首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
为达到利用人工湿地处理高氨氮污水的目的,采用天然沸石作为人工湿地基质,对比研究了天然沸石对NH4Cl溶液和猪场厌氧发酵液中氨氮的等温吸附特征、吸附动力学过程,考察了吸附时间、氨氮初始浓度、沸石用量对沸石吸附氨氮的影响。结果表明,Freundlich方程较Langmuir方程能更为准确地描述天然沸石对两种水质中氨氮的等温吸附特征;在两种水质中,单分子层饱和吸附量分别为16.20mg·g-1和3.85mg·g-1。天然沸石对氨氮的吸附作用受吸附时间、氨氮初始浓度及沸石用量影响较大,在两种水质中,沸石对氨氮的吸附过程在0~8h内均随时间显著上升,到48h时达到吸附平衡;当采用NH4Cl溶液时,初始氨氮的浓度由10mg·L-1增加到500mg·L-1时,平衡吸附量由0.19mg·g-1增加到5.91mg·g-1;当采用猪场厌氧发酵液时,初始氨氮的浓度由39.4mg·L-1增加到502.9mg·L-1时,平衡吸附量由0.63mg·g-1增加到3.20mg·g-1;增加沸石用量,可以提高氨氮的去除率,但单位质量沸石的氨氮吸附量随之降低。准二级动力学可以很好地描述天然沸石吸附两种水质中氨氮的动力学过程;由模型得出的天然沸石...  相似文献   

2.
为提高猪场沼液中氨氮和总磷的去除效果,采用铁碳微电解法预处理方法,在常温条件下研究铁和碳的等温吸附及吸附动力学,确定铁和碳的最大吸附量,消除其在微电解作用下的吸附影响。结果表明:活性炭粉对氨氮、总磷吸附符合Freundlich方程,铁粉对氨氮、总磷的吸附符合Langmuir方程;准二级动力学模型适用铁粉及活性碳粉对氨氮及总磷的吸附,铁和碳在猪场沼液中吸附2h可达饱和吸附。当(20±1)℃时,铁碳比为1∶1,pH为3,反应时间为120min时去除效果较好,氨氮的去除率为34.01%,总磷的去除率为97.23%。  相似文献   

3.
以天然植物多酚(单宁)为吸持剂,以硫酸铁为沉淀剂,研究了废水pH、初始氨氮浓度、温度、吸附剂投加量等因素对吸持沉淀法去除氨氮的影响。研究结果表明:供试材料的最大吸附量达到13.8 mg·g~(-1),是人造沸石吸附量的2.4倍;在研究设定的投加量范围内,随着投加量的增加,氨氮去除率持续上升,达到16.3%;在试验条件下,供试材料对猪场废水的吸附量达到19.3 mg·g~(-1),是人造沸石的3.3倍,略优于阳离子交换树脂。植物多酚(单宁)吸持硫酸铁沉淀法有望作为一种新方法用于含氨氮废水的快速处理。  相似文献   

4.
玉米生物炭和改性炭对土壤无机氮磷淋失影响的研究   总被引:5,自引:2,他引:3  
利用玉米秸秆为原料制作生物炭,并用氯化铁进行改性,考察了改性前后生物炭对硝态氮和磷的吸附等温和吸附动力学过程,将生物炭和改性炭制作3 cm厚的物理隔离层,施入土柱50 cm处,通过淋溶实验,研究生物炭改性前后对土壤无机氮磷淋失的影响。结果表明,炭化温度为500℃时,铁炭比为0.7的生物炭和改性炭对氮磷的吸附能力最强。吸附动力学和等温吸附曲线分析表明:生物炭改性后对硝态氮和磷的吸附增大,生物炭和改性生物炭对硝态氮的最大吸附量分别为0 mg·g-1和2.414 mg·g-1、对磷的最大吸附量分别为1.723 mg·g-1和16.062 mg·g-1。与对照相比,生物炭处理和改性炭处理硝态氮的淋失量分别降低11.2%和31.6%,磷的淋失量分别显著降低33.1%和82.9%,氨氮的淋失量分别显著降低44.3%和68.6%。淋溶试验后对土壤残留养分分析表明,隔离层的添加并不会对0~50 cm土层内NO-3-N、NH+4-N和PO3-4-P含量产生明显影响,同时改性生物炭能有效减少NH+4-N和PO3-4-P向更深土层中迁移,表明土壤中添加改性生物炭能够有效降低土壤无机氮磷的淋失风险。  相似文献   

