首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于作物生理电特性和土壤湿度的灌溉模糊决策系统研究   总被引:1,自引:0,他引:1  
为了对冬小麦缺水状况进行准确诊断和实施精量灌溉,以小麦叶片的生理电特性反映作物亏水信息,通过采集土壤湿度信息反映土壤含水量,通过模糊决策技术来综合表达小麦的生理电特性和土壤水分信息,进而确定适合小麦生长需求的灌溉水量.  相似文献   

2.
为了实现对棉田自动、实时与适量灌溉,设计了模糊控制滴灌系统。该系统通过湿度传感器采集土壤湿度信息,以土壤湿度偏差及其变化率为输入量,以灌溉需水量为输出量,依据实践经验建立模糊推理规则,实现灌溉需水量的模糊控制。仿真结果和初步试验表明,模糊控制滴灌系统控制稳定性较好,与人工控制相比,节约灌溉用水量约10%,在满足棉花生长需水的前提下,起到了节水灌溉的作用,适合于推广应用。  相似文献   

3.
为充分利用水资源,满足农田灌溉之需,要求旱区农业从粗放的灌溉模式向集约型精量灌溉转变。作物需水状况的准确监测是实现精量灌溉和智能化农业用水管理的前提。基于GSM的土壤湿度监测系统由土壤湿度检测传感器、数据处理模块、GSM无线传输模块3部分组成。该系统采用土壤湿度传感器检测农田中的土壤湿度,单片机通过AD采集湿度信息并与设定值相比较,若湿度低于设定值,则通过GSM模块将信息发至农户,提醒用户开始灌溉。试验表明,该系统能有效监测土壤中湿度,为农户灌溉提供决策依据,实现农作物精量灌溉的远程监测。  相似文献   

4.
在利用大棚进行农作物培育时,土壤湿度是影响其生长、发育的关键因素之一,因此对大棚进行多点土壤湿度检测,根据各点土壤湿度对农作物实现精准灌溉显得尤为重要。本文设计了一种基于单片机的土壤多点灌溉控制系统。系统中选用SM2801B土壤水分传感器作为测量土壤湿度元件,以STM32F429单片机为控制核心,进行多点土壤湿度检测并以电磁阀为执行元件实现农作物的定点灌溉。同时,通过串口与PC机进行通信,并以VB编写的上位机界面将各点土壤湿度以曲线的形式显示出来,通过上位机界面进行远程定点灌溉操作。  相似文献   

5.
为解决传统农业灌溉方式耗水量大、水资源利用率低的问题,采用单片机技术、无线传感技术、射频技术及模糊控制,研发一套应用于滴灌、喷灌等现代节水灌溉方式的智能控制系统。该系统通过采集农田土壤水分含量和空气温湿度、风速、太阳辐射等信息,计算出作物腾发量和土壤湿度,并以这2个变量为模糊控制器的输入;然后根据作物不同时期的生长信息及专家经验,制定数据库和规则库对输入量进行模糊推理;最后解模糊,输出作物需要的灌溉时间,得到灌溉决策,对作物进行精准灌溉。为避免大量布线,系统还采用射频技术,实现对灌溉电磁阀的无线控制。  相似文献   

6.
远程节水灌溉网络监控系统的设计与实现   总被引:1,自引:0,他引:1  
介绍了基于ZigBee无线网络的远程节水灌溉网络监控系统的设计与实现。信息的采集、传输、接收与执行由Jennic公司的无线湿度传感器和DZK-01电动阀门控制器完成。系统界面由MCGS组态软件开发。农田土壤湿度信息通过无线网络传输给系统,系统根据土壤湿度控制调节阀的开度。  相似文献   

7.
针对农业水资源灌溉效率低和农业信息管理混乱的问题,以农田采集信息、气象信息和基本信息为基础,开发B/S结构的灌溉决策和信息管理的专家系统,从而提高农业现代化水平。以专家系统结构和灌溉决策理论为基础,将专家系统结构与集成应用服务器和数据库服务的云平台相结合,以微软.NET Framework框架的ASP.NET技术和SQL Server 2014数据库管理系统为实际开发手段,实现专家系统应用程序开发。结果表明,基于云平台的灌溉决策专家系统通过现有的主流浏览器对应用程序进行访问性测试,能够实现农田实时数据监测、历史数据查询与分析、短信报警、数据信息管理和灌溉决策等功能,访问性良好且数据管理方便,通过与几位专家评估对比发现灌溉决策量偏差在±10%左右,符合灌溉要求。  相似文献   

8.
单片机技术在农田节水灌溉系统中的应用   总被引:1,自引:0,他引:1  
针对农田灌溉设计了一种基于单片机控制的节水灌溉自动化系统,该系统对土壤湿度进行实时监测,按照作物对土壤湿度的要求进行适时、适量灌水,对改善农业生产灌溉条件起到了重要作用。  相似文献   

