首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species. Separate equations are developed for the Dipterocarpus, Hopea, Palaquium and Shorea genera, and an equation of a mix of these genera represents commercial species. The mixed species is constructed from commercial and non-commercial species. The data were collected in lowland mixed Dipterocarp forests in East Kalimantan, Indonesia. The number of trees sampled in this research was 122, with diameters (1.30 m or above buttresses) ranging from 6 to 200 cm. Destructive sampling was used to collect the samples where diameter at breast height (DBH), commercial bole height (CBH), and wood density were used as predictors for dry weight of total above-ground biomass (TAGB). Model comparison and selection were based on Akaike Information Criterion (AIC), slope coefficient of the regression, average deviation, confidence interval (CI) of the mean, paired t-test. Based on these statistical indicators, the most suitable model is ln(TAGB) = c + αln(DBH). This model uses only a single predictor of DBH and produces a range of prediction values closer to the upper and lower limits of the observed mean. Model 1 is reliable for forest managers to estimate above-ground biomass, so the research findings can be extrapolated for managing forests related to carbon balance. Additional explanatory variables such as CBH do not really increase the indicators’ goodness of fit for the equation. An alternative model to incorporate wood density must be considered for estimating the above-ground biomass for mixed species. Comparing the presented equations to previously published data shows that these local species-specific and generic equations differ substantially from previously published equations and that site specific equations must be considered to get a better estimation of biomass. Based on the average deviation and the range of CI, the generalized equations are not sufficient to estimate the biomass for a certain type of forests, such as lowland Dipterocarp forests. The research findings are new for Dipterocarp forests, so they complement the previous research as well as the methodology of the Good Practice Guidance for Land Use and Land Use Change and Forestry (GPG-LULUCF).  相似文献   

2.
The objective of this study was to quantify and compare the amount and distribution of soil organic carbon (SOC) under a linear simultaneous agroforestry system with different tree species treatments. Field work was conducted at Kifu National Forestry Resources Research Institute in Mukono District, Central Uganda, in a linear agroforestry system established in 1995 with four different tree species and a crop only control treatment. Soil samples were collected in 2006 at three depths; 0–25, 25–50, and 50–100 cm, before planting and after harvesting a maize crop. The results indicate that an agroforestry system has significant potential to increase SOC as compared to the crop only control. There was no significant difference in the amount of SOC under exotic and indigenous tree species. Among the exotic species, Grevillea robusta had higher SOC than Casuarina equisetifolia across the entire depth sampled. There is significant difference in SOC among the indigenous species, where Maesopsis eminii has more SOC than Markhamia lutea. Distance from the tree row did not significantly influence SOC concentration under any of the tree species. In selecting a tree species to integrate with crops that will sequester reasonable quantities of carbon as well as boost the performance of the crops, a farmer can either plant an exotic species or an indigenous. In this study, the soil under Grevillea robusta and Maesopsis eminii have the highest potential to store organic carbon compared to soil under other tree species.  相似文献   

3.
Above-ground tree biomass in Zambian miombo woodland was determined by the harvest method. After clear-cutting and measuring 271 tress in 5 sample plots, each 400 m2, multiple regression analyses gave a set of equations relating above-ground fresh biomass, as the dependent variable, to tree diameter and height as the independant variables. Equations were calculated for 6 dominant miombo species separately, and for undisturbed miombo generally. With knowledge of tree diameter and height, these equations will enable above-ground biomass of single trees to be predicted fairly accurately. This is obviously of importance for the monitoring of forest resources in the African miombo, but has also relevance for agroforestry and the study of the shifting cultivators in the area.  相似文献   

4.
以云南云杉实测立木材积和地上生物量数据为例,利用度量误差模型方法和分段建模方法建立相容性的一元和二元立木材积和地上生物量模型。结果表明,无论常规模型还是分段模型二元立木材积模型的相关统计指标得到了大幅度的改进,而二元地上生物量模型的相关指标与一元模型相比差异不大;常规二元立木材积模型在小径阶下存在明显的偏差,分段模型从整体上能够有效地解决系统偏差问题;所建的分段一元立木材积模型和地上生物量模型的平均预估精度分别到了90%和95%,同时分段二元立木材积模型和地上生物量模型的平均预估精度均到了97%。  相似文献   

