首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Phenol-formaldehyde resin-bonded particleboard (PF board) and isocyanate resin-bonded particleboard (MDI board) were soaked in water at 40, 70 and 100 °C, and the relationships between soaking conditions and nail joint properties were analyzed. The soaking time to reach the lower limit of nail-head pull-through (NHPT) of the PF board was 2 h at 100 °C, while it took 168 h at 70 °C. The soaking time to reach the lower limit of lateral nail resistance (LNR) of the PF board was 24 h at 100 °C, but it did not take 168 h at 70 °C to reach it. The lower limits of NHPT and LNR for the MDI board were higher than those for the PF board. For the PF board, there was a high correlation between modulus of rupture, internal bond strength and nail joint properties. Based on the results of water soaking and outdoor exposure, it was shown that thickness change has a significant effect on NHPT and LNR, and that the reduction in NHPT and LNR results from the collapse of bonding points owing to swelling of the board.  相似文献   

2.
Various types of wood-based boards were analyzed for deterioration after being exposed to an outdoor environment for 5 years in Tsukuba, Japan. In phenol–formaldehyde resin bonded particleboard (PB(PF)) and aspen oriented strand board (OSB(aspen)), longer exposure caused a greater reduction in the modulus of rupture and internal bond strength, an increase in the coefficients of variation, and a decrease in 95 % lower tolerance limit at the 75 % confidence level (95TL). Nail-head pull-through and lateral nail resistance were also reduced by outdoor exposure, but their coefficients of variation and 95TL were not significantly affected. In contrast, methylene diphenyl diisocyanate bonded medium density fiberboard (MDF(MDI)) only showed a slight deterioration of these properties even after 5-year exposure, and the coefficients of variation and 95TL hardly changed. After 5-year exposure, the retention of shear load in one-plane at relative displacement of 1.0 mm was high in MDF(MDI) and OSB(aspen) at 93.5 and 78.5 %, respectively, but low in PB(PF) at 41.1 %. As with PB(PF), OSB(aspen) also showed a sharp decrease in the modulus of rupture and internal bond strength, but only slightly reduced shear load in one-plane.  相似文献   

3.
The development of a natural adhesive composed of materials derived from non-fossil resources is a very important issue. In this study, only citric acid and sucrose were used as adhesive materials for particleboard. A water solution in which citric acid and sucrose were dissolved was used as an adhesive, and the manufacture of particleboard with a target density of 0.8 g/cm3 was attempted under a press condition of 200 °C for 10 min. The optimum mixture ratio of citric acid and sucrose and the optimum resin content was 25–75 and 30 wt%, respectively. The modulus of rupture (MOR) and the modulus of elasticity in bending were 20.6 MPa and 4.6 GPa, respectively. The internal bond strength (IB) was 1.6 MPa, indicating that the adhesive had excellent bond strength. The thickness swelling (TS) after water immersion for 24 h at 20 °C was 11.9 %. The board did not decompose even under more severe accelerated treatments. This meant that the adhesion had good water resistance. The MOR, IB and TS of the board were comparable to or higher than the requirement of the 18 type of JIS A 5908 (2003). Consequently, there is a possibility that a mixture of citric acid and sucrose can be used as a natural adhesive for particleboard.  相似文献   

4.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

5.
This paper describes the features of binderless particleboard manufactured from sugarcane bagasse, under a high pressing temperature of 200–280 °C. Mechanical properties [i.e., modulus of rupture (MOR) and elasticity (MOE) in dry and wet conditions, internal bonding strength (IB)] and dimensional stability [i.e., thickness swelling (TS)] of the board were evaluated to investigate the effect of high pressing temperature. Recycled chip binderless particleboards were manufactured under the same conditions for comparison, and particleboards bonded with polymeric methylene diphenyl diisocyanate (PMDI) resin were manufactured as reference material. The target density was 0.8 g/cm3 for all of the boards. The results showed that the mechanical properties and dimensional stability of both types of binderless boards were improved by increasing the pressing temperature. Bagasse showed better performance than that of recycled chip as a raw material in all evaluations. Bagasse binderless particleboard manufactured at 260 °C had an MOE value of 3.5 GPa, which was equivalent to the PMDI particleboard, and a lower TS value of 3.7 % than that of PMDI particleboard. The MOR retention ratio under the dry and wet conditions was 87.0 %, while the ratio for the PMDI particleboard was only 54.6 %. The obtained results showed the possibility of manufacturing high-durability binderless particleboard, with good dimensional stability and water resistance, which previously were points of weakness for binderless boards. Manufacturing binderless boards under high temperature was effective even when using particles with poor contact area, and it was possible to express acceptable properties to allow the manufacture of particleboards. Further chemical analysis indicated a contribution of a saccharide in the bagasse to the improvement of the board properties.  相似文献   

