首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】根据木质素结构特点,探究一种木质素基泡沫炭制备方法,为木质素制备新型炭材料提供新的技术方法和产品。【方法】以酶解木质素为碳质前驱体,以氯化锌和酚醛树脂为催化剂和增强剂,在未添加发泡剂的情况下,经混合塑化、发泡、固化、炭化等工艺制备木质素基高比表面积泡沫炭;采用热重分析、扫描电子显微镜和氮气吸附等方法分析木质素发泡机理、过程以及制备的泡沫炭结构;通过测试泡沫炭的密度、机械性能、开孔率等质量指标,探讨发泡温度、氯化锌和酚醛树脂用量对泡沫炭结构的影响。【结果】热重分析结果表明,氯化锌显著催化并降低木质素热分解温度,使木质素发生热分解的温度与发生软化/塑化的温度重合,为木质素热分解产生的挥发性物质发挥发泡功能提供合适温度区域,酚醛树脂与木质素之间形成的三维网状结构赋予发泡前驱体较好的韧性和强度,为木质素自发泡提供基础。160~180℃是合适的发泡温度;氯化锌用量显著影响泡沫炭的密度和孔隙率,酚醛树脂用量主要影响泡沫炭的孔泡尺寸和开孔率。在未添加发泡剂的情况下,采用自发泡方法制备出体积密度为0.26~0.46 g·cm-3、孔隙率为74%~85%、开孔率为82%~9...  相似文献   

2.
在碱性条件下,先利用木质素部分替代苯酚与甲醛反应合成酚醛树脂,然后利用酚醛树脂经发泡工艺制备木质素基酚醛树脂泡沫,当木质素替代量为0%、10%、20%和30%时,分别记为LPF-0%、LPF-10%、LPF-20%和LPF-30%。对泡沫的性能研究结果表明:木质素可部分替代苯酚,与甲醛发生缩合反应生成酚醛树脂;当木质素替代量为20%(LPF-20%)时,泡沫热解具有最大的残炭率54.60%,其热稳定性优于其它酚醛树脂泡沫;随着木质素替代量的增加,木质素基酚醛树脂泡沫的颜色由黄色渐变为褐色,其表观密度由0.05 g/cm~3增加至0.11 g/cm~3,压缩强度从0.26 MPa增加为0.56 MPa,表面粉化程度由13.73%降低至3.48%,吸水率由3.73%降低至1.92%;木质素基酚醛树脂泡沫具有良好的阻燃性,LPF-30%的氧指数最大为33.67%。  相似文献   

3.
以自制甲阶酚醛树脂为原料,通过发泡法制备泡沫炭,考察了发泡和炭化条件对泡沫炭的微观结构、物相组成、机械强度的影响。结果表明:酚醛树脂泡沫在200~650℃之间应采用较慢的升温速率(1℃/min)进行炭化;由XRD分析发现,900℃炭化温度下所得泡沫炭主要以无定形炭形式存在,同时还存在NaCl晶体;SEM分析可知,表面活性剂吐温-80用量主要影响泡沫炭中泡孔的分布均匀性,发泡剂正己烷用量对泡沫炭的泡孔数量及孔径影响较大,而固化剂盐酸用量则对泡孔的孔径影响较大。泡沫炭制备的较佳工艺为:固化剂用量、表面活性剂和发泡剂用量分别为甲阶树脂质量的3%、6%和6%,此条件下所得泡沫炭的泡孔孔径为50~150μm,孔泡结构规整、孔壁较薄,其表观密度为0.276 g/cm~3,比表面积为137.9 m~2/g,抗压强度为11.1 MPa。  相似文献   

4.
在碱性条件下,酸性木质素先经苯酚处理,再用于对酚醛树脂进行改性,制备得到木质素改性酚醛树脂(LPF)胶黏剂,考察了木质素用量、苯酚处理时间及温度、苯酚处理木质素时氢氧化钠水溶液用量(第一批次氢氧化钠)、酚醛物质的量比对LPF胶黏剂性能的影响。研究结果表明:在木质素用量25%、苯酚处理时间2 h、苯酚处理温度80℃、第一批次氢氧化钠水溶液用量8%、苯酚与甲醛的物质的量比1.0∶2.0时,LPF胶黏剂的胶合强度为1.57 MPa,较未经改性的酚醛树脂(PF)胶黏剂的1.35 MPa提高了16.3%,游离苯酚为0.58%,比PF的0.72%降低了19.4%,游离甲醛0.16%、固体质量分数51.2%、pH值11.4、黏度80 mPa·s、贮存期为60天。FT-IR分析表明:LPF在2893和1213 cm~(-1)处吸收峰明显减弱,表明木质素分子中甲氧基部分脱落;在1505、1320、1114和875 cm~(-1)处吸收峰消失,表明合成酚醛树脂过程中,木质素中的磺酸基消失;在1018 cm~(-1)处的吸收峰明显增强,表明有新的醚键生成。  相似文献   

