首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 186 毫秒
1.
A field experiment was carded out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline in net photosynthetic rate (Pn) and stomatal conductance (gs), and little change in chlorophyll content during early days of the treatment. A dramatic increase in malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) in waterlogged plants in the early days of the experiment was found, indicating the occurrence of oxidative stress in barley plants exposed to waterlogging. There was a highly significant difference in the changed extent of all these parameters among genotypes.Franklin and Yongjiahong Liuleng Damai, which were relatively sensitive to waterlogging in terms of growth, photosynthesis and chlorophyll content, accumulated much more MDA than the other two relatively tolerant genotypes (93-3143 and QS).After removal of waterlogging, the genotypic difference became much greater in recovering of these examined parameters.Yongjiahong Liuleng Damai showed higher recovery, while Franklin only recovered to 50% of the control at the 14 day after waterlogging removal. It may be concluded that it is the difference in anti-oxidative stress caused by waterlogging that account for the major difference in photosynthesis among barley genotypes.  相似文献   

2.
Nitrogen(N) is a critical element for plant growth and productivity that influences photosynthesis and chlorophyll fluorescence. We investigated the effect of low-N stress on leaf photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with difference in tolerance to low N levels. The low-N tolerant cultivar ZH311 and low-N sensitive cultivar XY508 were used as the test materials. A field experiment(with three N levels: N0, 0 kg ha–1; N1, 150 kg ha–1; N2, 300 kg ha–1) in Jiyanyang, Sichuan Province, China, and a hydroponic experiment(with two N levels: CK, 4 mmol L–1; LN, 0.04 mmol L–1) in Chengdu, Sichuan Province, China were conducted. Low-N stress significantly decreased chlorophyll content and rapid light response curves of the maximum fluorescence under light(Fm′), fluorescence instable state(Fs), non-photochemical quenching(qN), the maximum efficiency of PSII photochemistry under dark-adaption(Fv/Fm), potential activity of PSII(Fv/Fo), and actual photochemical efficiency of PSII(ΦPSII) of leaves. Further, it increased the chlorophyll(Chl) a/Chl b values and so on. The light compensation point of ZH311 decreased, while that of XY508 increased. The degree of variation of these indices in low-N tolerant cultivars was lower than that in low-N sensitive cultivars, especially at the seedling stage. Maize could increase Chl a/Chl b, apparent quantum yield and light saturation point to adapt to N stress. Compared to low-N sensitive cultivars, low-N tolerant cultivars maintained a higher net photosynthetic rate and electron transport rate to maintain stronger PSII activity, which further promoted the ability to harvest and transfer light. This might be a photosynthetic mechanism by which low-N tolerant cultivar adapt to low-N stress.  相似文献   

3.
As a major abiotic stress, drought causes instability and deterioration of malt barley quality. There is distinct difference among barley cultivars in the responses of the main malt quality traits to drought stress. In the previous study, we identified some Tibetan wild barley accessions with relatively less change of malt quality traits under drought. In this study, we examined the impact of drought stress during grain filling stage on grain weight and several important malt quality traits, including total protein content, β-glucan content, limit dextrinase activity, β-amylase activity, and protein fractions in four barley genotypes(two Tibetan wild accessions and two cultivars). Drought treatment reduced grain weight, β-glucan content, and increased total protein content, β-amylase activity. These changes differed among barley genotypes and treatments, and are closely associated with grain filling process and kernel weight. All the results indicated Tibetan wild barley had great potential for developing drought tolerant barley cultivars. Relatively stable kernel weight or filling process under water stress should be highlighted in malt barley breeding in order to reduce the effect of water stress on malt barley quality.  相似文献   