9.
为了推广应用农业灌区智能节水灌溉系统,提高灌区灌溉的效率和水资源利用率。在分析农业灌区智能节水灌溉系统设计原理的基础上,基于物联网、传感器技术和人工智能等先进技术,设计了包括灌溉计划优化,实时监测与控制,数据分析与决策等模块的农业灌区智能节水灌溉系统,采用了自动喷灌装置、土壤湿度传感器和气象站等智能化灌溉设备,实现对灌溉过程的精准监测和控制。结果表明,通过农业灌区智能节水灌溉系统的实际应用,灌区的水资源利用效率得到大幅提升,灌溉过程中的水量浪费得到有效减少。灌溉计划优化和实时监测与控制模块的运行,使得系统能够根据土壤湿度、气象变化和作物需求等因素进行动态调整,从而实现精准灌溉。农业灌区智能节水灌溉系统的设计与应用能够有效解决传统灌溉方法存在的问题,在节约用水、提高灌溉效率和保护生态环境等方面具有重要作用,为农业生产提供了新的解决方案,可以在更多的农业灌区中推广应用。  相似文献   

10.
基于WebGIS的多指标灌溉信息管理系统   总被引:1,自引:0,他引:1  
【目的】提高灌溉决策精度,实现水资源的高效利用。【方法】从精确灌溉的角度出发,采用系统工程和软件工程的原理和方法,将计算机、数据库、网络技术和地理信息系统等多种技术相融合,建立了以WebGIS为基础的多指标灌溉信息管理系统。【结果】以作物需水信息为基础,综合考虑土壤、作物、田间监测、灌排信息和气象等因素的影响,构建了单指标和多指标决策模型,利用SuperMap IS.NET的网络发布功能,将灌区信息、实时气象、作物需水量、有效降雨量、决策结果、土壤墒情分布等信息进行发布,实现信息的动态可视化表达。本系统可使操作人员既能够通过地图宏观了解灌区和决策结果的总体情况,又能对离散资料进行分析和整合。【结论】系统在人民胜利渠灌区和广利灌区推广应用的结果表明,系统的应用在一定程度上提高了灌溉管理水平和决策精度, 实现了灌溉管理与决策的智能化和信息化。  相似文献   

11.
尹辉娟  史智兴 《安徽农业科学》2009,37(23):11190-11191
根据灌溉系统不易建立精确数学模型的特点,设计了基于模糊控制技术的智能灌溉控制系统。系统以土壤水分误差为输入,以灌溉时间长度为输出,通过对输入变量的模糊化、模糊推理和模糊决策,获得了作物的灌溉时间长度。信息的采集、传输、接收与执行由Jennic公司的无线湿度传感器和DZK201电动阀门控制器完成,使每个节点便于安装部署,免去了有线接入的繁琐过程,降低了成本。  相似文献   

12.
Fuzzy controller decreases tomato cracking in greenhouses   总被引:1,自引:0,他引:1  
Sunlight heats the greenhouse air temperature during the day and can encourage tomato cracking and decrease marketable product. A fuzzy controller was designed to control greenhouse climate to reduce tomato cracking using as variables solar radiation, substrate temperature and canopy temperature. A movable shade screen reduced incoming radiation during warm and sunny conditions; meanwhile irrigation was controlled according to canopy and substrate temperature. The shade screen was opened or closed with a gear motor driven by a photovoltaic system. The motor controlled by a pulse width modulated inverter started softly decreasing its starting current. The fuzzy system injected additional water and nutrients between 12:00 and 15:00 h; irrigation cycles were removed during very cloudy days. Tomato cracking decreased from 52% to 17% using the fuzzy controller and canopy temperature never exceeded 30 °C.  相似文献   

13.
水肥一体化技术在很大程度上弥补了原先灌溉手段的缺陷,其主要将施肥同灌溉相融合,其中提升灌溉的准确度具有十分重要的作用。结合模糊控制理论,针对茶树水肥一体化灌溉中的精确灌溉这一问题,设计温室茶树灌溉模糊控制系统,使用2019年9月1-20日有关于茶树的相关信息开展验证工作,通过结果我们能够发现该系统具备较为理想的调节作用。Matlab仿真结果研究表明,温室茶树模糊控制器能有效提高茶树对水的利用效率,为实现精确灌溉提供了可行性。  相似文献   

