首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Climate change resulting from increased atmospheric carbon dioxide (CO2) and shortages of fossil fuels such as petroleum are major problems worldwide. Under these conditions, demand for woody biomass resources is increasing. We investigated the feasibility of using fast-growing Eucalyptus grandis for material production. Samples of E. grandis were collected from four plantations in different latitude divisions, including tropical and subtropical Brazil and subtropical Argentina. Various xylem qualities were measured and related to the lateral growth rate. Lateral growth rate did not significantly affect the longitudinal released strain of the surface growth stresses or the xylem density at any of the sampling sites. Higher lateral growth rate, higher values of xylem density, and lower absolute values of the released strain were observed in plantations closer to the equator. Higher growth rates in tropical climate promote longer fiber length. In subtropical plantations, smaller diameter trees will produce tension wood with smaller microfibril angles. Planting E. grandis closer to the equator thus produces higher quality wood than in plantations at lower latitudes.  相似文献   

2.
  • ? Awareness of the shortage of fossil resources leads to an increasing demand for woody biomass. We investigated the feasibility of using fast-growing Gmelina arborea wood for material production. Gmelina arborea wood samples were collected from trees of varying cambium ages in Indonesia, from 3.5-, 7- and 12-year-old plantations.
  • ? The lateral growth rate and the cambium age did not significantly affect the longitudinal released strain of the growth stress, xylem density, or microfibril angle at the outermost surface of the secondary xylem at any sampling site. However, fiber length in the 3.5-year-old plantation tended to be shorter in smaller diameter trees, whereas in larger diameter trees it was almost the same as that in trees from the 7- and 12-year-old plantations. This suggests that smaller diameter trees in the 3.5-year-old plantation had not yet produced mature wood.
  • ? Xylem qualities had already reached values appropriate for harvesting, except in the smaller diameter trees from the 3.5-year-old plantation. This indicates that the larger diameter trees had already matured, regardless of their cambium age. These results suggest that the next step is to develop silvicultural treatments to increase the lateral growth rate during the early growing stage, in order to produce as much mature wood as possible, as quickly as possible.
  •   相似文献   

    3.
    In the humid and temperate areas of southern Europe, forest plantations are dominated by fast-growing species (Eucalyptus globulus, Pinus radiata and Pinus pinaster), which are grown on acidic soils with low reserves of available nutrients. In this study the amounts of nutrients exported from the plantations under different regimes and intensities of harvesting were evaluated and, on the basis of the results obtained, silvicultural management methods aimed at improving the nutritional status of the plantations were proposed. We found high ratios between nutrients exported by harvesting and those available in soil stores, indicating limitation for P, Ca and Mg over the long term, which is consistent with frequently found deficiencies of these nutrients. Current harvesting practices (removal of stem wood and bark) result in high rates of export of P, K, Ca and Mg, especially in eucalypt plantations, because of the high productivity and low nutrient efficiency of this species. Comparison of the amounts of nutrients exported by harvesting, with natural inputs (rainfall and weathering) and outputs (stream water), suggests that intensive exploitation of these plantations may result in negative budgets, especially if whole tree harvesting is carried out. The application of fertilizers containing P, Ca and Mg should be encouraged in all cases to favour the return of nutrients, especially where logging residues are extracted. The cost of harvesting in terms of nutrients can also be reduced by careful selection of the tree species planted and of the tree fractions harvested and by reducing the intensity of harvesting.  相似文献   

    4.
    The fast-growing hardwood, okoumé (Aucoumea klaineana Pierre), is a major forest species in Gabon and is used principally for making plywood, but research into the growth and quality of this wood is scanty. Trees from natural forests are favoured for production, yet little information exists on wood characteristics from plantation trees. Therefore, we carried out a dendrochronological study along with measurements of wood longitudinal modulus of elasticity (E L ), density (D w ), dimensional stability parameters (longitudinal, radial and tangential shrinkage and fibre saturation point) and fibre cell morphology to determine if these properties were related to age in trees from two plantations. We then used segmented regression analysis to define the limit (breakpoint) between juvenile (JW) and adult wood (AW). Using monthly precipitation data, we were able to determine that one growth ring is formed per year, composed of a large light coloured ring formed during the long rainy season and a thick, dark band formed during the major dry season. However, thinner bands, analogous to false rings, may also form during the short dry and short rainy seasons. Ring width decreases from the pith to the bark, and the breakpoint between JW and AW was at 19 years old when trees from both plantations were pooled together. No differences in D w or radial and tangential shrinkage occurred with cambial age. E L increased significantly up to the cambial age of 12–14 years, after which the increase with age was only slight and no breakpoint between JW and AW was found. With regard to mean longitudinal shrinkage, AW was found to form after the age of 13 years but fibre cell length was significantly longer after the age of 14.5 and 20 years, depending on the plantation of origin. Therefore, the boundary between JW and AW in plantation grown okoumé occurs between the ages of 13 and 20 years, depending on the characteristic examined.  相似文献   

