首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
多环芳烃(PAHs)是环境中普遍存在的一类高毒且较难降解的有机污染物。筛选高效降解菌,采用微生物降解PAHs,对于消除PAHs的环境污染和毒性具有重要的意义。采用萘平板法初筛、氧化还原酶活性复筛,筛选到3株PAHs高效降解菌,分别命名为B5、sh4、sh2。经16S rDNA基因序列分析鉴定,依次为伯克氏菌(Burkholderia)、罗尔斯通菌(Reutropha)、中华单胞菌(Sinomonas)。降解条件优化结果表明:B5、sh4、sh2均能以萘、蒽、芘为唯一的碳源,120 h内,三个菌株对单一萘(200 mg/L)、蒽(100 mg/L)、芘(50 mg/L)的降解率分别达到81%、65%、53%以上;混合多环芳烃萘(200 mg/L)、蒽(100 mg/L)、芘(50 mg/L)的降解率分别为:82.17%—99.13%、70.76%—87.25%、52.59%—75.07%。PAHs的降解率与其分子量相关,同时PAHs的分子量也影响着菌株B5、sh2的生长活性。相比较而言,菌株B5、sh4、sh2均具有较强PAHs降解能力;菌株B5对PAHs降解效果最佳,可能与其氧化还原酶活性高有关;菌株sh4对芘的耐受力强,具有降解高分子量多环芳烃的潜能。  相似文献   

2.
芘降解菌株的筛选及降解条件的研究   总被引:9,自引:1,他引:9  
为了筛选高效多环芳烃芘的降解菌株并研究其降解条件,为生物修复多环芳烃污染土壤提供科学依据和实验材料,从长期受石油污染土壤中分离筛选得到一株芘降解菌B4,初步鉴定为假单胞菌属(Pseudomonassp.)。并采用室内培养方法,研究了该菌株降解芘的特性及各种环境条件对降解效能的影响。结果表明,菌株B4在28℃振荡培养条件下,对50mg.L-1的芘降解率为91.70%,芘的降解与细菌数量的增长呈正相关关系。加入水杨酸(50mg.L-1)作为共代谢底物,降解率可达到95.55%。当pH为4、盐浓度高于5%时,菌株B4不生长。对菌株B4在重金属离子胁迫下对芘的降解研究发现,在一定浓度下,Pb2 与Zn2 的存在对B4的降解效能影响较小,Cu2 对菌株的生长具有一定的抑制作用,Cd2 对菌株B4有毒性。  相似文献   

3.
真菌细胞色素P450与多环芳烃浓度及降解率的相互关系   总被引:7,自引:2,他引:7  
以菲、芘作为多环芳烃代表污染物,采用室内培养方法,研究了 4种真菌细胞色素 P450含量与多环芳烃( PAHs)浓度及降解率的相互关系.结果表明,在一定的浓度范围内(菲 0~ 200 mg· L-1、芘 0~ 100 mg· L-1),菲、芘浓度与真菌 P450含量呈明显正相关,菲、芘浓度与真菌 P450含量之间表现出明显的剂量-效应关系.在上述浓度内 ,真菌降解多环芳烃的能力与真菌 P450含量之间也表现出明显的剂量-效应关系.在选用的 4株真菌中, Zj1(镰刀菌)降解菲和芘的能力最强, Zj3(小克银汉)次之, Zj2(毛霉)和 Zj4(青霉)降解能力较弱.  相似文献   

4.
利用富集培养法从河北省典型煤矿区土壤中分离到1株4环高环芳烃(HMW-PAHs)降解菌,经形态特征观察和18S rRNA序列分析确定该菌株为镰刀菌属(Fusarium sp.),命名为Y15。通过室内摇瓶和土壤培养试验,研究了其对4环HMW-PAHs的降解性能。结果表明,室内摇瓶培养7 d后,Y15接种量为100 m L/L时,对初始浓度为10 mg/L的芘(Pyr)、苯并[a]蒽(BaA)、■(Chry)的降解效率分别为52.94%、32.14%、33.93%。其中,对Pyr的降解率随初始浓度的升高呈先升高后降低的趋势,在40 mg/L时降解率最高,为69.67%。Y15接种在PAHs污染的土壤中,经30 d培养试验,Y15对3种高环芳烃Pyr、Ba A、Chry的总降解率为13.15%。在3种PAHs中,Y15对Pry的降解率显著高于对Ba A、Chry的降解率(P0.05)。从土壤酶活性变化规律看,与添加灭活菌液的对照组相比,添加菌液处理的土壤多酚氧化酶和过氧化物酶活性明显降低。综上所述,该菌株是1株能以4环HMW-PAHs为唯一碳源且具有高效降解功能的潜在降解菌。  相似文献   

