首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 625 毫秒
1.
为了实现蓝莓内部品质快速、准确检测,采用高光谱成像技术对蓝莓的糖度和硬度多指标同时进行检测研究。提出多阶段特征波长选择方法,即采用连续投影法(SPA)和逐步多元线性回归(SMLR)等特征波长选择方法同时将糖度和硬度的特征波长选择出来。通过高光谱成像系统(400~1000nm)采集了200幅蓝莓图像,首先对高光谱图像进行多元散射校正、标准正态变量变换和Savitzky-Golay平滑等光谱预处理,选取最优的预处理方法。然后利用SPA或者SMLR选择出糖度的几个特征波长,在此基础上再利用SPA或者SMLR选择出硬度的几个特征波长,从而形成四个特征波长选择方法 (SPA-SPA、SMLR-SMLR、SPA-SMLR和SMLR-SPA),采用4种多阶段特征波长选择方法提取同时反映蓝莓糖度和硬度的特征波长的组合。最后以全波长光谱信息(FS)和4种多阶段特征波长选择方法得出的光谱信息作为BP神经网络模型的输入矢量,建立了蓝莓糖度和硬度的预测模型。结果表明:Savitzky-Golay平滑为最优的预处理方法 ,结合BP神经网络,采用SPA-SPA多阶段特征波长选择方法所得的预测性能最优,糖度校正集的相关系数(Rc)和校正均方根误差(RMSEC)分别达到0.959和0.318°Brix,硬度校正集的相关系数(Rc)和校正均方根误差(RMSEC)分别达到0.956和0.153°Brix。糖度预测集的相关系数(Rp)和预测均方根误差(RMSEP)分别达到0.952和0.391°Brix,硬度预测集的相关系数(Rp)和预测均方根误差(RMSEP)分别达到0.953和0.234°Brix。该研究表明,应用高光谱成像技术可以对蓝莓糖度和硬度多指标同时进行检测研究,所获得的特征波长可为开发多光谱成像的蓝莓品质检测和分级系统提供参考。  相似文献   

2.
为明确采用高光谱成像技术对葡萄可溶性固形物(SSC)检测的可行性。以高光谱成像系统为试验仪器,采集葡萄样本的漫反射光谱,对比分析不同光程校正方法、不同预处理方法对建模精度的影响,建立不同的葡萄SSC定量预测模型。研究结果表明,在波段500~1 000 nm的范围内,采用经过标准正态变化、一阶微分和Savitzky-Golay平滑相结合预处理后的偏最小二乘法建模方法预测能力最强,校正集相关系数(r_c)为0.912 6,校正集均方根误差(RMESC)为0.542,预测集相关系数(r_p)为0.854 0,预测集均方根误差(RMESP)为0.758。由结果可知,应用高光谱成像技术可以对葡萄可溶性固形物含量进行无损检测。  相似文献   

3.
汪西原  马毅  刘丹 《安徽农业科学》2011,39(30):18971-18973,18977
[目的]研究结合WT预处理的近红外光谱PLS算法模型预测鲜枣糖度的方法。[方法]用S-G、MSC、FD、SD、WT和WT+MSC 6种预处理法,SMLR、PCR和PLS 3种算法模型,对60个鲜枣样品的近红外光谱数据进行预处理、糖度预测和建模精度分析,建立最佳算法的数学模型。[结果]在鲜枣糖度近红外光谱预处理阶段引进小波变换方法去除导数光谱噪声,得到了很好的去噪效果。不同的小波函数、分解尺度使消噪的结果有所不同。与常见的光谱预处理法相比,在选用db4-3小波函数、默认阈值情况下,采用WT+MSC预处理及建模算法为PLS时所建立的模型最好,其相关系数R为0.919 02,校正集标准差RMSEC为0.863,预测集标准差RMSEP为1.71。[结论]结合小波变换预处理的PLS算法模型可有效预测鲜枣糖度,改善模型的预测精度。  相似文献   

4.
轻微损伤郎枣近红外光谱检测   总被引:1,自引:1,他引:0  
为了实现对郎枣轻微损伤的无损检测,以产自太谷县的郎枣为研究对象,所用200个样本分为校正集140个和预测集60个,利用近红外光谱技术,对完好和损伤郎枣进行光谱分析。通过比较平滑处理(Smoothing)、标准正态变量校正(SNV)和多元散射校正(MSC)3种预处理方法并结合偏最小二乘法(PLS)所建模型的精度分析,确定最佳预处理方法为SNV,其PLS预测模型校正集相关系数(Rc)为0.817 569,校正集预测均方根误差(RMSEP)为0.216 473。利用所建PLS模型对预测集进行判断,轻微损伤郎枣识别的准确率为100%。  相似文献   