    5.
    红豆树等6种珍贵用材树种的生长特性和材性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
    利用浙江龙泉和庆元两地在较好立地上营造的21 36年生红豆树、江南油杉、伯乐树、闽楠、刨花楠和乐东拟单性木兰6种珍贵用材树种的片林,以研究其生长、干形和木材基本密度的变化规律。研究结果表明,红豆树是一个树高和胸径生长量大、径生长速生持续期长、木材基本密度中等及其径向均匀性较高的珍贵用材树种,平均年轮宽度达到0.8 1.2 cm,36年生时按宽度和面积计算心材比例分别为60.57%和37.47%。因红豆树分叉干特性明显,在栽植的第2年就应及时修枝抹芽和施肥,以培育树干通直、心材比例高的优质干材。江南油杉和闽楠等其它5种珍贵用材树种皆较少分叉干,其树干通直。闽楠以材质优良而闻名,木材密度中等,虽然其生长速度较慢,但生长势很强,年生长量稳定,加之树冠窄小,适宜长周期大径材的培育;伯乐树生长速度中等,木材密度略低,但其径向均匀性较高,宜作为优质的工艺材来培育;树冠窄小的乐东拟单性木兰生长速度中等,但其木材密度大、径向均匀性高,是优良的珍贵用材树种;江南油杉是个早期生长快而后期生长慢,木材密度中等的针叶树种,可通过加强经营管理延长速生期和提高木材密度的径向均匀性;刨花楠虽然生长速度中等,但其木材密度却较低,浸水有粘液,不宜作为珍贵用材树种培育。  相似文献   

    6.
    Most research on carbon content of trees has focused on temperate species, with less information existing for tropical trees and very little for tropical plantations. This study investigated factors affecting the carbon content of nineteen tropical plantation tree species of ages seven to twelve and compared carbon content of Khaya species from two ecozones in Ghana. For all sample trees, volume of the main stem, wood density, wood carbon (C) concentration and C content were determined. Estimated stem volume for the 12-year-old trees varied widely among species, from 0.01 to 1.04 m3, with main stem C content ranging from 3 to 205 kg. Wood density among species varied from 0.27 to 0.76 g cm?3, with faster growing species exhibiting lower density. Significant differences in wood density also occurred with position along the main stem. Carbon concentration also differed among tree species, ranging from 458 to 498 g kg?1. Differences among species in main stem C content largely reflected differences among species in estimated main stem volume, with values modified somewhat by wood density and C concentration. The use of species-specific wood density values was more important for ensuring accurate conversion of estimated stem volumes to C content than was the use of species-specific C concentrations. Significant differences in wood density did exist between Khaya species from the wet and moist semi-deciduous ecozones, suggesting climatic and site factors may also need to be considered. Wood densities for these plantation grown trees were lower than literature values reported for the same species in natural forests, suggesting that the application of data derived from natural forests could result in overestimation of the biomass and C content of trees of the same species grown in plantations.  相似文献   

    7.
    The relationships between growth characteristics and wood properties were investigated for a threatened species, Pericopsis mooniana, to promote the establishment of plantations of this species in the tropics. Growth characteristics (diameter and height) and stress-wave velocity (SWV) of trees were measured for 22-year-old P. mooniana trees planted in Indonesia. The trees were categorized into three groups, fast-growing, middle-growing, and slow-growing trees, to investigate the effect of growth rate on the wood properties. In addition, radial variation of anatomical characteristics and wood properties were determined. No significant correlation was found between growth characteristics and SWV. The values for the vessel diameter, cell wall thickness of wood fibers, wood fiber length, basic density, modulus of elasticity, and modulus of rupture from wood at the bark side were higher than those at the pith side. On the other hand, vessel frequency gradually decreased from pith to bark. These results suggested that low-quality wood, such as juvenile wood, existed near the pith area.  相似文献   