5.
泡沫炭具有低密度、高强度、高导电性、多孔骨架结构等诸多优点,是一种高端的整体性先进碳材料。在多种泡沫炭制备的原材料中,木质素因其可再生、低成本、高产量、高芳香性等特点而逐渐受到重视。基于木质素的热学性质复杂且特殊,近年来笔者开发了一种简单、高效的木质素基泡沫炭合成方法。为进一步实现泡沫炭结构与性能的调控,本研究主要通过使用聚对苯二甲酸乙二醇酯(PET)对木质素进行掺杂,考察PET可能对木质素转化过程中产生的影响,以及转化产物(新型泡沫炭)的材料结构与性能,从而提出PET掺杂对木质素基泡沫炭合成的影响。研究结果表明,PET的掺杂对于木质素的发泡过程有调节作用,其与木质素较好的相容性可以成功制备出木质素-PET基泡沫炭。PET的含量对泡沫炭的体密度、真密度、微观孔泡结构、机械强度等均有较为显著的影响。相比之下,X射线衍射和拉曼光谱结果表明PET掺杂对于泡沫炭的微观碳结构几乎没有影响。当PET掺杂量提升为20%时,泡沫炭的性能略有下降,可能与PET与木质素的均匀混合难度提升相关。本研究提出了通过掺杂高分子以改变新合成方法下泡沫炭结构与性能的思路,对泡沫炭的合成和调控具有指导意义。  相似文献   

6.
利用酶解木质素部分替代苯酚,以十二胺为增韧剂,成功制备了含有柔性侧链的酶解木质素酚醛树脂,并利用其制备改性酶解木质素酚醛泡沫。系统研究了该树脂的发泡工艺,结果表明:当十二胺添加量为苯酚质量的8%,固化剂用量为12%(树脂的质量分数,下同),发泡剂用量为7%,表面活性剂用量为6%时,该泡沫的综合性能较佳。同时使用核磁共振(1H NMR)对树脂结构分析,使用热重分析(TG)与扫描电镜(SEM)对泡沫进行了分析,结果表明:改性木质素酚醛泡沫孔和孔壁厚度均匀,具有规则和致密的网络结构。改性后泡沫残碳率为49.0%。研究结论为今后利用脂肪单胺体系长链结构改性木质素酚醛树脂刚性结构提供了理论基础。  相似文献   

7.
以杨木木质素为原料,采用磷酸活化法制备中孔发达的活性炭,并利用孔结构分析、XRD、拉曼光谱,研究了活化温度(400~900℃),以及磷酸与木质素质量比(浸渍比,1:1~4:1)对活性炭LAC-x-y(x代表浸渍比值,y代表活化湿度)结构的影响,通过电化学表征手段,探讨了炭材料的电化学性能与其结构的关系.孔结构分析结果表...  相似文献   

8.
为了考察碱/炭比、炭化温度以及活化温度对活性炭纤维孔结构的影响,以木粉为原料经液化、纺丝、固化、炭化及KOH活化工艺过程制备了木材苯酚液化物活性炭纤维;采用正交实验方法优化了活性炭纤维制备工艺。结果表明:诸因素中的显著性依次为活化温度〉炭化温度〉碱/炭比;优化组活性炭纤维的比表面积为1546m^2/g;400℃炭化温度下制备的活性炭纤维具有较高的中孔比率。  相似文献   

9.
液化木质素磺酸钙基环保酚醛胶黏剂的合成   总被引:1,自引:0,他引:1  
探讨了加料方式对传统酚醛树脂(PF)胶黏剂游离酚、醛的影响因素.在此基础上,采用热化学酚化技术活化木质素磺酸钙得到木质素磺酸钙酚化产物,将酚化产物代替苯酚制备低成本的木质素基酚醛胶黏剂(LPF).实验结果表明,当甲醛分3次加入、碱液分2次加入时,制备的PF胶黏剂具有较低的游离酚、醛,且以苯酚为液化试剂,液化温度140℃、液化时间15min、苯酚与木质素磺酸钙的质量比(酚木比)为2∶1,酚化工业木质素磺酸钙,将得到的酚化液代替苯酚在酚醛物质的量之比为1∶1.7时,制得的LPF具有更低的游离酚、醛含量、较长的储存期和优异的胶合性能.  相似文献   