5.
经鸟粪石沉淀法回收尿液中磷后的废水中仍含有高浓度的氨氮,若直接排放,不仅会造成水体污染,也导致氮资源浪费。本文在5%HCl浸提,400 ℃焙烧,结合微波处理改性沸石以提高氨氮吸附能力的基础上,研究了改性沸石吸附柱高度(H)、吸附柱串联数量(N)以及水力停留时间(T)对脱磷尿液废水中氨氮去除效果的影响,评价了HCl溶液、NaCl溶液及其组合对吸附氨氮饱和的沸石的再生效果。结果表明:HCl-焙烧-微波改性沸石对氨氮的平衡吸附量为17.9 mg·g-1,是天然沸石对氨氮平衡吸附量(6.9 mg·g-1)的2.6倍。当柱高H=35 cm,水力停留时间T=2.0 h,吸附柱串联个数N=3时,改性沸石对脱磷尿液废水中氨氮的去除效果最佳。当吸附柱内氨氮负荷小于6370 mg时,吸附柱出水中氨氮浓度低于30 mg·L-1。10% HCl+5 g·L-1 NaCl混合液作为沸石再生剂时,氨氮洗脱率达到88.3%,再生沸石的平衡吸附量可达16.4 mg·g-1,为改性沸石的91.6%。可见,改性沸石吸附柱可有效去除脱磷尿液废水中氨氮,同时10% HCl+5 g·L-1 NaCl混合溶液能够有效实现沸石再生和氨氮回收。研究结果为脱磷尿液废水中氨氮处理与回收中试试验奠定了基础。  相似文献   

6.
氯化钠改性沸石对氨氮的吸附作用   总被引:1,自引:0,他引:1  
采用30℃和90℃的NaCl溶液改性浙江缙云产天然沸石,通过静态吸附实验考察天然沸石及改性沸石对溶液中氨氮的吸附能力及机制,结果表明,NaCl改性可以提高沸石对氨氮的吸附能力。天然沸石及NaCl改性沸石对氨氮的吸附动力学过程符合“初期快速吸附,后期缓慢稳定”的特点。假二级动力学模型适合描述天然沸石及NaCl改性沸石对氨氮的吸附过程,颗粒内扩散模型仅适合于描述吸附反应初期天然沸石及NaCl改性沸石对氨氮的吸附过程。天然沸石和NaCl改性沸石对溶液中氨氮的吸附过程满足Langmuir和Freundlich等温吸附模型。90℃ NaCl改性沸石、30℃ NaCl改性沸石及天然沸石的氨氮饱和吸附量分别为19.5 mg/g、17.8 mg/g和17.2 mg/g。离子交换作用决定了溶液中氨氮向天然沸石及NaCl改性沸石的全部转移量。  相似文献   

7.
比较3种沸石对膜过滤后猪场废水中氨氮的去除效果。结果表明,样品1对氨氮的去除率最高,沸石适宜投加量为每100 mL废水中投加7.5~10.0 g,振荡可提高沸石对氨氮的去除效果。在实际应用中,在废水处理池中安装曝气装置可加速沸石对氨氮的吸附。  相似文献   

8.
[目的]研究改性沸石对废水中氨氮的去除效果及吸附机理。[方法]采用脱磷尿液作为试验废水,比较了不同改性沸石(NaCl沸石、HCl沸石、HCl-焙烧沸石和HCl-焙烧-微波沸石)对试验废水中氨氮的去除效果,并探讨了其吸附机理。[结果]在粒径为0.5~1.0 mm,投加量为200 g/L时,天然沸石和4种改性沸石对氨氮的平衡吸附量依次为天然沸石饱和NaCl改性沸石5.0%HCl改性沸石5.0%HCl-400℃焙烧改性沸石5.0%HCl-400℃焙烧-微波改性沸石。沸石扫描电镜影像和质量损失揭示吸附差异的主要原因是不同改性方法导致沸石孔隙大小和数量的差异。[结论]5.0%HCl-400℃焙烧-微波改性沸石对氨氮具有较高吸附能力,平衡吸附量为17.9 mg/g,是天然沸石的2.6倍。  相似文献   