    8.
    Short-rotation coppice (SRC) represents an important source of wood biomass. Many uncertainties create barriers to farmers establishing SRC plantations, especially under Mediterranean climate conditions. In this study, five species and respective genotypes were analyzed. The five species were Fraxinus angustifolia, Robinia pseudoacacia, Salix alba, Populus nigra (Limatola), and Populus × euroamericana, with the genotypes of the latter being Grimminge, Vesten, Hoogvorst, Muur. For the plantations studied, two different harvesting systems were replicated: the single machine pass, or cut-and-chip (CC); and the double machine pass, for which the tree are cut first, then chipped later (chip of stored trees CS). In the CC, fresh trees were harvested and chipped by Claas Jaguar 880. In the CS, dry trees were chipped by Farmi Forest CH 260. Within the same site, in climatic conditions and low-input management, the best result in terms of biomass yield was obtained from the black poplar Limatola. Both wood typologies and harvesting systems affected the chip quality. The disk chipper, when working on dried biomass, produced lower quality chips than the other chipping device in terms of particle size. In the chips obtained, there was an increase in the number of chips classified as being “larger size” and “oversized”, and a decrease in the percentage of those classified as “accept” (45–3 mm fraction). The chips obtained from dried trees were of better energy quality compared with the same biomass obtained from the fresh trees in terms of heating value and ash content.  相似文献   

    9.
    Eucalyptus plantations have been considered for bioenergy production and hence their biological characteristics that make them amenable to intensive short-rotation forestry. Wood density is an important parameter that directly affects fuel production. This study focuses on the early assessment of density features for 19 Eucalyptus species using X-ray microdensitometry in a perspective of potential biomass production. Average ring density, earlywood density, latewood density, latewood percentage and the heterogeneity index were studied. E. polyanthemos registered the highest mean wood density value (0.84 g cm?3), and E. viminalis showed the lowest value (0.53 g cm?3). An indicator for the potential wood biomass (PWB) was calculated, with E. maculata displaying the highest biomass production index (13.4 kg). Comparison of radial growth of these species showed appreciable differences. The PWB indicator points to the prospective good aptitude for short-rotation cycle for biomass production of E. maculata, E. botryoides, E. globulus, E. nitens and E. sideroxylon.  相似文献   

    10.
    Restoration of degraded pasture lands in the tropics through afforestation is widely supported. The greatest obstacle to afforestation, however, is the long delay before initial financial returns from wood harvesting are realized. Interplanting young trees with food or energy crops has been proposed as a strategy to help overcome this obstacle. We investigated the impact of this practice on the survival and growth performance of young tropical tree seedlings in Panama. Five native timber tree species and the exotic species Tectona grandis were interplanted with four different crop rotations and monitored over 2 years. Survival of young tree seedlings was up to eight times higher when planted in association with Manihot esculenta. Only during the first 3 months after maize sowing was a significant negative effect of intercropping on tree seedling survival found. Here, survival rate of tree seedlings was up to four times lower than in the pure plantation. Tree growth was not adversely affected by crops. In fact, Astronium graveolens, Cedrela odorata and Terminalia amazonia showed significantly superior growth performance in association with both Zea mays and Cajanus cajan. When combined with the latter, the height increment of these tree species was up to four times that achieved in pure plantations. We conclude that intercropping can be an important silvicultural practice to facilitate forest restoration. Multi-purpose shrubby crop species with cropping cycles of more than 6 months are particularly beneficial, as they quickly shade out grasses, thus reducing the need for herbicides.  相似文献   

    11.
    The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6–7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices.The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha?1 of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input–output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients.  相似文献   

    12.
    Growth, wood quality parameters and productivity estimations of 12-year-old teak (Tectona grandis L.f.) grown under three agroforestry systems, namely unmanaged block (Bum), unmanaged line on the farm boundary (Lum) and intensively managed block (Bim) plantations are studied. Mean annual increment (MAI) of 0.020, 0.006 and 0.016 m3 tree?1 year?1 was recorded in Lum, Bum and Bim, respectively. Overall growth performance of teak raised in Lum, plantation appears to be better than two block plantations (Bum and Bim). For evaluating various wood quality parameters, tree logs from each plantation were tested for different physical and mechanical properties according to the standard procedures. The wood quality of Bum was found to be comparatively superior to Bim and much better than those of Lum. The 12-year-old farm teak trees from three systems exhibited lower average values of different wood quality parameters compared to mature forest teak. Since physical and strength properties of Bum were inferior compared to Lum and Bim, its exploitation is not advisable at this stage. Line plantation, however, releases land for cultivation of arable crops and does not demand any special silvicultural management as required by Bim. Although, total extractable volume of teak wood available after 12-years of age from Bum was much smaller compared to Bim or Lum, its commercial exploitation at an early age may be preferred over other two practices due to better wood quality and lower management cost. For optimum economic utilization and mechanical maturity of wood, harvesting of block plantation may be delayed for about 10-15 years because growth volume and strength properties are expected to improve with age of tree.  相似文献   