5.
Although allometric equations can be used to accurately estimate biomass and/or carbon stock in forest ecosystems, few have been developed for logged-over tropical rainforests in Southeast Asia. We developed allometric relationships between tree size variables (stem diameter at breast height (dbh) and tree height) and leaf, branch, stem and total above-ground biomass in two logged-over tropical rainforests with different soil conditions in Sarawak, Malaysia. The study sites were originally classified as mainly lowland dipterocarp forest and have been selectively logged in the past 20 years. In total, 30 individuals from 27 species were harvested to measure above-ground parts. The correlation coefficients for the allometric relationships obtained for total above-ground biomass as a function of dbh had high values (0.99), although the relationships for leaf biomass had a relatively low coefficient (0.83). We also found relatively high coefficients for allometric relationships between tree height and plant-part biomass, ranging from 0.82 to 0.97. Moreover, there were no differences for allometric equations of total above-ground biomass between study sites. A comparison of equations of above-ground biomass in various previously reported tropical rainforests and pan-tropic general equations imply that our allometric equations differ largely from the equations for tropical primary forests, early successional secondary forest, and even for the general models. Therefore, choosing the biomass estimation models for above-ground biomass in the logged-over forests of Southeast Asia requires careful consideration of their suitability.  相似文献   

6.
依据中国西南地区栎类和桦木的立木材积及生物量实测数据,采用度量误差模型的方法,建立栎类和桦木材积相容的地上生物量及地下生物量模型。结果表明,在地上生物量模型中,增加树高因子,立木材积模型的相关统计指标有较大幅度的改进,栎类和桦木二元材积模型的平均预估精度分别达到了97.86%和97.08%,而二元地上生物量模型的相关统计指标并没明显的改进;两树种一元与二元地下生物量模型的相关统计指标差异并不明显,平均预估精度均达到了90%以上。  相似文献   

7.
Above-ground biomass production in seedling and semi-mature individual plants of Sesbania sesban varieties were compared to non-destructive measurements of stem allometrics. The results indicate that measurements of stem characteristics (diameter and total height) are suitable for estimating biomass of S. sesban varieties and therefore useful in the selection of particular varieties for inclusion in short-rotation agroforestry systems in arid- and semi-arid regions. Less labour-intensive methods for accurately assessing the productivity of agroforestry species, such as the use of allometric regressions, could significantly increase the number of individual plants that could be screened in any particular trial. A multiple polynomial regression accurately estimated above-ground biomass in all plants ranging in age from six weeks to eighteen months (r 2=0.99;p<0.001).  相似文献   

8.
Tree biomass plays a key role in sustainable management by providing different aspects of ecosystem. Estimation of above ground biomass by non-destructive means requires the development of allometric equations. Most researchers used DBH (diameter at breast height) and TH (total height) to develop allometric equation for a tree. Very few species-specific allometric equations are currently available for shrubs to estimate of biomass from measured plant attributes. Therefore, we used some of readily measurable variables to develop allometric equations such as girth at collar-height (GCH) and height of girth measuring point (GMH) with total height (TH) for A. rotundifolia, a mangrove species of Sundarbans of Bangladesh, as it is too dwarf to take DBH and too irregular in base to take Girth at a fixed height. Linear, non-linear and logarithmic regression techniques were tried to determine the best regression model to estimate the above-ground biomass of stem, branch and leaf. A total of 186 regression equations were generated from the combination of independent variables. Best fit regression equations were determined by examining co-efficient of determination (R2), co-efficient of variation (CV), mean-square of the error (MSerror), residual mean error (Rsme), and F-value. Multiple linear regression models showed more efficient over other types of regression equation. The performance of regression equations was increased by inclusion of GMH as an independent variable along with total height and GCH.  相似文献   