4.
Soil salinity is one of the most important environmental factors limiting plant growth and productivity in many regions in the world. Salt stress directly affects plant photosynthesis, which is an important physiological process to limit plant growth and crop yield. But the effects of salt stress on the mechanism of the photosynthesis is still not clear. In this experiment, the salt tolerant plant Alhagi pseudalhagi was selected as the experiment material, and the salt sensitive plant Vigna radiata as the control, to explore the effects of salt stress on photosynthetic parameters of A. pseudalhagi. Plants were grown in a greenhouse,cultured with 1/2 Hoagland nutrient solution, treated by 0(control), 50, 100 or 200 s of mmol/L of NaCl solution for 12 d. Then,the chlorophyll contents, gas exchange parameters and chlorophyll a fluorescence in each treatment were measured. The results showed that under the salt stress simulated by 50 mmol/L NaCl, the net photosynthetic rate(Pn) and stomatal conductance(gs)of A. pseudalhagi were significantly increased compared with the control, while intercellular CO_2 concentration(Ci) was significantly decreased, Fv'/Fm', Fv/Fm and Fv/Fo were increased over time, but had no significant differences with the control ФPSⅡ,ETR and qP were significantly increased, and NPQ was significantly decreased. Under the salt stress simulated by 100 and 200mmol/L NaCl, Fv'/Fm', Fv/Fm, Fv/Fo, ФPSⅡ and qP of A. pseudalhagi were gradually decreased over time. In contrary, under the salt stress simulated by 50 and 100 mmol/L NaCl, the Pn, gs, Ci, Fv'/Fm', Fv/Fm, Fv/Fo, ФPSII, qP and ETR were all significantly decreased, while NPQ was significantly increased.  相似文献   

5.
The rapid detection of glyphosate resistance in goosegrass(Eleusine indica) will enhance our ability to respond to new resistant populations of this major weed. Chlorophyll fluorescence(Fluo) and P700(reaction center chlorophyll of photosystem I) absorbance were analyzed in one biotype of goosegrass that is resistant to glyphosate and in another that remains sensitive to the herbicide. Both biotypes were treated with a foliar spray of glyphosate. Differences in photosystem II maximum quantum yield(Fv/Fm), effective photochemical quantum yield(Y(II)), and non-photochemical quenching(NPQ) between the biotypes increased over time. Values for Fv/Fm and Y(II) differed between the two biotypes 24 h after treatment(HAT). Differentiated activities and energy dissipation processes of photosystem II(PSII) and energy dissipation processes of photosystem I(PSI) were manifested in the two biotypes 24 HAT with 20 mmol L–1 glyphosate. Differentiated energy dissipation processes of PSI were still apparent 24 HAT with 200 mmol L–1 glyphosate. These results indicate that the Fluo parameters related to PSII activity and energy dissipation and the P700 parameters related to energy dissipation are suitable indicators that enable rapid detection of glyphosate resistance in goosegrass.  相似文献   

6.
The mechanism of high yield of winter wheat in the field at late growth period was investigated by measuring the photosynthetic characteristics of photosystem Ⅱ (PSⅡ) and xanthophylls cycle, which could provide physiological reference for breeding. Weimai 8 (W8), a super high yield cultivar, and Lumai 14 (L14), a control cultivar were object. The photosynthetic rate (Pn), parameters of chlorophyll fluorescence and chlorophyll content were measured. The Pn, maximum photochemical efficiency of PSII (Fv/Fm), quantum yield of PSII electron transport (ΦPSⅡ), efficiency of excitation energy capture by open PSII reaction centers (Fv'/Fm'), and photochemical quenching coefficient (qP) were higher in Weimai 8 compared to that in Lumai 14, a commercial high yield cultivar. Furthermore, Weirnai 8 showed a lower non- photochemical quenching coefficient and a lower de-epoxidized ratio of the xanthophyll cycle pigments than of Lumai 14 at late growth period. At mature stage, chlorophyll content of different leaves decreased both in Weimai 8 and Lumai 14. Chlorophyll content in flag, second and third leaf from the top of plant decreased more in Lumai 14 than in Weimai 8. These results suggested that Weimai 8 had more antenna pigments to absorb light energy, and had higher photosynthetic capability and photochemical efficiency of PSⅡ. The yield of Weimai 8 was also higher than that of Lumai 14.  相似文献   

7.
花期干旱胁迫对籼稻近等基因系水分和光合生理的影响   总被引:1,自引:0,他引:1  
【Objective】An indica near-isogenic rice lines were treated with drought stress at flowering stage to study water and photosynthetic physiology changes of flag leaf. By analyzing the relationships among agronomic phenotype characters, water and photosynthetic physiology changes and fertility of rice, the authors try to accumulate data for drought tolerance evaluation of rice.【Method】The rice materials were suffered with drought stress begin from heading of main shoot for 15 days, water and photosynthetic physiology parameters were measured after treatment.【Result】The results showed that the indica near-isogenic rice represented various drought tolerance, and there was no correlation between drought tolerance and agronomic phenotype characters, neither with physiological activities of rice under well watered condition. However, under drought stress at flowering stage, the correlation coefficient between drought resistance indexes and changes of water content of flag leaf, water potential of flag leaf, stomatal conductance of flag leaf were 0.614**, 0.514** and 0.541**, respectively. This indicates that rice drought tolerance has a correlation with changes of water content, water potential and stomatal conductance. In addition, except the correlation coefficient between drought resistance indexes and changes of Fv/Fm of flag leaf (0.470*), there was no correlation between rice drought tolerance and photosynthetic physiology.【Conclusion】In summery, the changes of water physiology parameters could be used as indicators for screening rice with drought tolerance.  相似文献   

