4.7 mm) diameters, as determined by lower xylem pressure potential values. Intermediate and large-sized seedlings (diameter >3.2 mm) showed earlier budbreak than smaller seedlings with more rapid shoot elongation after planting and had significantly greater survival rates for two years after planting on both a moist flatwoods and a dry sandhill planting site. However, after two years on the more favorable moist site, height and diameter measurements of seedlings with significantly smaller diameters initially did not differ from those of intermediate sized seedlings (diameter >3.2 and <4.7 mm). Large seedlings had greater second-year leader and diameter increments and attained greater total height and diameter after two years on both sites. Decreasing the proportion of smaller seedlings included in the field performance analyses increased overall mean plantation survival while increasing the proportion of large seedlings increased mean two-year total height and diameter as well as annual growth increments.  相似文献   

11.
Quality of seedlings is important for the success of plantations. The field performance of five stock types of Olga Bay larch (Larix olgensis Henry) seedlings three seasons after planting was evaluated. High survival rates were achieved for all five types of planting stock in the first-year growing season when weeds were controlled. In the second and third-year growing seasons, significant differences were observed in survival rates among different stocktypes. The 1 + 1 type of Olga Bay larch seedling demonstrated better survival than 1 + 0 type of seedlings. 1 + 1 seedlings with diameter larger than 5.0 mm as well as 1 + 0 seedlings with diameter larger than 4.5 mm were suitable for reforestation. The 1 + 1 stocktype with a root collar diameter between 6.0 and 7.5 mm was considered optimal for the establishment of fast-growing and high-yield plantations. The number of lateral roots > 1 cm in length was the best predictor of field performance, however, the number of first order lateral roots with diameter > 1 mm at the tap root junction (FOLR (D > 1 mm)) was more feasible and sufficiently reliable to predict the field performance of the deciduous conifers. The initial height and root collar diameter of seedlings showed a significant correlation with the field performance for both 1 + 1 and 1 + 0 seedlings in the first and second-year growing seasons and thus can be adopted as an indicator for predicting potential field performance of seedlings.  相似文献   

12.
Why seedlings survive: influence of plant attributes   总被引:4,自引:2,他引:2  
Seedling survival and successful forest restoration involves many silvicultural practices. One important aspect of a successful forest restoration program is planting quality seedlings with high survival capability. Thus the nursery needs to create seedlings with plant attributes that allow for the best chance of success once a seedling is field planted. Since the mid-twentieth century, research foresters have critically examined plant attributes that confer improved seedling survival to field site conditions. This review describes the value of commonly measured seedling quality material (i.e. shoot height, stem diameter, root mass, shoot to root ratio, drought resistance, mineral nutrient status) and performance (i.e. freezing tolerance and root growth) plant attributes defined as important in answering the question of why seedlings survive after planting. Desirable levels of these plant attributes can increase the speed with which seedlings overcome planting stress, become ‘coupled’ to the forest restoration site, thereby ensuring successful seedling establishment. Although planting seedlings with these desirable plant attributes does not guarantee high survival rates; planting seedlings with desirable plant attributes increases chances for survival after field planting.  相似文献   

13.
该文报道了薄壳山核桃大田播种育苗和火箭盆、无纺布、塑料钵容器等育苗方式对苗木生长及根系结构的影响。结果表明:不同育苗方式对薄壳山核桃苗木高度和地径生长影响显著,其中火箭盆容器培育的苗高、地径生长量最大,为39.14 cm和0.96 cm;无纺布容器苗和大田播种苗次之;塑料钵容器苗的苗高、地径生长量最小。多重比较分析表明,不同育苗方式对薄壳山核桃苗木的主根长度、主根直径、1级侧根数、1级侧根平均长度、根鲜质量、根干质量、茎鲜质量、茎干质量、根茎鲜质量比和根茎干质量比等指标影响显著,火箭盆容器和无纺布容器培育的苗木侧根系发达,根系质量好;而大田播种苗和普通塑料容器苗的主根发达,侧根少,根系质量较差。  相似文献   

14.
刘生权 《防护林科技》2011,(6):38-39,55
通过对3年生樟子松容器苗与裸根苗定植后的成活率、保存率、生长量、生产管理和投资费用对比分析,提出了定植容器苗大大优于裸根苗,定植成活率和保存率分别达到96.3%和99%。与裸根苗相比,容器苗造林每667 m2可节约投资764元。特别是在风沙、干旱、瘠薄的榆林沙区,由于风沙侵蚀严重,立地条件低劣,更应提倡并推广使用容器苗...  相似文献   