14.
为提高温室管理水平,针对有线系统监测布线不灵活或长时无人监测和无线系统数据传输不稳定等问题,设计一种基于GSM技术具有远程交互功能的土壤湿度监控系统。该系统由MSP430控制器、GSM模块灌溉控制电路等组成。通过GSM模块以短信的方式实现与用户之间的交互功能,并利用模糊控制算法进行精确灌溉。运行试验结果表明:设计的系统工作稳定,数据传输距离不受限,节水灌溉效果显著,GSM模块收发信息的正确率达100%;接收数据正确率达98.73%,实时监控灌溉性能稳定;能够实现精确灌溉,与人工漫灌相比节省20%~30%的用水量,节水效果显著。  相似文献   

15.
油菜直播机组自动对厢作业控制器设计与试验   总被引:1,自引:0,他引:1  
针对基于视觉的油菜直播机组自动对厢作业控制,本研究提出了结合模糊控制和带死区的PD控制的组合控制器,其中模糊控制器作为对厢作业路径跟踪控制器,带死区的PD控制器作为直播机组转向控制器。根据直播机组运动模型和相机成像模型,分析了图像路径参数跟随直播机组运动的变化规律,并设计模糊控制器的控制规则。同时,在图像中将直播机组与目标厢沟相对位置没有偏差时的图像路径标定出来作为图像目标路径,据此以图像实时检测路径与图像目标路径的角度偏差和截距偏差设计为模糊控制器输入,前轮目标转角为模糊控制器输出。对直播机组前轮转向控制则设计了带死区的PD控制器,通过两者的有机结合实现了直播机组的自动对厢作业。田间试验结果表明:油菜直播机以0.5或0.8m/s的速度行驶时,直线导航跟踪的横向偏差小于6cm,以1.0m/s的速度行驶时,横向偏差小于10cm。  相似文献   

16.
随着信息技术和规模化水产养殖的发展,传统的养殖模式将会逐渐被智能水产养殖所取代。构建了基于Zigbee的中华绒螯蟹养殖中溶氧量的智能控制系统,并着重研究了蟹塘的增氧控制算法,针对溶氧量变化的非线性、大滞后、不确定、大惯性等特点,提出了模糊RBF神经网络改进的PID控制策略,并通过Matlab进行模糊RBF神经网络控制器与常规PID控制器和模糊PID控制器进行仿真对比,同时在某中华绒螯蟹养殖基地进行模糊PID控制器和模糊RBF神经网络控制器进行应用实验对比,证明了模糊RBF控制器能够更好地满足中华绒螯蟹养殖溶氧量的控制要求。  相似文献   

17.
温室内温度的模糊控制   总被引:6,自引:0,他引:6  
根据温室温度的控制特点,提出了实现室内温度模糊控制的方法,设计了模糊控制器并进行了试验。结果表明,温室内温度的模糊控制有较为明显的衰减特性,能够把被控参数调节在设定值周围,参数的波动小,控制品质优于开关量控制。  相似文献   

18.
自适应模糊控制在物位测控系统中的应用   总被引:2,自引:0,他引:2  
文中介绍了采用自适应模糊控制物位高度的研究方法,给出了控制器的设计,并对控制规则的修正作了改进.该控制器根据现场采集的数据及给定的性能指标实时自动调整模型规则.仿真结果表明该控制器与传统PID控制相比,有较强的自适应性和鲁棒性.  相似文献   

19.
针对目前真空木材碳化设备的控制系统具有大滞后、强耦合、时变性以及难以建立精确数学模型等特点,提出了一种模糊神经网络算法的真空木材碳化设备控制系统。通过对输入输出变量、论域及隶属函数的选择,设计出真空木材碳化设备控制器;再将神经网络与模糊控制系统相结合,得到模糊神经控制网络。对模糊神经网络控制器的算法进行了分析;在Matlab环境下编写控制器的程序,用Simulink进行仿真实验。结果表明:模糊神经网络控制器的真空木材碳化设备输出的温度曲线,稳态误差为0、最大偏移量为1℃、调节时间约为8 s、超调量为2%;湿度曲线在6 s时即可达到稳定,稳态误差为0、最大偏差为1%、超调量为4%;加入扰动后,误差能被快速消除,温湿度的波动幅度相对减小,系统的稳定性更强。模糊神经网络控制器,可减小调节时间、消除误差、提高控制精度,具有很好的鲁棒性。将二者结合设计出的模糊神经网络控制器,具有自适应、学习、识别和模糊信息处理等功能,在处理大规模复杂的模糊应用问题方面具有更好的控制效果。  相似文献   

20.
为提高拖拉机在自主导航行驶中转向跟踪控制的响应特性和稳定性,设计了以拖拉机前轮转角偏差和偏差变化率为输入,以电机控制电压和PID 3个控制参数为输出的模糊控制器,结合PID控制器实现前轮转角偏差大于10°时采用模糊控制和转角偏差小于等于10°时采用自适应模糊PID控制。仿真结果表明,采用复合模糊PID控制器在前轮转角偏差较大变化范围内均能实现快速和准确的转向跟踪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号