9.
将废弃生物质核桃壳改性后用于处理氨氮废水,比较了废水pH、改性核桃壳用量、废水中氨氮的初始浓度、接触时间等对氨氮去除效果的影响。结果表明,pH在3~9时,改性核桃壳去除废水中的氨氮比较合适,最大去除率可达81%;改性核桃壳处理氨氮废水(100 mg/L)采用10 g/L的用量比较合适;氨氮废水中氨氮的初始浓度对氨氮的去除有较大影响,当氨氮浓度增加到300 mg/L后,吸附量增加不再明显,吸附量可达9.3 mg/g;改性核桃壳处理氨氮废水的接触时间选择6.0 h比较合适。改性核桃壳处理氨氮废水主要以吸附为主,同时还有氧化还原的化学反应过程。  相似文献   

10.
改性硅藻土提高氨氮废水处理效果研究   总被引:4,自引:0,他引:4  
罗智文  袁东  耿安锋  陈琳  莫小平 《安徽农业科学》2010,38(29):16410-16411
通过选用无机絮凝剂(硫酸亚铁)和高分子有机絮凝剂(聚丙烯酰胺)对硅藻土进行改性,用改性后的硅藻土处理氨氮废水。结果表明,吸附过程中改性剂种类及用量、硅藻土用量、溶液pH值、溶液中氨氮初始浓度等是影响硅藻土对氨氮吸附的主要因素。在一定范围内,增加改性硅藻土的投加量、延长吸附作用时间、提高pH值均可改善对氨氮的去除效果。通过改性试验提高了硅藻土吸附氨氮的能力,氨氮去除率提升10%~20%。  相似文献   

11.
通过将磷吸收饱和的镧/铝改性沸石分别放入pH为2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0、11.0、12.0、13.0的溶液中,研究了镧/铝改性沸石的最佳磷释放条件,并在最佳磷吸附和最佳磷释放条件下研究了镧/铝改性沸石的再生能力。结果表明,当pH变化在2~13时,镧/铝改性沸石的磷释放量和释放百分比随pH的升高先降低后升高,其中:pH为2和12~13时的磷释放率较高,在76%以上,且pH13时的释放率最大,为98.2%;而pH在3~11时,磷释放率较低,在30%以下,且pH6时的释放率最小,为1.7%。表明强酸或强碱环境有利于镧/铝改性沸石中磷的释放。对镧/铝改性沸石再生能力的研究显示,经过4次再生后,镧/铝改性沸石的磷吸附量和再生能力分别为2.367、2.336、2.312、2.253 mg·g-1和96.7%、95.5%、94.5%、92.1%,虽然吸附剂的磷吸附能力随再生次数的增加呈现逐渐降低的趋势,但经过4次再生后,其对磷的吸附能力仍保持在92%以上,表明镧/铝改性沸石具有较好的稳定性和再生能力。  相似文献   

12.
以多级好氧折流沟串联沉降装置为基础,最大限度地保留沼液中氮素养分的同时,去除沼液废水中悬浮物。根据材料静态条件下等温吸附及解吸率结果,筛选氨氮低吸附填料,接着在动态条件下考察好氧折流沟内填料深度及运行时间对沼液中悬浮物去除效果与氨氮浓度的影响。结果显示,在人工沸石、河砂、石英砂和沙漠砂四种材料中,河砂的吸附强度、吸附指标及解吸值最低。选取河砂作为动态好氧折流沟填料,在水力负荷0.75 L/h、滞留时间24 h条件下,无填充、低填充、中填充及高填充对沼液废水中悬浮物最大去除量分别为4.8 g/L、5.1 g/L、8.1g/L和8.4g/L,最大去除率分别为38.0%、51.2%、86.1%和88.7%,而中、高两种填料深度对沼液废水中悬浮物去除量及去除率在第三、四取水口处无明显差异性(P>0.05)。介于应用中材料选取、用量及去除效果比较,河砂填料对沼液废水中氨氮浓度影响最小,建议采用河砂中填料深度的好氧折流沟处理沼液中悬浮物。  相似文献   