5.
采集并制备不同地域、不同品种的水稻秸秆样本288个,根据浓度梯度法,按照31的比例划分校正集与验证集。采用蒽酮硫酸比色法测定试验样本中可溶性糖含量,并采集在近红外全波段(10 000~4 000cm-1)范围内样本的近红外光谱信息。采用多元散射校正(MSC)、标准正态变量变换(SNV)、导数、S-G平滑及其组合方法对光谱进行预处理,分别运用逐步多元线性回归(SMLR)、偏最小二乘回归(PLS)和主成分回归(PCR)化学计量学算法,建立基于近红外光谱的逐步多元线性回归(SMLR)、偏最小二乘回归(PLS)和主成分回归(PCR)定量分析模型。通过比较分析,对光谱进行一阶导数预处理,建立的PLS模型效果最优,校正集实测值与预测值之间的决定系数R2C达到0.880 6,交互验证决定系数(R2CV)和验证集决定系数(R2V)分别为0.771 1、0.857 8,均方根差RMSEC、RMSECV、RMSEP分别为0.318%、0.440%、0.404%,校正集相对分析误差(RPDC)和验证集相对分析误差(RPDV)均大于2.5。结果表明,采用近红外光谱法建立的PLS模型基本可以实现水稻秸秆中可溶性糖含量的快速检测。  相似文献   

6.
为了验证微型近红外光谱仪的现场分析实用性,利用该光谱仪测定了油菜籽中粗脂肪与粗蛋白的含量。采集油菜籽样品的近红外反射光谱,光谱经预处理和异常样本剔除后,结合偏最小二乘法回归(PLSR)建立油菜籽的粗脂肪与粗蛋白定量分析模型。结果表明,粗脂肪的模型校正相关系数(Rc)、校正均方根误差(RMSEC)、预测相关系数(Rp)和预测均方根误差(RMSEP)分别为0.9187、1.1873、0.8162和1.3895;粗蛋白的模型校正相关系数(Rc)、校正均方根误差(RMSEC)、预测相关系数(Rp)和预测均方根误差(RMSEP)分别为0.8773、0.8153、0.8033和0.7532。验证了该光谱仪在油菜籽的粗脂肪含量和粗蛋白含量检测方面是可行的,为进一步拓展微型近红外光谱仪的应用奠定了基础。  相似文献   

7.
【目的】研究成熟期梨可溶性固形物含量的近红外漫反射光谱无损检测技术,为及时、准确地掌握成熟期梨果实的内部品质特性及田间管理、适时采收、合理储藏提供依据。【方法】基于近红外漫反射光谱检测技术分别建立了成熟期砀山酥梨可溶性固形物含量的偏最小二乘(PLS)、广义回归神经网络(GRNN)和偏最小二乘支持向量机动态预测模型(LSSVM),并综合评价了无信息变量消除法(UVE)优选有效特征波数对于简化模型、提高预测性能的影响。【结果】UVE算法能够很好地提高建模效率、有效改善GRNN和LSSVM模型预测精度,而对PLS分析模型效果不明显。3种模型中,LSSVM模型比GRNN和PLS模型具有明显优势,其中UVE-LSSVM模型具有最佳预测精度和适用性,其校正相关系数(Rc)为0.988,校正均方根误差(RMSEC)为0.074,预测相关系数(Rp)为0.922,预测均方根误差(RMSEP)为0.162。【结论】基于近红外光谱技术的UVE-LSSVM模型可用于成熟期梨可溶性固形物含量的无损检测。  相似文献   

8.
【目的】应用近红外光谱漫反射技术在线检测脐橙内部的可溶性固形物含量(SSC)。【方法】以0.3m/s的速度、400W的光照强度获取脐橙(脐橙样品为97个,其中74个为校正集,23个样品为预测集)的漫反射光谱;对比不同光谱预处理方法(平滑、一阶微分、二阶微分等)对偏最小二乘回归(PLSR)所建预测模型性能的影响,建立PLSR、主成分回归(PCR)和多元线性回归(MLR)在线检测脐橙可溶性固形物含量的预测模型。【结果】在520~1 000nm光谱范围,卷积平滑(S-G)能有效提高光谱的信噪比,改善模型预测精度;基于PLSR所建立的预测模型较PCR和MLR更为理想,其预测相关系数(RP)为0.90,预测均方根误差(RMSEP)为0.61。【结论】利用在线近红外光谱技术检测脐橙可溶性固形物含量是可行的。  相似文献   