8.
[Objective] Study on the changes of chlorophyll fluorescence parameters in Cinnamomum japonicum var. chenii under NaCl stress. [Method] The seedling growth increment,chlorophyll content and chlorophyll fluorescence parameters in leaves of 1-year old Cinnamomum japonicum var. chenii were investigated in field experiment. [Result] Under NaCl stress,seedling growth increment reduced and the chlorophyll content decreased to a stable value; changes of Fv/Fm and Fv/Fo showed identical increasing trend and double peak type. With the aggravation of salt stress,most variations were observed in Fo,correlations among chlorophyll fluorescence parameters presented "rise-drop" trend (in the treatment of 7 g/L NaCl). [Conclusion] Cinnamomum japonicum var. chenii is endowed with strong salt resistance and wide adaptability.  相似文献   

9.
[Objective] Study on the photosynthesis and fluorescence characteristics in peony under water stress. [Method] The two peony varieties Huhong and Luoyanghong were treated by different water stress for determining the photosynthesis and fluorescence characteristics. [Result] With the aggravation of water stress,the net photosynthetic rate (Pn) and stomatal conductance (Gs) decreased,while the intercellular CO2 concentration (Ci) increased. Drought could decrease Pn,constrain gas exchange and change the daily photosynthesis. Fo of peony leaf increased and Fv/Fm decreased under water stress especially water logging,causing the inactivation of the PS II reaction center,and the chlorophyll fluorescence characters gradually recovered until afternoon. [Conclusion] The 75% soil relative water content (SRWC) is the best condition for growth of peony. Compared with drought,water logging is more unfit for the growth of peony. For the two varieties,Huhong assumed more tolerance to drought,accordingly more adaptability.  相似文献   

10.
[Objective] Study on the photosynthesis and fluorescence characteristics in peony under water stress. [Method] The two peony varieties Huhong and Luoyanghong were treated by different water stress for determining the photosynthesis and fluorescence characteristics. [Result] With the aggravation of water stress,the net photosynthetic rate (Pn) and stomatal conductance (Gs) decreased,while the intercellular CO2 concentration (Ci) increased. Drought could decrease Pn,constrain gas exchange and change the daily photosynthesis. Fo of peony leaf increased and Fv/Fm decreased under water stress especially water logging,causing the inactivation of the PS II reaction center,and the chlorophyll fluorescence characters gradually recovered until afternoon. [Conclusion] The 75% soil relative water content (SRWC) is the best condition for growth of peony. Compared with drought,water logging is more unfit for the growth of peony. For the two varieties,Huhong assumed more tolerance to drought,accordingly more adaptability.  相似文献   

11.
《农业科学学报》2023,22(8):2370-2383
Elevating soil water content (SWC) through irrigation was one of the simple mitigation measures to improve crop resilience to heat stress. The response of leaf function, such as photosynthetic capacity based on chlorophyll fluorescence during the mitigation, has received limited attention, especially in field conditions. A two-year field experiment with three treatments (control treatment (CK), high-temperature treatment (H), and high-temperature together with elevating SWC treatment (HW)) was carried out during grain filling with two maize hybrids at a typical station in North China Plain. Averagely, the net photosynthetic rate (Pn) was improved by 20%, and the canopy temperature decreased by 1–3°C in HW compared with in H in both years. Furthermore, the higher SWC in HW significantly improved the actual photosynthetic rate (Phi2), linear electron flow (LEF), variable fluorescence (Fv), and the maximal potential quantum efficiency (Fv/Fm) for both hybrids. Meanwhile, different responses in chlorophyll fluorescence between hybrids were also observed. The higher SWC in HW significantly improved thylakoid proton conductivity (gH+) and the maximal fluorescence (Fm) for the hybrid ZD958. For the hybrid XY335, the proton conductivity of chloroplast ATP synthase (vH+) and the minimal fluorescence (Fo) was increased by the SWC. The structural equation model (SEM) further showed that SWC had significantly positive relationships with Pn, LEF, and Fv/Fm. The elevating SWC alleviated heat stress with the delayed leaf senescence to prolong the effective period of photosynthesis and enhanced leaf photosynthetic capacity by improving Phi2, LEF, Fv, and Fv/Fm. This research demonstrates that elevating SWC through enhancing leaf photosynthesis during grain filling would be an important mitigation strategy for adapting to the warming climate in maize production.  相似文献   

