首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以松香基季铵盐为结构导向剂制备均匀介孔氧化铝,采用XRD,N2-吸附脱附和TEM表征样品的结构性能.结果表明:经过650℃焙烧,所得样品为介孔γ-Al2O3,比表面积为194~213 m2/g,平均孔径为4.18-5.18 nm.松香基季铵盐的添加量对氧化铝的结构性能有着较大的影响,适量添加松香基季铵盐有利于氧化铝获得较大的孔径和较窄的孔径分布.  相似文献   

2.
为了实现结构可控的水热炭微球制备,以竹浆纤维为原料系统研究了水热反应条件(反应温度、反应时间和原料用量)对产物微观形貌和理化结构的影响,采用SEM、XRD、FT-IR和XPS等表征手段对材料特性进行深入探究。研究结果表明:在反应温度220℃、反应时间6 h、竹浆纤维用量6 g时,获得炭微球颗粒分散、尺寸分布较为均匀,样品固相碳得率最高达到24.3%,表明制备水热炭具有良好的固碳作用。XRD结果表明水热炭是一种无定形晶体,官能团分析显示水热炭表面富含羟基、羰基、酯基和醚键等一系列含氧官能团;产物比表面积主要介于23.2~83.7 m2/g,孔隙以介孔为主,孔径主要分布于3~8 nm,最大孔容为0.35 cm3/g。  相似文献   

3.
以羧甲基纤维素(CMC)为原料,通过水热炭化-CO2活化制备微米级球形活性炭。研究了水热炭化温度、时间和CMC用量对前驱体炭球的形貌、粒径和分散性的影响,分析了活化温度、时间对球形活性炭形貌和孔结构的影响。通过扫描电子显微镜(SEM)、红外光谱(FT-IR)和光电子能谱(XPS)对前驱体炭球的形貌、表面官能团进行了表征分析,并用低温液氮吸附分析了球形活性炭的孔径结构。结果表明,前驱体炭球的含氧官能团以—COOR和—OH为主,在温度为200℃,CMC用量为1.5 g,40 mL H2O,反应时间为10 h,可成功制备出形貌规则,粒径均一,分散性良好的微米级炭球。前驱体炭球经在850℃下经CO2活化2 h可制备出球形结构完整的微米级球形活性炭,比表面积高达1 005.85 m2/g,平均孔径为2.78 nm。  相似文献   

4.
氮气吸附法表征杨木应拉木的孔隙结构   总被引:2,自引:0,他引:2  
在常规解剖特征分析的基础上,采用氮气吸附法对杨木应拉木的比表面积及孔径分布等孔结构参数进行研究,并通过解析氮气吸附等温线判断孔隙的形状。结果表明:杨木应拉木BET比表面积为21.9m2.g-1,是对应木的13倍;杨木应拉木试样具有完好的介孔特征(孔径2~50nm),并具有一定量的微孔和大孔;内部存在墨水瓶状和狭缝状孔隙,孔径为5nm的孔体积分布密度最大,孔径在4~7nm的孔体积占总孔体积的74.4%,孔径超过15nm的孔体积占总体积的10.8%。杨木应拉木中大量存在的中孔孔隙可归因于应拉木木纤维中的厚壁胶质层。  相似文献   

5.
碱木质素三步法制备微米尺寸球形活性炭研究   总被引:2,自引:0,他引:2  
以碱木质素为原料采用球形木质素前驱体,炭化,活化三步法制备微米尺寸的球形活性炭。研究了球形木质素前驱体的制备条件及活化条件对球形活性炭的粒径大小、结构形貌、孔结构的影响;采用扫描电子显微镜(SEM)、低温N2吸附-脱附以及傅里叶红外光谱(FT-IR)对产物的形貌结构、吸附性能和表面官能团进行了表征。结果表明,当反应温度为90℃,反应时间10 h,搅拌速度200 r/min,p H值为3.0的条件下,制备出粒径为5μm左右、球形形貌完整的球形木质素前躯体。通过对球形木质素前躯体在300℃炭化以及850℃下CO2活化,制备出比表面积为776.96 m2/g,总孔容为0.487 1 cm3/g,平均孔径为2.51 nm的球形活性炭。  相似文献   