9.
以晚熟脐橙为试材,采用近红外光谱技术与常规检测分析相结合的方法,对比和评价了基于果面和果汁光 谱信息的脐橙可溶性固形物(TSS)含量预测模型精度,并筛选了可溶性固形物预测特征光谱.通过对果面和果汁原 始光谱的多元散射校正(MSC)预处理,利用偏最小二乘法(PLS)分别建立了TSS预测模型,其中,当果面光谱主因 子为5时,其对于可溶性固形物预测相关系数为最大(R=0.8367)、预测均方根误差(RMSEP)为最小(RMSEP= 0.4903);而当果汁光谱主因子为8时,其对果汁可溶性固形物的预测相关系数为最大(R=0.9058)、预测均方根 误差为最小(RMSEP=0.5236).采用联合区间偏最小二乘法(siPLS)对果面和果汁光谱特征波段组合进行筛选, 获得果面光谱建模特征波段组合为1000~1107,1750~1857,2071~2177和2178~2284nm,建立的校正集和 预测集模型相关系数分别为0.9462和0.9020,RMSECV为0.3596,RMSEP为0.4309;获得用于果汁光谱建模 的特征波段组合为1000~1125,1251~1375,1376~1500和1626~1750nm,校正和预测模型相关系数分别为 0.9894和0.9596,RMSECV为0.1631,RMSEP为0.3128.结果表明:试验所筛选出的果面和果汁近红外光谱 特征波段组合建立的校正模型,均可用于晚熟脐橙TSS含量的无损检测,果汁光谱对于甜橙果实固形物含量预测 精度高于果面光谱,近红外光谱技术用于橙汁固形物检测是可行的.  相似文献   

10.
本文采用近红外漫反射法,对雪梨中的可溶性固形物含量进行检测。随机地在每只雪梨上选择2~3个样本,共采集了133个样本。剔除异常样本5个,剩下128个样本,分为校正集90个,预测集38个。使用Unscrambler9.7软件做数据处理。采用不同的光谱预处理方法,结合偏最小二乘(PLS)进行建模预测。发现,使用面积标准化、平均值标准化、标准正态变量变换(SNV)、多元散射校正(MSC)4种光谱预处理方法,均可得到理想的预测效果。使用预测相关系数(R)和预测均方根误差(RMSEP)作为评价指标,R值超过0.96,RMSEP值小于0.20。  相似文献   

11.
一种便携式苹果糖度无损检测仪的研制   总被引:1,自引:0,他引:1  
糖度是判断苹果质量好坏的一个重要参考标准,针对苹果糖度的检测问题,设计了一种以Cortex-A9为内核、以自研发的可见-近红外光谱仪(波长范围400~1 000 nm)作为光谱检测装置、以Linux为操作系统的便携式苹果糖度无损检测仪。以山东烟台的100个红富士苹果为材料,采集了漫透射检测方式下基于自收发光机构的苹果漫透射光谱曲线,结合化学计量学方法,对样本的全光谱曲线使用了平均法和Savitzky-Golay卷积平滑光谱预处理方法,将预处理后的光谱数据按波峰位置划分区间,并分别按照全光谱范围和所划分区间的波段范围建立PLS模型来预测苹果的糖度含量。结果表明,经预处理后的全光谱数据所建立的PLS模型预测效果最好,优于按波峰划分区间所建立的PLS模型,其校正相关系数为0.96、预测相关系数为0.87,校正均方根误差为0.31、预测均方根误差为0.34。同时对仪器工作时的预测稳定性进行了测试,测试结果得出检测精度可控制在±0.2 Brix以内,模型预测精度满足现场快速检测应用要求。  相似文献   