10.
将乙酸制浆法废液中的木质素进行提取和精制,采用红外光谱(FTIR)、31P-NMR谱和凝胶渗透色谱(GPC)对其结构进行表征,并利用乙酸木质素、聚醚多元醇和甲苯二异氰酸酯在发泡剂和催化剂的条件下合成聚氨酯硬泡。采用TG、DSC和压缩测试对聚氨酯硬泡的热学和力学性能进行研究,并用扫描电子显微镜观察聚氨酯硬泡的泡孔结构。结果表明:乙酸木质素作为多羟基聚合物,可以部分代替聚醚多元醇和异氰酸酯发生反应制备聚氨酯材料;当乙酸木质素添加量为5%时,聚氨酯硬泡的压缩强度达到1.325MPa,比未添加木质素的泡沫高出约63%,此时的压缩模量也达到0.181MPa;随着乙酸木质素添加量增加,乙酸木质素基聚氨酯硬泡的最快分解温度下降,而玻璃化转变温度没有明显升高;乙酸木质素基聚氨酯硬泡泡孔平整均匀。  相似文献   

11.
分别用硫酸、硝酸和盐酸从造纸黑液中提取木质素,用酸木质素来替代部分苯酚合成酚醛树脂胶粘剂,对产物进行了固体含量、游离甲醛含量和胶合强度的测定,并用红外光谱对其进行了结构表征。作者考察了酚醛比(物质的量比)和酸木质素的替代量对胶粘剂性能的影响。结果表明:当n(苯酚):n(甲醛)=1:1.5,硝酸木质素的替代量为20%时,胶粘剂的综合性能最优。  相似文献   

12.
通过合成氯化胆碱与氯化锌物质的量比为1:2体系的低共熔离子液(DES来活化处理木质素,再加水分离得到再生木质素(DL),对比改性前后木质素的结构变化,并分别用其代替部分苯酚(10%、20%、30%、40%)制备酚醛树脂,研究其对酚醛树脂胶黏剂性能的影响。结合红外光谱、紫外光谱和核磁共振氢谱的分析可知经DES改性后的木质素中少量醚键断裂,部分甲氧基脱除,少部分被酚化,木质素反应活性提高。并且,所压制胶合板的胶合强度均优于未改性木质素替代苯酚所制备的酚醛树脂,且在实验范围内均达到了国家标准中Ⅰ类胶合板的要求。  相似文献   

13.
以工业滤纸为炭基材料,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段聚醚(普朗尼克F127)为软模板,1,3,5-三甲苯为扩孔剂,在添加3-氨基苯酚(氮源)和六次甲基四胺的条件下进行水热合成反应制得纸基复合材料,并经炭化制得氮掺杂介孔炭化复合材料(NMC-700),进一步KOH活化后制得活化氮掺杂介孔炭化复合材料(ANMC-700),同时以工业滤纸直接炭化制得的炭化滤纸(C-700)样品为对照,采用SEM、TEM、XRD、XPS等方法对3种炭材料进行了表征。研究结果表明:ANMC-700表面形成了粒径0.6~7μm的炭微球,孔结构由随机分布、蠕虫状的孔组成,比表面积高达1 559 m~2/g,孔容为0.80 cm~3/g,且氮原子已经成功掺杂到炭骨架中,含氮量为3.60%,含氧量为13.65%。电化学性能测试结果表明:以6 mol/L KOH为电解质溶液,在1 A/g的电流密度下,ANMC-700的比电容可达284 F/g,在20 A/g的电流密度下其比电容仍能保持在173 F/g,并在此电流密度下经过10 000次循环充放电,其电容保持率在98.6%,表现出良好的电化学稳定性。  相似文献   

14.
竹节制备高比表面积活性炭的研究   总被引:12,自引:4,他引:12  
以竹节为原料,采用KOH化学活化法制备高比表面积活性炭。研究了炭化温度、活化温度和KOH与生节炭的质量比对活性炭的收率和吸附性能的影响,并对所得活性炭的比表面积和微孔结构进行了初步探讨。结果表明:在炭化温度为700℃、碱/炭质量比为4、活化温度为900℃、活化时间为1h时可制表面积为2610m^2/g的高比表面积活性炭,其碘吸附值为2300mg/g、亚甲基基蓝值为570mg/g,均为普通活性炭的2-3倍。  相似文献   

15.
木材液化产物制备热塑性树脂的研究   总被引:4,自引:2,他引:2  
在酸性催化剂作用下,用木材的苯酚液化产物和甲醛进一步树脂化制备了液化木基热塑性酚醛树脂(PWF).用正交试验方法研究了各影响因素对树脂产率和软化点的影响,结果表明,pH值和反应温度对PWF树脂产率的影响最大,而甲醛与苯酚的投料比对PWF树脂软化点的影响最大.当木材液化产物中残留的苯酚与甲醛的物质的量之比为1∶0.75,pH值为木材液化产物的实际值,在105℃反应150min时,液化木基热塑性酚醛树脂的产率达到124%,软化点为110℃左右.用凝胶渗透色谱(GPC)、傅立叶红外光谱(FT-IR)和核磁共振(NMR)对比研究了PWF和传统热塑性酚醛树脂(PF)的结构特征.结果显示PWF和PF的结构基本相似,酚单元之间的连接形式主要是邻-对位和对-对位连接.PWF中含有木材组分的液化碎片,且相对分子质量较低,分布较窄.  相似文献   