6.
利用杨树人工林剩余物生产刨花板可行性研究   总被引:1,自引:0,他引:1  
The composite board industry in Iran is obliged to use residues from forest operation as well as wood industry for competing with paper industry because of shortage of wood. In the present study we investigated the residues from poplar plantation used for particleboard production. Three kinds of wood materials, poplar branches, small diameter poplar wood (3–8 cm) and beech wood, were used in the experiment of particleboard production. The results demonstrated that the characteristic of particleboard made from poplar branches and small diameter wood is comparable to that made from mature beech wood. To avoid too much residual acid in the final board, the properties of boards produced with 1.5% hardener at 175°C press temperature are acceptable, although the properties of particleboard produced with 2% hardener were higher than were higher than that of the board produced with lower hardener (1% or 1.5%).. The MOR, MOE and IB of particleboard made from branches were measured as 14.57, 2015, and 1.32 MPa, respectively, while The MOR, MOE and IB of particleboard produced from small diameter poplar wood were 19.90, 2199, and 1.86 MPa, respectively. The thickness swelling of boards made from branches after 2 and 24 h immersion in water was 20.14% and 31.26%. The utilization of branches and very small diameter wood of poplar is recommended for the survival and developments of particleboard industry in Iran.  相似文献   

7.
采用脲醛树脂(UF)/聚合异氰酸酯(PDMI)组合胶黏剂,以不同的组合配比在较低热压温度(160℃)条件下用高含水率(9.0%)杂木刨花制备刨花板,检测其静曲强度、内结合强度以及2h和24h吸水厚度膨胀率。结果表明:聚合异氰酸酯(PDMI)的引入,可以显著提高刨花板的物理力学性能和耐水性能;将刨花终含水率提高至9.0%可节约刨花干燥能耗达13.0%以上;与脲醛树脂胶黏剂(UF)相比,使用PDMI/UF配比为1∶9的(10.0wt%PDMI)组合胶黏剂可以提高刨花板静曲强度80%,提高内结合强度150%;在不添加防水剂的条件下,可以将板材的2h吸水厚度膨胀率由31.0%提高至21.0%。该研究可为刨花板节能环保生产提供新思路。  相似文献   

8.
In this study, the durability of wood-based panels was evaluated by comparing the internal bond (IB) strength retention after five different laboratory-based accelerated aging tests with the IB retention after 5 years of outdoor exposure in Shizuoka City. In each accelerated aging test, the IB retention of MDI-bonded panels showed high retention compared to other panels. Outdoor exposure in Shizuoka City resulted in an IB retention value for particleboard (PF) and oriented strandboard (aspen) of less than 10% after the 5-year exposure period. Medium-density fiberboards maintained their initial IB strength over the same period. Calculation of the mean IB retention for all board types allowed comparison of the severity of aging between the accelerated test methods and outdoor exposure. The ASTM six-cycle test method was the most severe among the standard treatment cycles applied.  相似文献   

9.
Development of environmentally friendly particleboard made from sweet sorghum bagasse and citric acid has recently attracted attention. In this study, we investigated the effects of pressing temperature and time on physical properties, such as dry bending (DB), internal bond strength (IB), and thickness swelling (TS) of particleboard. Wet bending (WB), screw-holding power (SH), biological durability, and formaldehyde emission of particleboard manufactured under effective pressing temperature and time were also evaluated. Particleboards bonded with phenol formaldehyde (PF) resin and polymeric 4,4′-methylenediphenyl isocyanate (pMDI) were manufactured as references. Effective pressing temperature and time were 200?°C and 10 min, respectively. It was clarified that DB, IB, and TS satisfied the type 18 requirements of the JIS A 5908 (2003), and were comparable to those of particleboard bonded with PF and pMDI. The WB and SH of particleboard did not satisfy type 18 of JIS. Particleboard manufactured under effective pressing conditions had good biological durability and low formaldehyde emission. Based on the results of infrared spectra measurement, the degree of ester linkages increased with increased pressing temperature and time.  相似文献   

10.
玻璃纤维束增强刨花板的研究   总被引:1,自引:0,他引:1  
采用玻璃纤维束增强刨花板的试验结果表明,随着玻璃纤维束施加量的增加,刨花板的强度和刚度(MOR和MOE)有显著的提高,但施加量达到一定程度后,升高趋势逐渐平缓;随着玻璃纤维束间距的减小,刨花板的强度和刚度(MOR和MOE)呈直线上升,而内结合强度(IB)变化规律不明显,当间距小到一定程度后,IB很难达到德国室外用刨花板标准DIN 68763 V100的要求;随着琉璃纤维束在刨花板厚度方向上的位置由  相似文献   