6.
双电层电容器用活性炭的制备及微结构研究   总被引:1,自引:0,他引:1  
以核桃壳为原料通过化学-物理活化法制备出比表面积大(1 500~2 000m2/g)、堆积密度大(0.35~0.45 g/cm3)、孔径在2~50nm之间及孔径<2 nm的孔容积均大于0.45 cm3/g、单元静电容量>30F/cm3,可作为双电层电容器电极用的高性能活性炭,为双电层电容器用活性炭的产业化开发探索了一条切实可行之路.利用扫描电子显微镜(SEM)观察了化学催化剂的添加对炭化得率、炭化料结构的影响以及不同烧失率对活性炭孔隙结构的调控作用,且催化炭化提高炭化得率10%以上,气体活化前驱体孔隙也有较大的发展.利用Milestone 200比表面积孔径分析仪对气体活化前后活性炭孔隙结构进行了对比分析,表明气体活化前后,活性炭的微孔、中孔容积均提高0.20~0.30 cm3/g.  相似文献   

7.
以毛竹炭化料为原料,经KOH活化、盐酸溶液洗涤,制得活性炭样品AC1。采用H2O2氧化-超声波法对活性炭AC1进行深度除钾,考察了不同条件对活性炭中K+含量的影响,并通过N2吸附-脱附等温线、循环伏安、恒流充放电和交流阻抗等方法对活性炭的孔结构及电化学性能进行了表征。结果表明:在H2O2质量分数为0.6%,超声波处理温度为60℃,超声波处理时间为8 h条件下,处理后的活性炭AC2的K+仅为52 mg/kg,比表面积达3 156 m2/g,总孔容积1.625 cm3/g,中孔率79.8%,平均孔径2.208 nm。活性炭AC2用作电极材料时比电容达297 F/g,相比AC1提高28%,经3 000次循环后,电容保持率为95%,比AC1提高6个百分点,具有优异的电化学性能。  相似文献   

8.
炭化温度对竹基活性炭孔结构及电化学性能的影响   总被引:1,自引:0,他引:1  
以毛竹为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的竹基活性炭材料,通过SEM、XRD、BET、直流充放电、交流阻抗和循环伏安等结构与电化学性能分析方法,考察了炭化温度对竹基活性炭材料结构和性能的影响。研究结果表明:随着炭化温度升高,活性炭材料的比表面积与总孔容、中孔孔容均不断减小,微孔比表面积和微孔孔容先增大后减小。其中炭化温度为500℃的样品BAC500比表面积为3447m~2/g,总孔容为1.96cm~3/g,在有机电解液中以1mA/cm~2的电流密度充放电时,比电容高达178.8 F/g,电流密度增大50倍容量保持率为74.6%,显示出良好的功率特性。活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率。  相似文献   

9.
以γ-Al2O3为载体,采用浸渍法制备了SnO2-Pt/γ-Al2O3催化剂,探讨工艺参数(反应温度、反应时间、催化剂用量)对葡萄糖催化转化制备乳酸甲酯的影响,并对催化剂的重复使用性能以及放大实验进行探索。同时采用扫描电子显微镜(SEM)、X光射线电子能谱(XPS)、X射线衍射(XRD)、氮气吸附-脱附、NH3程序升温脱附(NH3-TPD)等对SnO2-Pt/γ-Al2O3催化剂进行了表征。结果表明:金属Pt和SnO2均匀地分散到γ-Al2O3载体上,催化剂体系同时具有B酸和L酸的分布,比表面积为117.08m^2/g,孔容为0.23cm^3/g,平均孔径为6.54nm,催化活性明显。当葡萄糖为1g、催化剂用量(以葡萄糖质量计)为10%、葡萄糖与甲醇料液比为1∶10(g∶mL)、反应温度220℃、反应10h的条件下,SnO2-Pt/γ-Al2O3表现出较高催化活性,葡萄糖转化率为92.63%,乳酸甲酯选择性高达20.08%,且催化剂表现出良好的重复使用性能和放大稳定性,重复使用3次时,葡萄糖转化率仍达88.43%,乳酸甲酯选择性达19.27%;物料投加量放大10倍时,葡萄糖转化率仍达86.27%,乳酸甲酯选择性达18.71%。  相似文献   