9.
Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.  相似文献   

10.
Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mongolia. The functions are based on biomass sampling of trees from 18 different sites, which represent the driest locations within the natural range of L. sibirica. The best performing regression model was found for the equations y = (D 2 H)/(a+bD) for stem biomass, y = aD b for branch biomass, and y=aD b H c for needle biomass, where D is the stem diameter at breast height and H is the tree height. The robustness of the biomass functions is assessed by comparison with equations which had been previously published from a plantation in Iceland. There, y=aD b H c was found to be the most significant model for stem and total above-ground biomasses. Applying the equations from Iceland for estimating the above-ground biomass of trees from Mongolia resulted in the underestimation of the biomass in large-diameter trees and the overestimation of the biomass in thin trees. The underestimation of thick-stemmed trees is probably attributable to the higher wood density, which has to be expected under the ultracontinental climate of Mongolia compared to the euoceanic climate of Iceland. The overestimation of the biomass in trees with low stem diameter is probably due to the high density of young growth in the not systematically managed forests of the Mongolian Altai Mountains, which inhibits branching, whereas the plantations in Iceland are likely to have been planted in lower densities.  相似文献   

11.
本文以马尾松(Pinus massoniana)地上生物量数据为例,通过利用度量误差模型方法,研究建立了地上生物量与干、皮、枝、叶4个分量的相容性方程系统。首先,从各个分量所占比例变化特点分析入手,采用比值函数分级联合控制和比例函数总量直接控制2种方案构建了以地上总生物量为基础的相容性方程系统,其中对地上总生物量模型的估计,又采取了独立估计和联合估计2种处理方法。结果表明,分级联合控制方案和总量直接控制方案效果基本相当,而独立估计方法和联合估计方法也几乎没有差异。然后,还对一元、二元和三元模型的拟合效果进行了对比分析,结果显示随着解释变量的增加,估计值的标准误差和平均预估误差会有所下降,但对模型效果的改善幅度并不大。最后,对各个分量占地上总生物量的比例随直径的变化特点进行了分析,结果表明干材生物量所占比例随林木直径的增大而提高,干皮和树叶生物量所占比例则随林木直径的增大而下降,而树枝生物量所占比例相对比较稳定。本文所建立的相容性生物量方程系统,地上总生物量的预估精度达到95%以上,树叶生物量的预估精度最低,但也达到了85%以上。  相似文献   

12.
The paper presents a comprehensive review of the biomass equations for 65 North American tree species. All equations are of the form M = aDb, where M is the oven-dry weight of the biomass component of a tree (kg), D is diameter at breast height (DBH) (cm), and a and b are parameters. Equations for the following tree components were included in the review: total aboveground biomass, stem wood, stem bark, total stem (wood and bark), foliage, and branches (wood and bark). A total of 803 equations are presented with the range of DBH values of the sample, sample size, coefficient of determination R2, standard error of the estimate, fitting method used to estimate the parameters a and b, correction factor for a bias introduced by logarithmic transformation of the data, site index and geographic location of the sampled stand(s), and a reference to the paper in which the equation (or the data) was published. The review is a unique source of equations that can be used to estimate tree biomass and/or to study the variation of biomass components for a tree species.  相似文献   

13.
Agroforestry systems have received global attention lately as a strategy for carbon mitigation but still are one of the least studied systems. This study was conducted in south Florida to develop biomass equations for windbreak grown cadaghi (Corymbia torelliana) trees and to estimate biomass in various aged windbreaks. Trees were selected for destructive sampling based on diameter at breast height (DBH) distribution from five windbreaks. Crown biomass was estimated using randomized branch sampling (RBS) and trunk biomass by taking disks every 1.5?m along the stem. Separate nonlinear equations were developed for crown, trunk and whole tree biomass estimation using DBH and height as predictors. Results indicated that DBH alone was sufficient to predict aboveground biomass, but including height in the models gave better results. Average oven-dry whole tree biomass ranged between 6 and 935?kg for 2- and 20-year-old windbreaks. Oven-dry whole tree biomass per100?m windbreak length in the same windbreaks ranged between 166 and 26,605?kg. Because fast-growing cadaghi is efficient and can produce significantly more biomass in a short period versus other windbreak species, landowners can expect higher returns from biomass or carbon trade over a shorter period, where available, to offset the cost of land occupied by the windbreaks.  相似文献   

14.