15.
It has become apparent that some interventions are required to aid the regeneration of woody species in the Sudanian savanna. Direct seeding has been ineffective, thus planting high quality seedlings may be a viable alternative. In this study, we examined the stock quality of two valuable Sudanian savanna species, Acacia macrostachya and Pterocarpus erinaceus. Different nursery production periods were tested as well as the species’ field performance under well-watered and stressed conditions. The results showed that older seedlings (9-month) were morphologically distinct from younger ones (3-month), particularly in the case of P. erinaceus. Eighteen months after planting out, survival and growth of seedlings were not affected by initial seedling size; this was the result of the high root to shoot ratio of seedlings in all age groups at the time of planting. Seedling mortality as high as 30% was observed and attributed to both drought stress and other factors such as herbivory. Regression analyses revealed that initial shoot height was a poor predictor of field performance for both species, but initial root collar diameter accounted for 25% of the variation in diameter of P. erinaceus in the field. We conclude that initial seedling size does not affect survival and growth in the field provided that all sizes of seedling have a high root to shoot ratio at the time of planting. The prediction of field performance could be improved by developing a model that incorporates a wide range of root collar diameter.  相似文献   

16.
苗木容器育苗技术是利用容器装上营养土进行培育苗木的技术,采用这种技术培育的苗木叫容器苗。容器育苗具有节约种子,可以大量培育,不受造林季节的影响限制以及造林成活率高等特点,但是这种方法成本高,技术比较复杂,通常情况下用于裸根造林不易成活的树种。  相似文献   

17.
The effect of root and shoot pruning on early growth of hybrid poplars   总被引:1,自引:0,他引:1  
Planting stock type and quality can have an important impact on early growth rates of plantations. The goal of this study was to evaluate early growth and root/shoot development of different planting materials in typical heavy clay soils of northwestern Quebec. Using one-year-old bareroot hybrid poplar dormant stock, four planting materials were compared: (1) regular bareroot stock, (2) rootstock (stem pruned before planting), (3) whips (roots pruned before planting), and (4) cuttings (30 cm stem sections taken from the basal portion of bareroot trees, i.e. roots and shoot pruned). Rooted stock types (bareroot and rootstock) produced, on average, 1.2 times larger trees than unrooted stock types (cuttings and whips). However, shoot-pruned stock types (rootstocks and cuttings) reached similar heights and basal diameters as unpruned stock types (bareroots and whips), during the first growing season. Shoot pruning reduced leaf carbon isotopic ratios, suggesting that unpruned stock types were water-stressed during the first growing season. The stress was most likely caused by early leaf development while root growth occurred later in the summer. We conclude that shoot pruning bareroot stock is a useful management option to reduce planting stress without compromising early growth rates of hybrid poplars.  相似文献   

18.
Abstract

Second year Norway spruce [Picea abies (L.) Karst.] container seedlings, short-day (SD) treated for 3 weeks in July, were exposed together with untreated control seedlings (Co) to three different drought treatments for 5 weeks after planting in early August. The treatments were: (1) regular watering (0 week drought); (2) 2 weeks of drought and 3 weeks of watering; and (3) no watering (5 week drought). No difference was found in the vigour and shoot xylem water potential between the SD-treated and the Co seedlings after the drought treatments. The root growth decreased less for the SD seedlings than for the Co seedlings along with the increase in the length of the drought period.  相似文献   

19.
Dey  Daniel C.  Parker  William C. 《New Forests》1997,14(2):145-156
The value of initial stem diameter near the root collar, shoot length and number of first-order lateral roots (FOLR) as morphological indicators of stock quality and field performance was examined for bareroot (1+0, undercut) red oak (Quercus rubra L.) underplanted in a shelterwood in central Ontario. These three attributes were measured on more than 400 seedlings prior to planting, and their relationship with height and basal diameter growth two years after planting was determined using correlation and regression analysis. Initial diameter, shoot length and number of FOLR were positively and significantly correlated with second-year height and diameter. These relationships were strongest for diameter, but this variable explained less than 25% of the total variation in growth. Of the three indicators, diameter was also the best predictor of several physical characteristics of root systems two years after planting. Initial diameter was significantly correlated with root volume, root area and lateral root, taproot and total root dry mass. Weaker relationships existed between initial shoot length and number of FOLR and second-year root system features. Stem diameter two years after planting was more strongly related to root volume, area and dry mass than was initial diameter, the probable result of adjustment in root-shoot balance of planting stock to the shelterwood environment.  相似文献   

20.
Ponderosa pine, Jeffrey pine, and Douglas-fir seedlings were planted in container or bareroot form at three elevations in northern California. At the lowest elevation (762 m), container seedlings of ponderosa pine were significantly taller than bareroot seedlings at ages 4 and 10, and had breast-height diameters that were significantly larger than bareroot counterparts at age 10. Survival of Douglas-fir container seedlings was significantly greater than that of barefoot seedlings for all ages tested. At the mid-elevation site (1220 m), container seedlings of ponderosa pine and Douglas-fir were significantly larger in breast-height diameter than bareroot seedlings at age 10. Douglas-fir container seedlings survived significantly better at all ages than barefoot seedlings. At the highest elevation (1662 m), seedling height and diameter did not differ significantly, but survival of container seedlings was significantly higher than barefoot seedlings for both pine species at all ages tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号