12.
基于小波滤噪和iPLS的草莓近红外光谱糖度检测模型   总被引:2,自引:0,他引:2  
[目的]获得精度高、鲁棒性强的草莓近红外光谱糖度检测模型。[方法]利用K-S(Kennard-Stone)方法划分样本集,并用小波滤噪法对草莓1000~2500nm近红外光谱进行预处理,最后用偏最小二乘法(PLS)和区间偏最小二乘法(iPLS)分别建立预测模型。[结果]采用区间偏最小二乘法将光谱划分为20个子区间,利用其中的第16个子区间建立的糖度模型效果最佳,其校正时的相关系数Rc和校正均方根误差RMSEC分别为0.9355和0.259,预测时的相关系数邱和预测均方根误差RMSEP分别为0.9202和0.305。[结论]用小波滤噪和联合区间偏最小二乘法所建立的草莓糖度模型不仅能有效地减少建模所用的变量数,缩短运算时间,而且预测能力和精度均得到提高。  相似文献   

13.
基于近红外光谱技术的茶鲜叶海拔高度判别模型建立   总被引:1,自引:0,他引:1  
以不同海拔高度的茶鲜叶为研究对象,扫描获取其近红外光谱(NIRS)并筛选特征光谱区间后,分别应用逐步多元线性回归法(SMLR)、主成分回归法(PCR)和联合区间偏最小二乘法(Si-PLS)建立茶鲜叶海拔高度预测模型。结果表明,在5 542.41~6 888.48cm-1区间内,对原始光谱进行一阶导数+3点Norris平滑预处理后,建立的SMLR模型预测集相关系数和预测均方差分别为0.800 5和0.486;在4 929.16~6 965.62cm-1区间内,当主成分数为3时,对原始光谱进行一阶导数+3点Norris平滑预处理后,建立的PCR模型预测集相关系数和预测均方差分别为0.803 6和0.472;当将光谱划分为18个子区间、因子数为13时,选用[5 8 11 17]4个子区间建立的Si-PLS模型预测集相关系数和预测均方差分别为0.944 3和0.295。经比较,Si-PLS模型预测结果最佳。  相似文献   

14.
针对现在市场上常见的两种大米掺伪现象,利用近红外光谱技术结合化学计量学方法分别建立了大米中掺入低档米和掺入矿物油的定量分析模型。制配不同掺伪比例的大米样品,采集其近红外光谱,并选用标准正态变量变换、最大最小归一化、平滑和一阶导数4种方法对原始光谱进行预处理,分别结合偏最小二乘法建立PLS定量分析模型。通过对比建模结果选出的最优预处理方法是最大最小归一化,建立的掺低档米模型的校正集和预测集相关系数分别为0.9698和0.9845,均方根误差分别为8.66和6.46;掺矿物油米模型的校正集和预测集相关系数分别为0.9739和0.9888,均方根误差分别为0.106和0.0698。模型的预测精度和稳定性均很好,实现了对两种掺伪大米快速、准确的定量判别,为大米的品质监控提供了一种新的方法思路。  相似文献   

15.
收集403个配合饲料样本,利用高光谱成像仪对样本进行图像采集,获取配合饲料样本的可见/近红外光谱信息。采用光谱杠杆值和学生残差法剔除异常样本,利用CG法、SPXY法和K-S法按3∶1的比例进行样本集划分,采用均值中心化、标准化、一阶导数、二阶导数、正交信号校正、多元散射校正和标准正态变量变换、去趋势变换,以及其组合方法对光谱进行预处理;采用相关系数法获取特征波段,建立基于高光谱图像技术的配合饲料中粗蛋白、粗灰分、水分、总磷、钙含量的偏最小二乘法(PLS)定量分析模型。通过验证,粗蛋白验证集决定系数R~2V为0.777 8,均方根误差RMSEP为2.6155%,相对分析误差RPDV为2.114 3;粗灰分验证集R~2V为0.775 8,RMSEP为1.0611%,RPDV为2.120 4;水分验证集R~2V为0.631 4,RMSEP为1.6003%,RPDV为1.937 1,总磷验证集R~2V、RMSEP、RPDV分别为0.467 2、0.1916%、1.357 0;钙验证集R~2V仅为0.440 6,RMSEP为0.1755%,RPDV,为1.310 5。结果表明,所建立的粗蛋白、粗灰分最优定量分析模型预测性能较好,水分最优定量分析模型预测精度不够理想,总磷和钙定量分析模型的预测性能很差。  相似文献   