16.
以腰果酚为原料,先合成一种分子主链结构上含有叔氨基的自催化型聚醚多元醇(CPO),然后与异多苯基多亚甲基多异氰酸酯(PAPI)在无催化剂下制备出一种腰果酚基自催化型聚氨酯泡沫(CPUF),再采用木质素对CPUF增强改性,制备腰果酚-木质素基复合自催化型聚氨酯泡沫(LCPUF),并研究了木质素添加量对此复合聚氨酯泡沫的结构与性能的影响。结果表明:采用木质素改性CPUF可有效提高泡沫的表观密度及压缩强度;当木质素添加量为CPO质量的20%时,所制备的LCPUF泡孔略有减小,表观密度和压缩强度最大,分别为81.48 kg/m~3、0.44 MPa;TG分析显示,木质素的加入对CPUF的热降解过程无显著影响。  相似文献   

17.
以苯酚(4.26 mol)、多聚甲醛(7.28 mol)、甲醛(1.24 mol)为原料,NaOH为催化剂,采用逐步共缩聚的合成工艺,制备高固含量甲阶酚醛树脂,选择3种环保型无卤阻燃剂(APP、MP、LM-NPP 8081)复合酚醛树脂制备酚醛泡沫,通过测试泡沫力学性能、阻燃性能、易碎性、耐热性能和导热性能等,研究阻燃剂的种类及添加量对酚醛泡沫性能影响.结果表明:3种阻燃剂都能明显提高泡沫的阻燃性,对泡沫的耐热性能和导热系数的影响不是很显著.当阻燃剂添加量为8%时,阻燃剂复合的酚醛泡沫的机械性能较优,并且MP复合酚醛泡沫的综合性能较好,此时MP复合泡沫的氧指数为55.22%,压缩强度为0.30 MPa,弯曲强度为0.28 MPa,掉渣率为34.40%,导热系数为0.045 W/(m·K),300℃残炭量87.50%,600℃残炭量61.12%.结果表明3种阻燃剂中MP是一种较适合酚醛泡沫体系的阻燃剂.  相似文献   

18.
不同部位竹材制备竹活性炭及其对苯酚的吸附性能   总被引:4,自引:0,他引:4  
利用不同部位的竹材如竹蔸、竹节和竹枝制备竹炭,以KOH为活化剂,在活化温度为700℃和不同质量浓度的KOH溶液下进行活化制备竹活性炭,测定吸附性能最好的竹活性炭在不同吸附时间和溶液质量浓度下对苯酚的吸附情况,并进行结构表征.结果表明:KOH溶液质量浓度为16.0 g·L-1时,制备的竹活性炭对苯酚的吸附效果最好,而竹蔸、竹节和竹枝活性炭中又以竹蔸活性炭吸附性能最好;吸附时间在40min时,竹蔸活性炭对苯酚的吸附趋于平衡,在30℃时竹蔸活性炭苯酚吸附量达到83.4 mg·g-1时趋向饱和.竹枝炭、竹节炭与竹篼炭的孔隙度分别为0.656,0.698和0.740,竹枝活性炭、竹节活性炭与竹篼活性炭的孔隙度分别为0.688,0.748和0.790.竹篼炭和竹篼活性炭比表面积分别为110.4和475.7m2·g-1,孔容分别为0.09和0.26mL·g-1,平均孔径分别为3.16和2.19nm.  相似文献   

19.
以毛竹为炭前驱体,KOH作活化剂,通过调节KOH用量在相同活化条件下制备了具有不同孔隙结构的竹基活性炭材料,通过扫描电镜、BET氮气吸附、直流充放电、交流阻抗和循环伏安等结构与电化学性能分析方法,考察了碱炭比对竹基活性炭材料结构和性能的影响.研究结果表明:随着碱炭比增大,活性炭材料的比表面积与总孔容、中孔孔客、微孔孔客...  相似文献   

20.
应用丁腈橡胶粉(NBRP)对酚醛树脂进行改性,再与其他助剂复合在70℃制备改性酚醛泡沫材料.分析了NBRP的改性方式对酚醛泡沫材料性能的影响,进一步讨论了NBRP前期改性加入量对酚醛泡沫机械性能、易碎性能、燃烧性能和泡孔微观结构的影响.研究表明:NBRP前期改性酚醛泡沫性能优异,其中添加量2%时综合性能最佳,这为丁腈橡胶粉改性酚醛树脂提供了科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号