5.
石油降解菌群的构建及其对混合烃的降解特性   总被引:2,自引:2,他引:0  
经富集、分离、纯化,并经选择性培养基的筛选和对总石油烃(TPH)降解能力的测试,从大庆油田石油污染土壤中获得6株分别具有环烷烃、直链烷烃和芳烃降解能力的菌株B_1、B_2、B_3、B_6、B_7和B_9。经16S r RNA基因序列比对,菌株B_1、B_2、B_6和B_7分别属于嗜氢菌属(Hydrogenophaga sp.)、苯基杆菌属(Phenylobacterium sp.)、鞘脂菌属(Sphingobium sp.)和芽胞杆菌属(Bacillus sp.),B_3和B_9属于节杆菌属(Arthrobacter sp.)。通过对接种比例、接种量和生长条件的优化,构建了微生物降解菌群,并采用该菌群进行混合烃污染土壤的修复。结果表明,该菌群对三类烃的去除均具有明显的促进作用。经过40 d的修复,环十二烷去除率达74.5%;100 d后,正十六烷和芘的去除率分别达56.9%和60.4%。前10 d修复过程中,各污染物降解速率最大,之后则逐渐降低,与土壤微生物多样性、数量以及活性的变化趋势相似。  相似文献   

6.
为研究3株耐盐细菌(S1 Microbacterium sp.、G12 Zhihengliuella sp.和Y3 Pseudomon putida)对多环芳烃的利用性能,分别测定其在以萘、菲、惹烯和苯并[α]芘为唯一碳源并添加不同浓度葡萄糖(0、0.5、1.0、1.5 g/L)的无机盐培养基中的生长情况,采用气质联用(GC-MS)技术测定了3株菌在上述培养基中作用7 d后对4种多环芳烃(PAHs)的降解性能,同时测定出3株菌的生长量并计算出单位细胞的降解效率。结果表明:3株菌均能够利用4种PAHs作为碳源,且在无糖的萘-无机盐培养基的中生长量高于其他3种PAHs-无机盐培养基,在萘、菲、惹烯-无机盐培养基的生长量均与含糖量成正比,但0.5、1.0、1.5 g/L葡萄糖组间无显著性差异(P0.05);添加1.0 g/L葡萄糖时,3株菌对4种PAHs的降解率均可达到最高值,对萘的降解率分别提高了44.06%(S1)、70.56%(Y3)和50.98%(G12),对菲的降解率分别提高了49.66%(S1)、45.87%(Y3)和38.29%(G12),对惹烯的降解率分别提高了66.13%(S1)、61.31%(Y3)和56.20%(G12),对苯并[α]芘的降解率分别提高了69.42%(S1)、65.79%(Y3)和65.01%(G12)。研究表明,3株菌对4种PAHs单个细胞降解速率均随葡萄糖浓度的增加而大幅度降低,呈剂量反比关系。  相似文献   

7.
以菲降解菌--鞘氨醇单胞菌(Sphingomonas sp.)GY2B和芘降解菌--假单胞菌(Sphingomonas sp.)GP3A为研究对象, 对两株菌进行融合前的抗药性标记筛选, 融合后的菌株通过形态学及分子生物学进行分析鉴定, 并测定其对菲和芘的降解效果。结果表明, 筛选出GY2B的遗传标记为哌拉西林抗性(80 μg·mL-1),GP3A的遗传标记为头孢他啶抗性(80 μg·mL-1)或红霉素抗性(100~150 μg·mL-1).通过菲和芘的初步降解实验筛选出一株融合菌株F14, 通过平板菌落形态、扫描电镜(SEM)及PCR-RFLP分析鉴定F14是不同于亲本的菌株, 是GY2B 和GP3A 的融合子。融合菌株F14既可以降解菲又可以降解芘, 对初始浓度为100 mg·L-1的菲和芘的降解率分别为99%(24 h)和18%(10 d),降解能力和降解效果明显高于其亲本。  相似文献   