11.
初步探讨了实验室条件下烟秆/木材刨花板的生产工艺,研究了热压时间、施胶量、密度、木刨花加入量等因素对板材的静曲强度、内结合强度、吸水厚度膨胀率的影响.实验结果表明,烟秆/木材刨花板的静曲强度和吸水厚度膨胀率较纯烟秆刨花板有所提高,内结合强度相差不大.  相似文献   

12.
The durability of wood-based panels was evaluated by comparing the bending properties of panels subjected to five accelerated aging treatments with the bending properties of panels that had experienced 5 years of outdoor exposure in Shizuoka City, Japan. In each accelerated aging treatment, methylene diphenyl diisocyanate-bonded panels showed higher bending retention than phenol formaldehyde (PF)-bonded panels. The bending retentions after six repeated cycles of the JIS-B, APA D-1, and ASTM treatments showed a correspondence of nearly one-to-one in the data for the three different treatments. The Shizuoka City 5-year outdoor exposure test data showed that the bending retentions of all panels decreased with time. In particular, the bending retentions of PF resin-bonded particleboard and oriented strandboard made from aspen were less than 30% and 10% of the original values, respectively, after the 5-year exposure period. The deterioration of the bending properties after the 5-year outdoor exposure in Shizuoka City was the same as that for six repetitions of the ASTM treatment.  相似文献   

13.
The purposes of this study were to examine the use of furniture mill residues containing high-density raw materials in particleboard production and to evaluate the effect of mixing several types of furnish on board performance. Wood wastes collected from the furniture industry in Japan containing matoa (Pometia pinnata), Douglas-fir (Pseudotsuga menziesii), and sugi (Cryptomeria japonica) with different particle shapes were prepared as raw materials for use in the manufacture of experimental particleboards. Seven board types and three mixed boards were manufactured with three replications. Methylene diphenyl diisocyanate (MDI) resin was applied at 6 % content in mat preparation. The pressing conditions were temperature of 180 °C, initial pressure of 3 MPa, and pressing time of 5 min. The target density was 0.72 g/cm³. This study showed that matoa particleboard had properties suitable for use in interior applications, although its properties were considered inferior compared with other particleboards. Improvement of matoa particleboard could be achieved by mixing with higher quality wood particles such as those from sugi or Douglas-fir. The furnish type used in this study affected board performance. All residues from furniture mills have the potential to be used for particleboard production, even when they contain different furnish types and wood species.  相似文献   

14.
This study investigated the effects of mild steam treatment (0.1 MPa for 2 h) of natural bio-based fibers and orientation (0° and 90°) of those fibers in various fiberboards. Ramie bast, pineapple leaf, and sansevieria fiber bundles were used as materials. The composite fiberboards were prepared using phenol-formaldehyde (PF) resin. To investigate the effect of mild steam treatment on wettability, contact angles of PF resin to the fiber were measured. The mechanical properties of the boards were examined as well as their dimensional stability. The contact angle data showed that mild steam treatment was effective in improving the wettability of fibers. Unioriented steam-treated boards showed better performance of internal bond (IB), moduli of rupture (MOR) and elasticity (MOE), thickness swelling (TS), and water absorption (WA) than other boards. Unioriented steam-treated sansevieria board with longitudinal fiber direction showed higher average values of MOR (403 MPa), MOE (39.2 GPa), and IB (1.33 MPa) and lower values of TS (5.15%) and WA (8.68%) than other boards. The differences in the mechanical properties and dimensional stability of boards were found mainly due to the differences in the ratios of fiber fraction of the boards to the density of the fiber bundles.  相似文献   

15.
Binderless boards are composite boards that rely on self-bonding mechanisms for inter-fibre bonding. Quercus acutissima and Quercus serrata logs degraded by Lentinula edodes (shiitake fungi) were used in this study to investigate whether physical and chemical changes induced by shiitake fungi can enhance board mechanical properties. Binderless boards were manufactured with 0.8 g/cm3 target density, 220 °C pressing temperature, 5 MPa pressure, and pressing duration of 10 min. Boards made from logs degraded for ≥?26 months were stronger than control boards and met modulus of rupture (MOR) and internal bonding (IB) requirements for fibreboards. Chemical composition and particle size distribution of the wood powder used to make the boards were determined to elucidate the drivers of board mechanical properties. The proportion of small particles (<?150 µm) showed a strong positive correlation with MOR for both species and hot water extractives showed a strong positive correlation with IB for Q. acutissima boards. Introduction of shiitake fungi pre-treatment to the production process may enhance the mechanical strength of binderless boards.  相似文献   