10.
以核桃壳为原料通过化学-物理活化法制备出比表面积大(1500-2000m^2/g)、堆积密度大(0.35—0.45g/cm^3)、孔径在2—50nm之间及孔径〈2nm的孔容积均大于0.45cm^3/g、单元静电容量〉30F/cm^3,可作为双电层电容器电极用的高性能活性炭,为双电层电容器用活性炭的产业化开发探紊了一条切实可行之路。利用扫描电子显微镜(SEM)观察了化学催化剂的添加对炭化得率、炭化料结构的影响以及不同烧失率对活性炭孔隙结构的调控作用,且催化炭化提高炭化得率10%以上,气体活化前驱体孔隙也有较大的发展。利用Milestone200比表面积孔径分析仪对气体活化前后活性炭孔隙结构进行了对比分析,表明气体活化前后,活性炭的微孔、中孔容积均提高0.20—0.30cm^3/g。  相似文献   

11.
以SiO_2和三聚氰胺为原料,通过高温焙烧法制得介孔类石墨相氮化碳(mpg-C_3N_4),以浸渍法负载Pd纳米粒子制得Pd/mpg-C_3N_4,并用于催化松香加氢反应。采用XRD、FT-IR、TEM、ICP-AES、XPS、氮气吸附-脱附及GC分析对催化剂的结构、形貌特征、Pd负载量、金属价态、比表面积和孔径以及催化活性进行分析。结果表明:Pd纳米粒子成功地均匀分散在了氮化碳的层状结构中,Pd的负载并没有改变mpg-C_3N_4的骨架结构,Pd/mpg-C_3N_4仍然保持着介孔结构;但是Pd的负载使mpg-C_3N_4的比表面积、孔容和孔径均有所减小,Pd/mpg-C_3N_4的比表面积、孔容和孔径分别为47.73 m^2/g、0.17 cm^3/g和3.39 nm。在负载量为7.96%,5 MPa H_2、150℃和反应4 h的松香催化加氢优化条件下制得去氢枞酸GC含量5.99%,枞酸GC含量小于1%的氢化松香产品(其中四氢枞酸为37.12%,二氢枞酸为56.71%)。催化剂Pd/mpg-C_3N_4重复使用4次后,四氢枞酸GC含量由37.12%下降至24.71%,去氢枞酸GC含量由5.99%上升至9.76%。  相似文献   

12.
木质颗粒活性炭的孔结构对丁烷吸附性能的影响研究   总被引:1,自引:0,他引:1  
对5种不同工艺制备的杉木颗粒活性炭的丁烷活性、丁烷工作容量、丁烷持附性与孔结构之间的关系进行了研究。结果表明:丁烷吸附性能与活性炭样品的比表面积、孔容积和孔径分布有着密切联系。对丁烷活性起作用的孔主要集中在1.16~2.00 nm;对丁烷工作容量有显著影响的孔径介于2.0~4.0 nm;对丁烷持附性影响最大的孔分布在0.5~1.0 nm。大孔对整个吸附过程没有什么显著影响,只是作为丁烷分子进入中孔、微孔的输送通道。  相似文献   

13.
对5种不同工艺制备的杉木颗粒活性炭的丁烷活性、丁烷工作容量、丁烷持附性与孔结构之间的关系进行了研究.结果表明:丁烷吸附性能与活性炭样品的比表面积、孔容积和孔径分布有着密切联系.对丁烷活性起作用的孔主要集中在1.16~2.00 nm;对丁烷工作容量有显著影响的孔径介于2.0~4.0 nm;对丁烷持附性影响最大的孔分布在0.5~1.0 nm.大孔对整个吸附过程没有什么显著影响,只是作为丁烷分子进入中孔、微孔的输送通道.  相似文献   