13.
为了探讨利用国产透气膜回收沼液氨氮的可行性及实际效果,以国产管式透气膜为关键组成部件构建沼液氨氮回收工艺模拟实验装置,开展沼液氨氮回收动态实验研究。结果表明:随着透气膜分离氨氮回收实验装置的运行,沼液氨氮浓度总体下降明显,提取液氨氮浓度呈先线性增加而后稳定在一定水平的变化规律;运行396 h后沼液氨氮去除率可达91.2%;根据氨氮回收速率的变化,装置运行过程可分为氨氮回收(0~252 h)和损失(252~420 h)两个阶段;氨氮回收阶段,提取液氨氮浓度小于10000 mg·L-1,单位体积氨氮平均回收速率为1190 mg·L-1·d-1,氨氮损失阶段,提取液氨氮浓度平稳保持在11200~12180 mg·L-1,单位体积氨氮平均回收速率仅为35 mg·L-1·d-1。若要令该工艺更为高效运行,可考虑增强沼液反应槽密封性,以降低沼液中气态NH3的挥发损失,另外可将提取液pH是否超过7确定为是否应更换新提取液的指示参数。利用国产透气膜构建的沼液氨氮回收工艺过程可有效回收沼液氨氮,回收率接近80%。  相似文献   

14.
规模化猪场处理废水富含植物营养物质,应用于作物生产可实现减少化肥用量和保护环境的双赢。本研究通过田间试验,研究了越冬期不同用量养猪处理废水(30、60、90 m3·hm-2和120 m3·hm-2)和穗期施氮水平(0、30、60 m3·hm-2和90 m3·hm-2)对小麦氮素吸收利用的影响。结果表明,猪场处理废水对小麦具有较好的氮素养分供应作用,拔节期、抽穗期、成熟期叶片SPAD值、植株含氮率都随着污水施用量增加而提高。废水施用60 m3·hm-2以上穗期配施氮90 kg·hm-2的处理花后氮素转移效率、氮素收获指数、氮素籽粒生产效率明显下降。越冬期施用养猪场处理废水60~120 m3·hm-2替代穗期施氮30~60 kg·hm-2,可以满足不同时期小麦氮素营养的需求,并且有较高的氮素积累量和利用效率。  相似文献   

15.
通过水培试验,研究狐尾藻对生猪养殖场沼液的净化能力,在此基础上分析20、40、60 d 3个不同水力停留时间对狐尾藻生物量、植株养分、水体CODCr、氨氮、硝态氮、亚硝态氮、总磷、溶解氧及pH变化的影响。结果表明:20%~30%沼液可以提高狐尾藻生物量和其体内氮磷钾含量,处理组相比空白组,生物量可以提高1.6~4.9倍、氮磷钾分别可以提高1.5~2.0、1.57~1.90、1.35~1.88倍;狐尾藻对沼液有一定净化能力,当水力停留时间为40 d时,狐尾藻对沼液的处理效果最好,沼液CODCr、氨氮及总磷去除率分别为65.99%、59.54%及90.06%。鉴于此,狐尾藻可作为猪场沼液净化的理想水生植物,具有良好的应用前景。  相似文献   

16.
氮磷养分对荧蒽污染土壤修复的应用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究污染土壤中氮、磷养分添加对土壤中多环芳烃(PAHs)去除的影响,通过室内土壤培养试验,以荧蒽为PAHs代表,研究外加氮磷(0、150、300、450、600 mg·kg-1)对土壤中PAHs污染消减的影响,并通过污染土壤中外加氮磷对相关土壤酶活性的影响,探讨氮磷养分对土壤中荧蒽去除的机理。结果表明:外加氮磷有利于污染土壤中荧蒽的去除,外加氮磷可将土壤中荧蒽的半衰期缩短最多达78.4%。在100 mg·kg-1荧蒽污染下,外加300 mg·kg-1氮对土壤中荧蒽的消除速率常数提高了388.9%;外加150 mg·kg-1磷对土壤中荧蒽消除速率常数提高了477.8%。外加氮磷可显著影响土壤中相关酶活性,外加磷能够显著提高土壤中脲酶活性和酸性磷酸酶活性;外加氮显著提高了低荧蒽污染土壤中酸性磷酸酶活性;外加氮磷均可显著提高土壤多酚氧化酶活性,多酚氧化酶活性的提高与土壤中荧蒽的去除具有显著正相关性。研究建议,污染黄棕壤中外加氮、磷的范围为150~300 mg·kg-1,外加的氮磷通过有效改变污染土壤的酶活性,从而促进土壤中PAHs的去除。  相似文献   