16.
We investigated the bending properties of composite boards produced by reinforcing both sides of corrugated particleboard with medium-density fiberboard (MDF). Thickness swelling and linear expansion (LE) were measured to assess the dimensional stabilities of the composite board. Although the apparent density of the composite board was 0.48g/cm3, its strength was found to be equivalent to that of 18-type particleboard as described in JIS A 5908. The boards parallel/perpendicular anisotropy in strength was 0.9. The modulus of rupture (MOR) of the composite board increased with board density only up to a certain density, beyond which the MOR was constant. On the other hand, the thickness swelling of both corrugated particleboard and the composite board was smaller than that of flat-type particleboard, satisfying the JIS A 5908 standard of 12%. Linear expansion (soaking in water of ordinary temperature for 24h) of corrugated particleboard was 0.7%–0.9% in the parallel direction and 2.1%–3.1% in the perpendicular direction; hence, anisotropy in linear expansion existed in the corrugated particleboard. The linear expansion of the composite board was 0.6%–0.9% in the parallel direction and 1.8%–2.5% in the perpendicular direction. Although the LE of the composite board was lower than that of corrugated particleboard, it is necessary to improve the LE of composite board for practical use.  相似文献   

17.
Low-density hybrid poplar wood (Populus deltoides?×?Populus trichocarpa) was densified by mechanical compression under saturated steam, superheated steam, and transient conditions at temperature levels of 150, 160, and 170°C. Furthermore, compression of wood under saturated steam conditions at 170°C, followed by post-heat-treatment at 200°C for 1, 2, and 3?min, was performed. To determine the influence of compression treatment on the set recovery, specimens were subjected to five cycles of water soaking and drying. Modulus of rupture (MOR) and modulus of elasticity (MOE) of specimens compressed under saturated steam conditions at 170°C and post-heat-treated at 200°C were determined in the dry condition and after five soak/dry cycles. Higher temperature of the compression treatment resulted in lower equilibrium moisture content, while the steam conditions during the treatment and the post-heat-treatment did not have significant effect. Furthermore, the highest degree of densification was obtained in specimens compressed under saturated steam conditions at 170°C and post-heat-treated at 200°C. The steam condition and temperature influenced the set recovery of compressive deformation. Reduced hygroscopicity does not necessarily imply reduced set recovery. The results established that considerable fixation of compressive deformation can be obtained by compressing the wood in a saturated steam environment and by post-heat-treatment at 200°C. The short heat-treatment had no influence on MOR or MOE, but soaking/drying treatments caused a decrease in the MOR and MOE.  相似文献   

18.
Abstract

The objective of this work was to evaluate the performance of particleboard manufactured from roselle (Hibiscus sabdariffa) stalks and eucalyptus (Eucalyptus camaldulensis) wood. The manufacturing parameters were various roselle (Hibiscus sabdariffa) ratios in the mixture (0, 25, 50, 75 and 100%) and press time (3, 5 and 7 min). Modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) strength values and thickness swelling (TS) after 24-hour water soaking of the panels were determined according to the procedure of European Union (EN) Standard. The results of the study demonstrate that roselle stalks can be an alternative raw material source for particleboard industry. With an increase of roselle particles from 0% to 100%, the TS was reduced, and the IB, MOR and MOE were increased. The highest MOE, MOR, IB strength and TS values of the samples were found as 2754.18, 16.81, 0.89 N/mm2 and 15.26% for the panels made using 100% roselle with a 7-min press time, respectively.  相似文献   

19.
粉煤灰水泥刨花板是一种符合墙体材料发展方向的新型建筑材料,在预备性实验基础上,采用二次正交旋转组合设计对粉煤灰水泥刨花板进行工艺试验,结果表明,在实验设计取值范围内,板密度,水灰比及水玻璃(Na2SiO3)用量对板性能(MOR,MOE,IB)影响显著,灰木比对吸水厚度膨胀率(TS)影响特别显著。  相似文献   

20.
以棉秆为原料,采用喷蒸热压法研制无胶碎料板,探讨板的密度、蒸汽压力及喷蒸时间对棉秆无胶碎料板的物理力学性能的影响.结果表明:在试验范围内,随着板密度增大,无胶碎料板的静曲强度、弹性模量与内结合强度明显提高;提高蒸汽压力及延长喷蒸时间,能明显降低无胶碎料板的吸水厚度膨胀率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号