    13.
    Traditional shade coffee plantations of Kodagu district, in the Western Ghats of southern India, harbor a high density and diversity of trees. Local farmers appreciate native biodiversity, but plantation economics and public policies drive them to gradually replace the original diversified cover with exotic shade trees such as Grevillea robusta, which grows fast and can be easily traded as timber. In order to identify and recommend native timber trees with fast growth rates, we compared the growth performance of four common native species against that of G. robusta, by fitting steel dendrometer bands on 332 shade trees. Results showed that in general G. robusta had the fastest growth rates, but large trees of the native Acrocarpus fraxinifolius had faster growth in the wet western side of the district. Computer projections of long term performance showed that most species were influenced by bioclimatic zone. Species-specific local environmental effects also occurred, including competition from coffee bushes for A. fraxinifolius, influence of aspect for G. robusta, and management block effects for Lagerstroemia microcarpa. Our results show that native species potentially could produce timber at rates equivalent to those of exotic species. However, as in many tropical countries, data on growth rates of native trees within mixed-cover plantations are scarce and this study underlines the urgent need to screen for fast-growing species. Such information provides a strong basis for recommending appropriate changes in public policies that would improve tree tenure security and encourage farmers to grow more native species.  相似文献   

    14.
    Against a background of increasing human populations in developing countries, and global climate change, conservation of tropical forests remains one of the most important ecological challenges of our time. One of the biggest difficulties for ecologically sustainable management of tropical forests is obtaining reliable growth data for trees, which is a prerequisite for determining harvesting volumes and cutting cycles. GOL is the first concept for sustainable management of tropical timber resources in Amazonian floodplain forests (várzea) based on species-specific management criteria, such as minimum logging diameters (MLDs) and cutting cycles. From timber species with varying wood densities of different successional stages, volume stocks have been estimated in 1-ha plots and 12 growth models have been developed based on tree rings, which are annually formed as a consequence of the regular, long-term flooding. The MLDs of timber species vary between 47 and 70 cm and the estimated cutting cycles differ the 10-fold, from 3 to 32 years. These enormous differences in the growth rates between tropical timber species are not considered in current management practices, which apply only one diameter cutting limit and one cutting cycle to harvest many tree species. This practice risks the overexploitation of slow-growing timber species, while the fast-growing timber species with low wood densities cannot be efficiently used. Based on the timber stocks and lifetime growth rates, the GOL concept has been created as an aid to improve forest management in the Central Amazonian várzea. The model is unique for tropical silviculture.  相似文献   

    15.
    Stem deformation has often been observed in young black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) plantations. Whenever important stem deformations are observed at the time of harvesting, timber value is negatively affected especially during the wood transformation process. The present work was undertaken to quantify and qualify the importance of stem deformation of black spruce and jack pine in the boreal forest of central Quebec at the stand and tree levels. In 30 black spruce and jack pine plantations, approximately 22% of spruce trees and 27% of pine trees exhibited stem deformation. The proportion of deformed trees was higher in the youngest plantations and decreased with the age of the plantations. Stem deformation caused the formation of compression wood which is another factor that can reduce the value of wood products. Thirty-nine black spruces and 34 jack pines were analysed at the tree level. On average, compression wood represented 14% and 20% of stem volume in 7- and 10-year old black spruce plantations, respectively. These proportions ranged from 18% in the youngest jack pine plantation to 26% in the oldest one. Stems of both species classified as normal contained a lower volume of compression wood than stems classified as deformed or very deformed. Annual percentages of compression wood and annual shoot length increased significantly with tree age (p < 0.0001 for both variables). Statistically significant correlations were also found between the range of displacement of the stem and the percentage of compression wood. The fewer number of trees with deformed stems in older plantations combined with high compression wood formation suggests that, over time, a deformed tree can become normal and straight in appearance.  相似文献   