17.
研究牡蛎壳对甲基橙的吸附特性,并进行吸附影响因素的优选实验.结果表明:在初始浓度为50 mg.L-1,吸附温度35℃,牡蛎壳粉投加量0.1 g,吸附时间120 min的条件下,甲基橙去除率达到74.2%,吸附量为18.6 mg·g-1.吸附过程符合Langmuir吸附等温式,即Ce/qe=0.0148 Ce+0.5496,35℃下的饱和吸附量为67.57 mg·g-1.  相似文献   

18.
为削减沼液处理工艺中生物生态单元的负荷,采用磁混凝工艺预处理沼液。经单因素和响应面试验优化磁种与混凝剂的投加配比,分析混凝出水中的残余铝含量和铝形态以及有机物官能团的分布,研究磁混凝强化沼液预处理的效能与磁混凝机理。结果表明,磁混凝加快絮体沉降,提高出水安全性,增加沼液中污染物去除;磁混凝预处理最佳配比为Fe3O4(1.0 g·L-1)+Al2(SO4)3(2.05 g·L-1)+PAM(10.34 mg·L-1),此时磷、COD和氨氮去除率分别达到99.09%、30.39%和14.76%。同时磁混凝通过促进Alb的生成和增强芳香碳物质去除的方式强化沼液中有机物去除;另外磁种Fe3O4的吸附增加氨氮去除。结果可为沼液预处理提供技术参考。  相似文献   

19.
以天然沸石为基质材料,采用硫酸、氢氧化钠和氯化铁对其改性,对模拟含氟水进行静态吸附试验,研究改性沸石对水中氟离子的吸附性能,探讨并提出了最佳改性条件。对沸石进行比表面积和孔径分布测定,并利用X射线荧光分析沸石改性前后的元素组成及含量变化。结果表明采用氯化铁单独改性效果最好。吸附速率可用拟二级动力学方程描述。氯化铁改性沸石对F-的吸附符合Langmuir吸附等温模式,饱和吸附量为0.087 mg·g-1,较未改性沸石有很大提高, 吸附平衡常数为0.28 L·mg-1。改性后沸石的比表面积减小,Fe元素含量增加,Ca2+、Mg2+等离子的含量降低,说明氯化铁改性沸石除氟主要基于化学吸附与复杂的离子交换作用。  相似文献   

20.
改性沸石制备及其同步去除农田排水氮磷研究   总被引:1,自引:1,他引:1  
为进行高浓度农田排水的应急处理,以天然斜发沸石为原料,制备能够同步吸附NH4+-N、NO-3-N和TP的组合改性沸石,并对人工模拟农田排水进行处理。结果表明:采用0.01mol L-1LaCl3改性的沸石对NH+4-N和TP具有良好的吸附效果,可在10 min内达到吸附平衡,且与Freundlich等温吸附模型拟合度较高(R2>0.99);采用0.02mol L-1溴代十六烷基吡啶(CPB)改性的沸石可同时吸附NH+4-N、NO3--N和TP,在20min内即可达到吸附平衡,其与Langmuir等温吸附模型相关度较高(R2>0.97)。这两种改性沸石的吸附过程均符合准二级动力学模型。15g L-1的CPB改性沸石与8g L-1的LaCl3改性沸石组合处理模拟农田排水,反应20min,沉淀7min后,出水NH+4-N、NO3--N和TP浓度分别为0.23、2.18mg L-1和0.015mg L-1,去除率分别为95.38%、78.21%和97.12%。研究表明组合改性沸石可快速高效地处理农田排水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号