12.
甘蔗光合指标与抗旱性关系研究   总被引:1,自引:0,他引:1  
 利用因子分析方法研究了甘蔗叶片净光合速率(Pn)、胞间CO2浓度(Ci)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用率(WUE)、PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)等光合参数与抗旱性的关系。结果表明,通过因子分析将7个甘蔗光合性状指标用2个因子表示,累加方差贡献率达到87.6%。因子l主要是反映Fv/Fo,Pn,Fv/Fm,Gs,Tr对甘蔗品种抗旱性起支配作用;因子2中,Ci,WUE对甘蔗品种抗旱性起主导作用。甘蔗参试品种的因子分析结果与农艺性状基本一致,表明利用因子分析甘蔗光合性状指标是可行的。  相似文献   

13.
《农业科学学报》2019,18(11):2483-2491
Genetic diversity is the base of any genetic improvement breeding program aimed at stress breeding. The variability among breeding materials is of primary importance in the achievements of a good crop production. Herein, 105 wheat genotypes were screened against drought stress using factorial completely randomized design at seedling stage to determine the genetic diversity and traits association conferring drought tolerance. Analysis of variances revealed that all the studied parameters differed significantly among all genotypes, indicating the significance genetic variability existed among all genotypes for studied indices. The 10 best performance genotypes G1, G6, G11, G16, G21, G26, G39, G44, G51, and G61 were screened as drought tolerant, while five lowest performance genotypes G3, G77, G91, G98, and G105 were screened as drought susceptible. Root length, chlorophyll a, chlorophyll b, and carotenoid contents were significantly correlated among themselves which exhibited the importance of these indices for rainfed areas in future wheat breeding scheme. Shoot length exhibited non-significant and negative association with other studied traits, and its selection seems not to be a promising criteria for this germplasm for drought stress. Best performance genotypes under drought stress conditions will be useful in future wheat breeding program and early selection will be effective for developing high yielding and drought tolerant wheat varieties.  相似文献   

14.
干旱复水激发玉米叶片补偿效应的生理机制   总被引:12,自引:2,他引:10  
采用盆栽控水试验,在旱后复水条件下,于苗期对2个不同抗旱性玉米品种叶片生理生化指标进行了测定,结果表明:干旱导致细胞膜结构破坏、叶绿素含量及光合作用下降,抗旱性强的品种变化较小;渗透调节物质和保护性酶活性增加,抗旱性强的品种升幅较大.复水后细胞膜结构迅速恢复,保护性酶活性和可溶性糖含量继续增加,叶绿素含量、光合速率、Fv/F0和Fv/Fm等光合作用参数出现超补偿现象.中度干旱10 d后复水激发了作物的生理补偿效应,主要生理机制是干旱复水后细胞膜结构迅速修复和叶绿素含量的超补偿增加,大大提高了光合作用的潜力和速率;前期干旱锻炼增强了玉米抗旱能力,抗旱品种表现出较高的超补偿效应,有利于适应干湿交替和低水多变的环境,实现节水高产.  相似文献   

15.

Most non-destructive methods for plant stress detection do not measure the primary stress response but reactions of processes downstream of primary events. For instance, the chlorophyll fluorescence ratio Fv/Fm, which indicates the maximum quantum yield of photosystem II, can be employed to monitor stress originating elsewhere in the plant cell. This article describes the properties of a sensor to quantify herbicide and pathogen stress in agricultural plants for field applications by the Fv/Fm parameter. This dedicated sensor is highly mobile and measures images of pulse amplitude modulated (PAM) chlorophyll fluorescence. Special physical properties of the sensor are reported, and the range of its field applications is defined. In addition, detection of herbicide resistant weeds by employing an Fv/Fm-based classifier is described. The PAM-imaging sensor introduced here can provide in-field estimation of herbicide sensitivity in crops and weeds after herbicide treatment before any damage becomes visible. Limitations of the system and the use of a classifier to differentiate between stressed and non-stressed plants based on sensor data are presented. It is concluded that stress detection by the Fv/Fm parameter is suitable as an expert tool for decision making in crop management.