    16.
    An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxylon and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30–60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F. brayleyana, provided a clear representation of early successional species, with marked increase in Amax in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as falling along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar Amax across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.  相似文献   

    17.
    Tropical plantation forests are meeting an increasing proportion of global wood demand and comprehensive studies assessing the impact of silvicultural practices on tree and soil functioning are required to achieve sustainable yields. The objectives of our study were: (1) to quantify the effects of contrasting organic residue (OR) retention methods on tree growth and soil nutrient pools over a full Eucalyptus rotation and (2) to assess the potential of soil analyses to predict yields of fast-growing plantations established on tropical sandy soils. An experiment was set up in the Congo at the harvesting of the first rotation after afforestation of a native herbaceous savanna. Six treatments were set up in 0.26 ha plots and replicated in 4 blocks, with OR mass at planting ranging from 0 to 46.5 Mg ha−1. Tree growth over the whole rotation was highly dependent on OR management at planting. Over-bark trunk volume 7 years after planting ranged from 96 m3 ha−1 in the treatment with forest floor and harvest residue removal at planting to 164 m3 ha−1 in the treatment with the largest amount of OR. A comparison of nutrient stocks within the ecosystem at planting and at the end of the rotation suggested that nutrient contents in OR were largely involved in the different response observed between treatments. OR management treatments did not significantly modify most of the nutrient concentrations in the upper layers of the mineral soil. Conventional soil analyses performed before planting and at ages 1 and 3 years were unable to detect differences between treatments despite large differences in tree growth. In contrast, linear regressions between stand aboveground biomass at harvesting and OR mass at planting (independent variable) showed that OR mass was an excellent predictor of stand yield (R2 = 0.99). A large share of soil fertility comes from organic material above the mineral soil in highly weathered sandy soils and OR mass at planting might be used in conjunction with soil analyses to assess the potential of these soils to support forest plantations.  相似文献   

    18.
    Changes in mold populations and genera on the exposed surfaces of tropical hardwoods — albizia (Paraserianthes falcata), kapur (Dryobalanop lanceolata), mahoni (Switenia macrophylla), nangka (Artocarpus heterophyllus), puspa (Schima wallchii) — were investigated. The wood specimens were exposed to the Indonesian climate for 32 weeks. Properties including mass loss, wettability, mold growth (colony-forming units), and mold genera were evaluated. The change in properties after exposure was significantly affected by the wood species, but there was no clear relation between mass loss and the initial chemical components or between wettability and wood density. The number of mold populations was different by exposure period and wood species, but there was no significant effect of climate conditions, such as rainfall and ultraviolet radiation. Of the genera identified,Aureobasidium, Cladosporium, andPenicillium were dominant molds on the exposed wood surfaces.  相似文献   

    19.
    枫香优树14年生子代遗传变异及选择   总被引:1,自引:0,他引:1       下载免费PDF全文
    在福建省洋口国有林场,对来自安徽省南部黄山地区的53个枫香家系进行子代测定,研究家系的遗传变异规律,开展优良家系及单株选择.结果表明:子代试验林14年生时,树高、胸径和单株材积平均值分别为8.05m、6.30cm和0.014 93 m3,生长性状的家系遗传力为0.437~0.576,受中强度的遗传控制,单株遗传力为D.113~0.195,受较弱的遗传控制;木材材性的家系遗传力为0.507~ 0.591,单株遗传力为0.360~0.500,均受中强度的遗传控制.以生长量为主要指标,选出速生优良家系9个,其树高、胸径和单株材积平均值分别为8.85 m、7.22 cm和0.021 49 m3,遗传增益分别为2.86%、5.47%和13.4%;从木材基本密度大于0.500 g·m-3的家系中选出7个生长材性兼优家系,树高、胸径、单株材积和木材基本密度的平均值分别为8.34m、6.79 cm、0.018 58 m3和0.518 g·m-3.所选出的速生优良家系和生长材性兼优家系可作为枫香育种材料在生产上推广应用.  相似文献   

    20.
    火炬松种源幼龄材材性变异的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
    对在广西南宁、广东英德、江西分宜、浙江富阳4个试点的9年生火炬松源林的木密度、管胞长度、晚材率进行了测定分析,结果表明:4个试验点木材密度在种源间均表现出显著差异,管胞长度与晚材率差异不显著。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号