14.
以雷竹材为原料,氢氧化钾为活化剂制备雷竹(Phyllostachys praecox cv.prevernalis)活性炭,并用扫描电镜(SEM)、比表面积测定仪、红外吸收(IR)等测试分析仪器表征其显微结构、表面官能团、比表面积和孔结构。结果表明:炭碱比为1:4,活化温度为800℃的工艺条件下制备的雷竹活性炭比表面积为510.9 m2/g,总孔容0.238 cm3/g,平均孔径1.87 nm。  相似文献   

15.
以竹炭为前驱体、三聚氰胺为氮源、碳酸钾为预活化剂,采用两次活化工艺成功制备了氮掺杂竹活性炭超级电容器电极材料。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、比表面积及孔隙分析(BET)和X射线光电子能谱(XPS)等测试方法对制备的电极材料的形貌、结构、化学成分进行表征。通过控制活化过程中的炭碱比(质量比)优化样品的电化学性能,结果表明:炭碱比为1∶1时制备的NC-1样品比表面积高达1 984.4 m2/g,平均孔径为1.26 nm,样品具有清晰的介孔以及内部蠕虫状的微孔。炭材料中氮元素和氧元素含量(质量分数)分别为2.20%和4.65%,有利于增加活性炭表面的亲水性和赝电容,从而提高其比电容量。经电化学性能测试,NC-1样品循环伏安曲线(CV曲线)具有良好的对称性,呈近似矩形;其中在低电势窗口出现明显的宽峰,表明充放电过程中材料表面的含氮官能团与电解液之间发生氧化还原反应,贡献赝电容。恒流充放电显示在1 A/g电流密度下质量比电容高达224 F/g,与未采用该活化工艺的样品比较提高了86.7%。在50 A/g电流密度下其质量比电容高达144 F/g,且在10 A/g下经5 000次循环充放电后仍可达到93%的初始电容保持率,显示了氮掺杂竹活性炭超级电容器电极材料较优异的电化学性能和稳定的循环性能。  相似文献   

16.
以桉木木质纤维素作原料,六对羧基苯氧基环三磷腈(HCPCP)作为氮磷掺杂剂,NaOH作为共活化剂,采用先炭化后活化制备了木质纤维素基氮磷掺杂介孔炭(NPC)材料,采用SEM、XRD、XPS和拉曼光谱等方法对介孔炭材料进行表征。研究结果表明:活化温度650℃下得到的样品(NPC-650)具有丰富的蜂窝状孔隙结构,平均孔径为5.18 nm,介孔体积比89%。用介孔炭NPC-650作为阴极材料组装成锌离子混合电容器,在0.2 A/g电流密度下比电容为194 F/g,能量密度为87.3(W·h)/kg,功率密度为179.5 W/kg,在10 A/g电流密度下充/放电5 000次,电容保持率98.9%。  相似文献   

17.
我国竹材资源丰富,以竹废料为原料,制备可用于超级电容器电极材料的竹活性炭,有助于推动竹产业发展,助力国家“双碳”目标实现。在本研究中,分别采用KOH共热和水热处理对竹粉进行活化,并对制备的竹活性炭进行电化学性能、比表面积、表面微观形貌等测试。实验结果表明,KOH共热活化法的最佳条件为炭化温度350℃,活化温度900℃,升温速率2℃/min,碱炭质量比4∶1;制备的活性炭比表面积为3 299 m2/g, 0.5 A/g电流密度下的比电容为287.8 F/g, 5 000次充放电测试后,电容保持率为95%~105%。水热活化法的最佳条件为KOH质量分数20%,反应温度150℃,反应时间12 h,制备的活性炭比表面积为192.91 m2/g, 0.5 A/g电流密度下的比电容为170.4 F/g,电容保持率为88.89%。2种方法制备的活性炭孔径结构都是以微孔为主,中孔混合分布,含有少量大孔;2种活性炭均含有双层或多层石墨烯结构,但水热活化法制备的活性炭石墨化程度更高,制备条件更温和。研究结果既可为超级电容器用活性炭的研究提供了理论思路,也有效地扩...  相似文献   