  相似文献   

16.
【目的】探索高原环境下青稞花后干旱胁迫响应模型及青稞受旱程度的快速、有效的检测方法,为青稞节水高产栽培提供理论依据和技术参考。【方法】利用干旱棚进行青稞盆栽模拟花后干旱,设轻度(对照灌水量的75%,LD)、中度(对照灌水量的50%,MD)和重度(对照灌水量的25%,HD)干旱胁迫处理,采用WP4C水势仪、LI-6400XT和OS5P便携式脉冲调制叶绿素荧光仪,分别测定叶水势(LWP)、叶蒸发冷却值(ΔT)、光合气体交换参数和叶绿素荧光变量;成熟后获取产量数据;利用数字图像法对籽粒表型进行定量分析,并依粒二维面积大小将籽粒划分大、中、小3个粒级。【结果】干旱水平与叶水势呈线性正相关,而与叶蒸发冷却值(ΔT)呈线性显著负相关(P0.05),两者均能灵敏反映青稞受旱程度。LD、MD和HD处理与CK相比,干旱胁迫导致旗叶净光合速率(P_n)、气孔导度(gs)、胞间CO_2浓度(C_i)、蒸腾速率(T_r)、最大荧光(F_m)、PS II的最大量子效率(F_v/F_m)、PS II的实际光量子产量(ΦPSII)、光化学淬灭(qP)、光合电子传递的相对速率(ETR)呈降低趋势,而气孔限制(L_s)、初始荧光(F_o)、非光化学淬灭(NPQ)呈上升趋势,且MD和HD处理较CK对以上参数差异明显。随着干旱胁迫的加重,青稞千粒重、籽粒产量、单株粒重、干物质积累量和经济系数降低趋势愈明显。相关分析表明,干旱胁迫诱导gs降低,直接导致?T上升,间接引起FWP下降,使得Fo、NPQ上升,F_m、F_v/F_m、ΦPSII、ETR、qP和P_n降低,进而引起粒二维面积、粒周长、粒长和粒宽减小,而粒圆度值增大;小粒占比明显增加,而大粒占比明显下降。【结论】LWP和?T对青稞花后干旱胁迫反映灵敏,可作为评价其受旱的指标。随着干旱胁迫加重,青稞旗叶光合和叶绿素荧光参数的变化加大,并造成5个籽粒表型性状值及粒级逐渐减小,最终导致千粒重、单穗粒重、籽粒产量、干物质积累量和经济系数下降。  相似文献   

17.
《农业科学学报》2019,18(8):1859-1870
Low temperature and drought stress are the major constraints in rice productivity worldwide. This study investigated the influence of low soil temperature and/or drought stress on physiology and pollen traits of two rice genotypes viz., Guinongzhan and Yueza 763 at flowering stage. The experiment included four treatments, i.e., under the greenhouse natural growth conditions(UC) taken as control, drought stress(DS), the soil water potential was kept at-0.035 to-0.045 MPa(DS), low soil temperature(LT) maintained at 19 to 21°C, combined LT and DS(LT+DS, LD). Results showed that LT, DS, and LD substantially reduced net photosynthetic rate(P_n) and the maximal photochemical efficiency of PSII(F_v/F_m), whilst transpiration rate(T_r) was markedly enhanced by under LT in both rice genotypes. The malondialdehyde(MDA) contents were enhanced under LT, DS, and LD in Guinongzhan, whilst the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) were regulated by LT, DS, and LD in both rice genotypes. Furthermore, anther dehiscence rate, pollen numbers on stigma, pollen viability and pollen germination rate, and anther starch contents were obviously reduced under LT and DS of both rice genotypes. Stress conditions substantially reduced the yield and yield components, i.e., effective panicles, seed set percentage, grain/panicles, 1 000-grain weight, and grain yield of both genotypes and the effects were more apparent in Guinongzhan than those in Yueza 763 whilst combined LT and DS proved more damaging than individual stress.  相似文献   