Key message

A new system of additive tree biomass equations was developed for juvenile white birch plantations based on tree diameter at breast height (DBH) and tree height (HT). Compared with previous equations developed for natural white birch forests, the new system included one more biomass component and provided more accurate predictions.

Context

Accurate estimates of tree component and total biomass are necessary for evaluating alternative forest management strategies for biomass feedstock, carbon sequestration, and products. Previous biomass equations developed for white birch trees in natural stands provided substantially biased predictions for white birch plantations.

Aims

A new system of additive tree biomass equations was developed for juvenile white birch plantations in the northeastern China.

Methods

With destructive biomass sampling data from 501 trees sampled from white birch provenance and family trails at ages 7, 9, 10, and 13 in three provinces, a system of nonlinear additive tree biomass equations based on DBH and tree height was developed using the nonlinear seemingly unrelated regressions (NSUR) approach.

Results

Compared with previously published equations developed for natural white birch forests, the new system provided more accurate predictions of white birch tree component and aboveground and total biomass, especially of branch, foliage, and root biomass.

Conclusion

The new system extended the applicability of biomass equations to white birch plantations in the northeastern China.
  相似文献   

15.
Uptake and management of agroforestry technologies differs among farms in Rwanda and needs to be documented as a basis for shaping future research and development programs. The objective of this study was to investigate current agroforestry practices, farmers’ preferences, tree management and perspectives for agroforestry technologies. The study consisted of a combination of a formal survey, a participatory tree testing, farmer evaluation and focus group discussions in the Central Plateau (moderate altitude) and the Buberuka (high altitude) agro-ecological zones. A survey and a tree testing exercise with a range of species: (timber species—Eucalyptus urophyla, Grevillea robusta; legume shrubs - Calliandra calothyrsus, Tephrosia vogelii; and fruit species—Persea americana and Citrus sinensis) were carried out in Simbi (Central Plateau) and Kageyo (Buberuka) with farmers from different wealth status who received tree seedlings for planting, managing, and evaluating. Simbi had more tree species farm?1 (4.5) than Kageyo (2.9). Fruit trees occurred most frequently in Simbi. Grevillea robusta, Calliandra calothyrsus and Tephrosia vogelii were mostly established along contours, fruit trees in homefields and Eucalyptus urophyla trees in woodlots. Survival was better on contours for Grevillea robusta (58–100 %) and Calliandra calothyrsus (50–72 %). Tree growth was strongly correlated with the total tree lop biomass in Eucalyptus urophyla (R 2 = 0.69). Grevillea robusta was most preferred in Simbi and Eucalyptus urophyla and Calliandra calothyrsus in Kageyo. The study provided information useful for revising the national agroforestry research and extension agenda and has important implications for other countries in the highlands of Africa.  相似文献   

16.
Coffee agroforestry is a conservation strategy that has shown promise to support the diversity of bird, bat, and insect communities, but few studies have focused on non-volant mammals in coffee farms. We assessed mammal diversity within coffee agroforestry systems in Kodagu, India and investigated the impacts of the non-native shade tree species, Grevillea robusta, on mammal diversity. Twenty farms, with varying amounts of G. robusta planted within the coffee farm, were sampled throughout three rainfall zones during the 4-month study period. We captured six species of small mammals, with indirect methods yielding an additional five species, totaling 11 mammal species. Contrary to current ecological thought, we found that increased amounts of G. robusta did not have a negative impact on either abundance or richness of mammals. Small mammal abundances were higher at farms with greater amounts of herbaceous ground cover and larger, mature shade trees, while small mammal species richness was found to increase with an increase in tree species richness as well as greater amounts of herbaceous ground cover. Additionally, small mammal abundance was higher at coffee farms closer to forested areas. Based on these findings, we suggest the maintenance or cultivation of shade tree richness, mature shade trees, and herbaceous ground cover within coffee farms and preservation of forested areas within the landscape to enhance coffee agroforestry habitat for non-volant mammals. We hope that these habitat requirements will be incorporated into conservation strategies for the promotion of biodiversity within coffee agroforestry systems.  相似文献   