18.
以落叶松木粉为原料,木粉液化后与甲醛制得落叶松基树脂,并以树脂作为碳前驱体,利用超声波喷雾热解法制备落叶松基炭球(LCSs)。通过改变炭化温度和落叶松基树脂质量分数制备得到不同的LCSs样品,采用SEM、TEM、N_2吸附-脱附等温线、XRD、Raman对LCSs的表面形貌、孔结构、晶型结构和石墨化程度进行表征,并对样品的电化学性能进行测试。研究结果表明:所制备的LCSs为无定形的规则球形结构,在炭化温度900℃、落叶松基树脂质量分数1%下制备得到的样品LCSs3的比表面积高达626.6 m^2/g,总孔容达到0.345 cm^3/g;在6 mol/L KOH电解液中,电流密度为0.2 A/g时比电容为309 F/g,当电流密度增加到5 A/g时,比电容为173.7 F/g,其比电容保持率为56%,显示了优异的倍率性能。  相似文献   

19.
基于St?ber方法,制备出介孔SiO_2纳米球(MSNs)和树枝状介孔SiO_2纳米球(dMSNs),并以己唑醇(He)为模型农药,通过物理吸附方法分别制备了己唑醇/介孔SiO_2复合纳米球(He/MSNs)和己唑醇/树枝状介孔SiO_2复合纳米球(He/dMSNs)。采用透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FT-IR)对制备的介孔纳米球形貌和结构进行表征;利用Brunauer-Emmett-Teller (BET)气体吸附法对介孔二氧化硅纳米球和树枝状介孔二氧化硅纳米球的孔结构进行表征;通过热重分析(TG)、模拟释放实验和抑菌实验对制备的载药复合纳米球载药量、释药性能及药效进行研究。结果表明,MSNs和d MSNs的平均粒径分别为(210±10)和(235±10) nm,比表面积分别为1 092.867和1 289.110 m^2/g,孔容分别为0.690和0.814 cm^3/g,孔径分别为32.144和32.673?。He/MSNs和He/d MSNs载药率分别达到42%和84%,且缓释作用明显。He/MSNs和He/dMSNs(0.1 mg/m L)对可可毛色二孢菌均表现出良好的抑菌性能。  相似文献   

20.
以硬杂木龙凤檀的加工剩余物为原料,研究了磷酸活化法的活化温度、磷酸质量分数和浸渍比对龙凤檀活性炭吸附性能的影响,通过N2吸附-脱附等温线对活性炭的结构进行分析,并根据吸附理论和DFT孔径分布图,拟合计算出活性炭有效孔道所占的孔容积与液相吸附性能(碘吸附值、亚甲基蓝吸附值和焦糖脱色率)的构效关系。研究结果表明:在磷酸质量分数60%、磷酸溶液与龙凤檀浸渍比3∶1(mL∶g)、活化温度500℃、活化时间120 min的条件下,磷酸活化法制备的龙凤檀活性炭具有最佳的吸附性能和优异的孔隙结构,碘吸附值为841 mg/g,亚甲基蓝吸附值为270 mg/g,焦糖脱色率为120%,比表面积为1 516 m2/g,总孔容为1.145 cm3/g,均优于软杂木杉木制备得到的活性炭。应用密度泛函理论(DFT),计算出龙凤檀活性炭不同孔径区间对应的孔容积,经过理论分析和拟合计算,发现碘吸附值与孔径在1.0~2.7 nm之间的孔容积、亚甲基蓝吸附值与孔径在1.7~5.0 nm之间的孔容积、焦糖脱色率与孔径在2.7~6.3 nm之间的孔容积有着很好...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号