18.
Sixteen cotton cultivars widely planted in China were sowed under five different drought concentrations (0, 2.5, 5, 7.5, and 10%) using PEG6000 to screen the indices of drought resistance identification and explore the drought resistance of different cotton cultivars. Eighteen physiological indices including root, stem, and leaf water contents (RWC, SWC, and LWC), net photosynthetic rate (Pn), the maximum photochemical quantum yield (Fv/Fm), the actual photochemical quantum yield (ϕPSII), non-photochemical quenching coefficient (NPQ), leaf water potential (LWP), osmotic potential (ψs), leaf relative conductivity (REC), leaf proline content (Pro), leaf and root soluble protein contents (LSPC and RSPC), leaf and root malondialdehyde (MDA) contents (LMDA and RMDA), root superoxide dismutase, peroxidase, and catalase activities (RSOD, RPOD, and RCAT) were measured. Results indicated the 18 physiological indices can be converted into five or six independent comprehensive indices by principal component analysis, and nine typical indices (Fv/Fm, SWC, LWP, Pro, LMDA, RSPC, RMDA, RSOD, and RCAT) screened out by a stepwise regression method could be utilized to evaluate the drought resistance. Moreover, the 16 cotton cultivars were divided into four types: drought sensitive, drought weak sensitive, moderate drought resistant, and drought resistant types. The resistance ability of two selected cotton cultivars (drought resistant cultivar, Dexiamian 1; drought sensitive cultivar, Yuzaomian 9110) with contrasting drought sensitivities were further verified by pot experiment. Results showed that the responses of final cotton biomass, yield, and yield composition to drought were significantly different between the two cultivars. In conclusion, drought resistant cultivar Dexiamian 1 and drought sensitive cultivar Yuzaomian 9110 were screened through hydroponics experiment, which can be used as ideal experimental materials to study the mechanism of different cotton cultivars with contrasting drought sensitivities in response to drought stress.  相似文献   

19.
干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响   总被引:16,自引:2,他引:14  
白鹏  冉春艳  谢小玉 《中国农业科学》2014,47(18):3566-3576
【目的】针对长江流域特别是长江上游近几年春季降水偏少易导致干旱的特点,研究水分胁迫对油菜蕾薹期生理特性及农艺性状的影响,为揭示油菜蕾薹期抗旱机制及抗旱品种选育提供理论依据。【方法】采用盆栽的方式,在遮雨网室对两种抗旱性不同的油菜品种中双10号(抗旱性弱)和94005(抗旱性强)蕾薹期进行干旱胁迫,以各性状的抗旱系数研究油菜相关生理指标及农艺性状的变化,在此基础上筛选出适用于该区域油菜蕾薹期抗旱性鉴定的指标。【结果】随着干旱时间的延长,两种油菜的叶片净光合速率、气孔导度、蒸腾速率、胞间二氧化碳浓度、RWC、叶绿素含量、RuBP羧化酶活性、株高、茎粗、一次分枝数以及单株产量抗旱系数均呈下降趋势,下降幅度与胁迫时间成正相关。其中,气孔导度、蒸腾速率抗旱系数下降幅度与材料抗旱性成正相关,其余指标则与材料抗旱性成负相关。抗旱性弱的材料气孔限制值、水分利用率抗旱系数分别呈现出上升-下降与一直下降的趋势,抗旱性强的材料则均为上升趋势。POD、SOD、CAT活性、可溶性糖以及可溶性蛋白相对值随着干旱胁迫时间的延长先升高后下降,抗旱性强的材料增加幅度高于抗旱性弱的材料;细胞膜透性、丙二醛(MDA)含量和脯氨酸相对值随干旱胁迫时间的延长呈上升趋势。对干旱胁迫下的油菜蕾薹期和复水后的成熟期相关指标之间的关系进行分析表明,干旱胁迫下,产量与净光合速率、RWC、叶绿素含量和一次分枝数抗旱系数呈极显著正相关,与细胞膜透性、MDA含量抗旱系数呈显著负相关。主成分分析将单株产量、净光合速率、胞间二氧化碳浓度、气孔限制值、水分利用率、RWC、叶绿素、RuBP羧化酶、SOD、POD、CAT、细胞膜透性、MDA、可溶性糖、株高、茎粗及一次分枝数划分为第一主成分;将叶片气孔导度、蒸腾速率、脯氨酸、可溶性蛋白划分为第二主成分。【结论】第一主成分的各指标(单株产量、净光合速率、胞间二氧化碳浓度、气孔限制值、水分利用率、RWC、叶绿素、RuBP羧化酶、SOD、POD、CAT、细胞膜透性、MDA、可溶性糖、株高、茎粗及一次分枝数)变化与品种抗旱性密切相关,在油菜抗旱品种选育时可作为油菜蕾薹期抗旱性鉴定的主要指标,第二主成分的各指标(叶片气孔导度、蒸腾速率、脯氨酸、可溶性蛋白)则是次要鉴选指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号