8.
为筛选新的益生菌菌源,从罗非鱼养殖系统分离筛选6株有机物降解菌,研究其对罗非鱼饲料浸出液和饲料原液的降解能力以及菌株对碳源的利用能力。结果表明6株菌对饲料浸出液的有机物均有明显的降解作用,实验72 h后,菌株D51对饲料浸出液有机物的降解率最高,达53.49%,其次为菌株D11,降解率为48.83%。各菌株对饲料原液的有机物均具有明显降解作用,菌株D51、D11和D45的降解效果最好,实验15 d饲料原液的COD分别降低了52.46%、46.03%和46.03%,饲料干重分别减少了58.25%、53.08%和52.08%。各菌株对碳源的利用能力有所差异,菌株D45对31种碳源表现出很强的代谢活性,菌株D51和D11次之,菌株D52和D53对碳源的利用能力相对较低。经分子生物学鉴定,菌株D11属于芽孢杆菌属(Bacillus sp.),菌株D45、D51、D52和D53属于微小杆菌属(Exiguobacterium sp.)。鉴于菌株D11、D45和D51对有机物具有较强的降解能力,可将其作为降解养殖池塘有机物的备选菌株开展后续研究。  相似文献   

9.
以原油为惟一碳源,通过富集驯化的培养方法,从新疆石油污染土壤中分离到2株石油降解菌,分别命名为XD-1和XD-2。根据其形态和生理生化特征分析,初步鉴定XD-1属于芽孢杆菌属(Bacillus sp.),XD-2属于假单孢菌属(Pseudomonas sp.)。采用单因素试验考察环境因素对菌株生长的影响,结果表明,菌株XD-1和XD-2可生长的pH范围为6.0~9.0,最适生长pH为7.5;可生长的温度范围为15~45℃,最适生长温度为30℃;菌株XD-1有较高的耐盐能力,Na Cl浓度生长范围是0~70.0 g/L,2株菌的最适生长盐度为5.0 g/L。在此环境条件下,通过7 d液体降解试验,菌株XD-1、XD-2对1 000 mg/L石油降解率分别达到62.14%和63.66%。该研究为石油污染物的生物降解与污染土壤的生物修复提供了依据。  相似文献   

10.
为了获得能够降解苯并[a]芘(BaP)的微生物菌群,为生物修复多环芳烃污染的土壤提供菌种资源,本试验从长期石油污染的土壤中,富集了一个能够降解BaP的微生物菌群,并研究了其最佳降解条件,通过高通量测序研究了其群落结构。该菌群可以在15 d内将30 mg·L^-1的BaP降解33.34%。高通量测序的结果表明,该菌群主要由Bacillus、Zobellella、Gordonia和Rheinheimera组成,其中Bacillus是主要的降解菌。试验结果表明,该菌群的最佳降解条件为1%盐度,酵母浓度为80 mg·L^-1,pH值7.0。该菌群对芘、菲、荧蒽等多环芳烃也有一定的降解效果,其中荧蒽的降解效果最好,降解率达到99%。试验结果表明,该菌群在实际应用中具有很大的潜力。  相似文献   

11.
为探究功能植物内生细菌对植物体内多环芳烃(PAHs)污染的去除以及机理,选择芘为多环芳烃代表、黑麦草为修复植物,采用水培体系检测内生细菌Serratia sp.PW7定殖对黑麦草体内可培养内生细菌群落和芘污染去除的影响。结果表明:菌株PW7能够高效定殖在黑麦草根(5.87~7.63 lg CFU·g-1)和茎叶(3.49~4.97 lg CFU·g-1)中,促进植物生长和芘的去除,改变黑麦草体内内生菌群结构,提高黑麦草体内可培养细菌总数和多样性。内生细菌定殖对植株生长与芘去除的促进作用与菌株定殖效率正相关。比较浸根和浸种两种定殖方式,浸根具有较高的定殖效率与降芘效益,还可促进植物生长。浸根定殖后,黑麦草生长量提高了18.5%~28.0%,植株体内芘浓度降低35.7%~44.2%;同时,浸根处理的黑麦草在高浓度芘污染下,根中内生细菌多样性及均匀度达到试验中的最高值(H=2.22,J=0.865)。芘污染条件下,功能菌定殖可改变植株体内优势种,定殖后黑麦草根中Serratia属成为绝对优势属,Pantoea属、Erwinia属(高浓度)和Micrococcus属次之;茎叶中优势属Microbacterium属不变,另一优势属由Chryseobacterium属变为Pantoea属(低浓度)、Pseudomona属和Sphingobacterium属。体外芘降解实验证明,有7株优势内生细菌15 d芘降解率超过55%。实验结果表明,功能菌株PW7可通过定殖提高植株体内内生细菌多样性及改变其优势种群来降低植物体内芘污染。  相似文献   