17.
花吊丝竹地上部分生物量分配及立竹生态构件关系特征   总被引:1,自引:0,他引:1  
在福建省华安县竹类植物园研究了1~3年生花吊丝竹地上部分生物量分配和主要生态构件因子间的关系。结果表明:立竹地上部分器官含水率为竹叶>竹枝>竹秆,竹秆、竹枝含水率随立竹年龄的增长而降低,不同年龄立竹竹叶含水率无显著差异;1~3 a立竹器官生物量分配比例均为竹秆>竹枝>竹叶,竹秆生物量比例随立竹年龄的增长呈"V"型变化,竹枝、竹叶生物量比例随立竹年龄的增长而提高;立竹全高、枝下高是立竹胸径的从属因子,器官和地上部分总生物量与立竹胸径、全高呈显著或极显著正相关,可以用生物量相对生长模型模拟;立竹壁厚率从竹秆基部到顶部呈高—低—高分布规律,与立竹胸径、立竹全高分别呈极显著、显著负相关,与立竹胸径的关系方程式为AWT=0.2899-0.0539D+0.0041D2。  相似文献   

18.
坡向、坡位对水曲柳中龄林生长与生物量分配的影响   总被引:3,自引:0,他引:3  
水曲柳(Fraxinus mandshurica Rupr.)是我国东北林区珍贵的阔叶用材树种,研究其适宜生长的立地条件具有重要的生态和经济价值。本研究在帽儿山地区水曲柳中龄人工林不同坡向、坡位设置样地,进行胸径、树高的测定,并通过异速生长方程,估计总生物量、地上与地下生物量的分配。结果表明:坡向和坡位对水曲柳中龄林林分的生长有重要影响。坡向对林分平均胸径和优势树高的影响要大于坡位,但双因素方差分析表明,仅坡向对优势树高有显著的影响(P<0.05)。总体而言,西向坡林分生长状况好于东向坡,而且坡下与坡上林分生长状况的优劣,强烈地受到坡向的影响,并且在不同坡向上表现出相反的关系。  相似文献   

19.
Non destructive methods for quantification of carbon seques-tration in tropical trees are inadequately developed. We described a stan-dardized method for estimating carbon stock in teak (Tectona grandi...  相似文献   

20.
内蒙古柠条和山杏单株生物量模型研建   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的] 针对现有灌木生物量模型存在的分量与总量、地上与地下生物量不相容等问题, 探索利用联立方程组 方法, 建立灌木林相容性生物量模型。[方法] 以内蒙古自治区的2种常见灌木柠条(Caragana korshinskii)和山杏(Armeniaca sibirica)为研究对象, 基于大样本的生物量实测数据, 利用非线性误差变量联立方程组方法, 建立了地上生物量模型及其相容的地下生物量模型和根茎比模型。[结果] 表明:基于植冠面积和丛生枝个数(或植株高度)的地上生物量模型, 其确定系数能达到0.67以上, 但地下生物量模型的确定系数要低些, 其中山杏仅0.36;2种灌木的地上生物量和地下生物量模型的平均预估精度均能达到80%以上, 全株生物量的平均预估精度, 山杏能达到86%以上, 柠条能达到92%以上。[结论] 对于无明显主干的丛生状灌木, 不论是地上生物量还是地下生物量, 植冠面积是首要的相关因子, 其次才是丛生枝个数和植株高度;利用非线性误差变量联立方程组方法, 能有效解决不同生物量之间的相容性问题, 同步建立地上生物量模型及其相容的地下生物量模型和根茎比模型;所建模型完全可用于内蒙古自治区范围内相应灌木林的生物量估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号