16.
为快速、安全地检测氧乐果和毒死蜱农药残留,使用改进的氯化钯比色法,分别采集2种农药比色反应后的吸收光谱,利用主成分分析法(PCA)和偏最小二乘法(PLS)建立预测模型。结果表明:1)使用乙酸代替传统浓盐酸配制的氯化钯比色试剂效果更理想,氧乐果和毒死蜱的吸收光谱可以区分的检测下限分别是0.05和0.50mg/L,基本满足GB 2763—2014对部分果蔬的检测要求。2)氧乐果和毒死蜱吸收光谱的敏感波长分别为510和499nm,由此确定最优建模波段。对比PCA和PLS方法建模效果,2种农药的原始光谱数据都是在Savitzky-Golay(SG)平滑处理后,使用PLS方法在主成分为4时预测效果较好。PLS模型在2-折交叉验证下,氧乐果在480~680nm波段,建模集相关系数Rc=0.977 0,均方根误差RMSEC=5.801,验证集相关系数Rp=0.963 0,均方根误差RMSEP=7.904;毒死蜱在460~850nm波段,Rc=0.997 0,RMSEC=2.281,Rp=0.984 7,RMSEP=3.170。该方法比色试剂配制简单安全,室温下比色反应时间为2min,满足快速、安全的检测要求,为进一步研究实用的农残检测仪器提供了新方法。  相似文献   

17.
The feasibility of reflectance Vis/NIR spectroscopy was investigated for taste characterization of Valencia oranges based on taste attributes including soluble solids content (SSC) and titratable acidity (TA), as well as taste indices including SSC to TA ratio (SSC/TA) and BrimA. The robustness of multivariate analysis in terms of prediction was also assessed. Several combinations of various preprocessing techniques with moving average and Savitzky–Golay smoothing filters, standard normal variate (SNV) and multiplicative scatter correction (MSC) were used before calibration and the models were developed based on both partial least squares (PLS) and principle component regression (PCR) methods. The best models obtained with PLS method had root mean square errors of prediction (RMSEP) of 0.33 °Brix, 0.07%, 1.03 and 0.37, and prediction correlation coefficients (rp) of 0.96, 0.86, 0.87 and 0.92 for SSC, TA, SSC/TA, and BrimA, respectively. It was concluded that Vis/NIR spectroscopy combined with chemometrics could be an accurate and fast method for nondestructive prediction of taste attributes and indices of Valencia oranges. Moreover, the application of this technique was suggested for taste characterization, directly based on BrimA which is the best index related to fruit flavor rather than determination of SSC or TA alone.  相似文献   

18.
【目的】研究基于盛花期冠层高光谱数据的苹果花量估测技术,为植株花果管理和生产力预测技术的建立奠定基础。【方法】以5年生M9无性系砧木‘米奇嘎啦’苹果(Malus pumila‘Mitch Gala’)、树形为高纺锤形的植株为试材,在盛花期采集植株冠层可见-近红外高光谱图像,人工统计供试植株花量,比对分析基于原始光谱反射率(original reflectance spectra,OS)与Savitzky-Golay平滑法(savitzky-golay smoothing,SG)、正态变量标准化(standardization of normal variables,SNV)、标准化(Normalize)、一阶求导(first derivation,lst Der)、二阶求导(second derivation,2nd Der)共5种预处理的高光谱数据的偏最小二乘法(partial least squares method,PLS)模型,以及基于载荷系数法(x-loading weight,x-LW)提取的特征波长的PLS模型、人工神经网络(the back-propagation neural network,BPNN)、最小二乘支持向量机(the least squares support vector machines,LS-SVM)等模型对单株单位面积花量实时估测精度的影响。【结果】苹果树单株花量与单株单位面积花量具有较高的相关系数,表明采用冠层单位面积花量替代单株总花量进行树体花量估测可行。单株单位面积花量与植株冠层光谱反射率在紫外-可见光波长(308—700 nm)呈极显著正相关,在近红外波长(750—1 000 nm)相关性不显著。基于全波长,以Normalize预处理光谱建立的PLS模型对单株单位面积花量的预测效果最好,校正集决定系数(Rc2)和预测集决定系数(Rp2)分别为0.794和0.804,校正集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别为0.084、0.062,预测相对误差(RE%)为3.940。基于特征波长的BPNN模型稳定性差,而LS-SVM模型的建模效果较好,Rc2和Rp2分别为0.826和0.804,RMSEC和RMSEP分别为0.077、0.064,RE%为12.160。【结论】基于Normalize预处理的PLS模型对高纺锤形苹果树冠层单位面积花量的预测效果最优,同时,本研究利用高光谱成像仪获取的数据,经过分析处理对提取特征信息进行简化,可为多光谱遥感数据的应用提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号