12.
为预测芘对白菜的生态风险阈值,通过温室土培试验,研究华北地区11个常见白菜品种对芘毒性的剂量-效应关系,得出基于白菜鲜质量芘的毒性阈值EC_(10)(10%抑制浓度)与EC_(50)(50%抑制浓度)。运用物种敏感性分布法(Species SensitivityDistribution, SSD)预测芘对白菜的生态风险阈值HC_5。结果表明:京翠60(JC-60)、京秋65(JQ-65)两个品种生物量(鲜质量)随着芘添加浓度的增加逐渐降低,呈现抑制效果,京春娃2号(JCW-2)、京春白(JCB)等9个品种白菜生物量随芘添加浓度的增加,呈现先升高后降低的趋势;运用Log-logistic分布模型以及Brian-Cousens低剂量刺激模型对土壤中芘植物毒性的剂量-效应关系进行拟合,得出不同条件下芘对白菜毒性的剂量阈值(EC_(10)、EC_(50)),多环芳烃芘对白菜EC_(10)变化范围为4.14~52.76 mg·kg~(-1),EC_(50)变化范围为28.35~545.11 mg·kg~(-1);通过物种敏感性分布模型预测结果表明,基于保护95%白菜品种的EC_(10)值HC_5~(10%)为4.52 mg·kg~(-1),置信区间为2.02~10.04,EC_(50)值HC_5~(50%)为37.68 mg·kg~(-1),置信区间为24.99~56.79。  相似文献   

13.
高效液相色谱法测定熟肉制品中的苯并(α)芘   总被引:3,自引:0,他引:3  
采用匀浆、超声波提取,改进的液一液分配净化,用高效液相色谱仪-荧光检测器检测,建立了熟肉制品中苯并(α)芘的测定方法。对样品前处理过程中的提取、净化条件进行了优化。所得线性方程为Y=8.69×10^5X-1.59×10^4(r=0.9999)。当样品中苯并(α)芘的浓度为1.0—30.0μg/kg时,加标平均回收率在84.6%~90.8%,其5次测定的日内相对标准偏差在2.88%~5.40%之间,日问相对标准偏差在1.47%~3.04%之间,检出限小于0.5μg/kg。该方法有机溶剂用量少,方法简单快速,灵敏度高,适合于熟肉制品中苯并(α)芘的测定。  相似文献   

14.
通过实验室模拟修复研究了接种量为103~108 cfu·g-1的降解菌群在土壤中生长的湿度条件和存活状况、对土著菌群的影响作用以及对石油烃的去除效果。结果表明,从石油污染土壤中筛选出的石油烃降解菌群主要由变形菌门(Proteobacteria,99.75%)-γ-变形菌纲(Gamma-proteobacteria,99.49%)-假单胞菌目(Pseudomonadales,99.36%)-莫拉氏菌科(Moraxellaceae,87.33%)-不动杆菌属(Acinetobacter,87.32%)和假单胞菌科(Pseudomonadaceae,12.04%)-假单胞菌属(Pseudomonas,12.00%)组成。利用筛选的降解菌群在土壤湿度为5.4%、接种量为108 cfu·g-1土的条件下对污染土壤修复60 d,石油烃去除率为10.61%;在土壤湿度为15.0%、接种量为107 cfu·g-1土时对石油烃去除率为18.67%。在5.4%和15.0%湿度下接种7 d,土壤中变形菌门相对丰度由28.22%增加至57.98%~66.35%,不动杆菌属相对丰度由0.04%增加至25.86%~30.25%,假单胞菌属由初始时的0.26%增加至5.03%~30.87%,说明在不同湿度条件下,接种的降解菌均能迅速生长为土壤中的优势菌;接种60 d时,其仍保持存活状态。研究表明,降解菌群的接种改变了土壤菌群结构,使土壤菌群的alpha多样性明显降低。土壤污染物的去除不仅依靠某种优势菌的特定降解功能,还需要土壤菌群的协同代谢作用。  相似文献   

15.
为获得既耐受重金属镉又能高效降解邻苯二甲酸二辛酯(DOP)的微生物菌株,利用选择培养基从污染土壤中分离高效降解微生物,并对其菌种分类和降解特性进行分析。共筛选获得5株耐镉的DOP降解菌株,其中PD-2对DOP的降解效率最高,120 h后降解率可达93.1%。结合形态学特征和16S rDNA序列分析,鉴定该菌为生丝微菌属(Hyphomicrobium sp.)。菌株PD-2对液体培养基中DOP的降解依赖于其生物量的增加,其对DOP的作用浓度和耐镉浓度范围广,可高效降解100~800 mg·L-1范围的DOP(降解率大于80%),并在镉浓度0~600 mg·L-1的培养基中生长良好。PD-2可利用邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二辛酯(DOP)和邻苯二甲酸(PA)作为底物生长,底物种类范围广。添加PD-2到镉和DOP复合污染土壤中,其对DOP具有显著的降解作用,PD-2在镉和DOP复合污染土壤的修复方面具有潜在的应用价值。  相似文献   

16.
为探索水环境因子对磺胺类抗性基因传播机制的影响,以磺胺类抗性基因Sul1为目的基因,采用绝对定量PCR技术,考察了pH、盐度、腐植酸、总氨氮和活性磷酸盐对Sul1含量的影响。研究结果表明,Sul1含量在pH 6~8时最高,而在酸性(pH 3~5)或碱性(pH 9~10)条件下均显著降低,表现出明显的抑制作用(P0.05)。Sul1含量随着盐度或腐植酸浓度升高而降低,呈显著的抑制作用(P0.05);总氨氮或活性磷酸盐对Sul1含量的影响表现为高浓度抑制、低浓度促进作用。当总氨氮或活性磷酸盐的浓度低于0.05 mg·L~(-1)时,Sul1含量显著增加(P0.05);而当浓度升高到1 mg·L~(-1),Sul1的含量显著降低(P0.05)。上述结果表明,水环境因子会影响磺胺类抗性基因Sul1的存在及分布。  相似文献   

17.
季胺盐化合物在水稻土中的吸附与淋溶行为   总被引:2,自引:1,他引:1  
通过吸附批处理实验及土柱淋溶实验, 探讨了3种典型季胺盐化合物(QACs)十二烷基三甲基氯化胺(DTAC)、十六烷基三甲基溴化胺(CTAB)及双十二烷基二甲基氯化胺(DDAC)在水稻土中的吸附和淋溶行为。结果表明, QACs(20 mg·L-1)的吸附过程符合拟二级动力学方程(R2>0.995),其有机碳分配系数(Koc)为3056~36 245 mL·g-1,与其分子量及碳链长度显着正相关(P<0.01),即其吸附性能强弱为DDAC>CTAB>DTAC.DDAC和CTAB为易吸附型污染物, DTAC为中等吸附型污染物。中性淋溶条件(pH=7)下, QACs(20 mg·kg-1)难被淋溶, 土柱淋溶率为27%~41%,与其分子量及碳链长度显着负相关(P<0.01);酸性淋溶(pH=4)及去除土壤有机质条件下, QACs的淋溶能力均大幅提高, 土柱淋溶率分别为42%~63%及58%~74%.  相似文献   

18.
为考察铀污染对土壤真菌群落结构的影响,通过室内实验模拟不同浓度(2、5、10、20、50、100 mg·kg~(-1))铀污染土壤环境,以未处理土样作为空白对照。结合Illumina Mi Seq高通量测序技术和生物信息学分析方法,测定了不同浓度铀处理下土壤真菌的多样性及群落结构。研究结果表明,铀处理对真菌多样性有重要影响,铀浓度为20 mg·kg~(-1)时,真菌多样性最低。在门水平上,主要以Zygomycota为主,其所占比例为33.46%~73.36%;在属水平上,主要以Mortierella为主,其所占比例为33.46%~73.30%。主成分分析结果表明,土壤受到铀胁迫后,其真菌群落结构与对照组有明显差异。利用相关性分析得到10种对铀具有耐性的真菌,分别是Pseudeurotium、Glomus和Cylindrocarpon等。该研究结果可为评估和修复铀污染生态环境提供理论依据。  相似文献   

19.
分离筛选具有耐乙草胺特性的促生菌株,并对其进行菌种鉴定,可为推进多功能微生物菌剂的研发提供可行性方案和理论依据。本研究利用不同浓度乙草胺的改良培养基筛选出具有高耐乙草胺能力的菌株,测试其在不同培养基条件下的促生作用,并通过促发芽试验和盆栽试验验证可行性。结果表明:菌株JL7与JL16为高耐乙草胺且具有较强促生能力的根际促生菌,两株菌对乙草胺的最大抗性浓度达700 mg·L-1。JL7的溶磷能力高达223.21 mg·L-1,产IAA(吲哚乙酸)量达82.40 mg·L-1。经鉴定JL7菌株为肠杆菌属(Enterbacter sp.),JL16菌株为醋菌属(Acetobacter sp.)。促发芽试验结果表明,施入JL7与JL16菌株72 h后发芽率分别较对照提高9.42、3.84个百分点,且JL16菌株对芽长与根长有显著的促生作用,较对照增加52.53%、23.22%。盆栽试验中,JL7与JL16的添加对株高、茎粗、根直径、根长等植株形态指标均表现为促进作用,并证实菌株JL7、JL16在土壤中仍对乙草胺具有耐受性。两种耐乙草胺菌株在促生方面具有显著效果,这为后期微生物改良土壤和开发新型微生物肥料提供了菌种资源和理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号