首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
为实现葡萄园土壤墒情信息的实时监控与分析,设计了以物联网体系结构和.net环境下B/S架构技术为基础的葡萄园土壤墒情监控系统。该系统分为感知层、数据传输层、数据处理层和用户层4级结构;采用ZigBee无线技术、GSM和Internet相结合的方式进行通信,并设计了土壤墒情采集器、通讯网关、灌溉控制柜等模块及其相应的软件系统。同时,对系统进行了网络测试和土壤墒情自动控制测试。结果表明:该系统运行稳定可靠,能实时监控葡萄园土壤墒情信息,并根据专家知识做出灌溉决策,保证土壤含水率维持在一个稳定的范围之内。  相似文献   

2.
为解决目前我国农业领域中水资源利用率低等问题,结合Zig Bee无线传感器网络和GPRS技术,设计了1套以GPRS+Zig Bee无线组网技术为核心的智能灌溉监控系统。Zig Bee无线传感器网络由终端节点和协调器节点(网关节点)基于IEEE 802.15.4/Zig Bee协议构建,终端节点对土壤、环境等信息读取和传输来自上层的指令,协调器节点基于TCP/IP协议连接到监控服务器形成远程灌溉监控网络,将数据经过处理后发送至监控中心及手机用户,实现对作物的精准灌溉。  相似文献   

3.
针对茨园环境的特点以及传统农业环境监测仪器在使用中存在的问题,设计了一套基于物联网技术的环境监测系统。该系统首先以HMI智能型人机界面为微控器构成茨园终端,实现对茨园环境信息的实时采集,然后通过GPRS DTU模块利用GPRS无线监测网络和Internet传送至监测中心的服务器。用户可通过访问浏览器实时、远程地查询各种信息,实现了对茨园生产环境参数的实时监测,为茨园精细化管理提供了一种有效的解决方案。  相似文献   

4.
设计了一个智能农业环境监测系统,系统通过Internet和GPRS网络,远程实时监测农作物种植地传感器采集的数据,嵌入式Linux终端接收Zigbee网络各节点的环境数据,将数据存入到数据库中,同时可以发送给远程监控中心。远程监控中心将接收到的数据存入数据库,并且进行数据分析,实现远程调控,优化作物生长环境。  相似文献   

5.
智能水肥灌溉系统的研究与应用   总被引:1,自引:0,他引:1  
为促进农业产量及品质与农业投入同步增长,实现农业高产、优质、高效、生态、安全的协调发展,有针对性地开发智能水肥灌溉系统。该系统以物联网技术为基础,通过传感器采集温湿度、电导率/pH值等农作物生长参数,由数据采集无线传感网络发送至上位机专家决策系统,再经决策后由上位机发送指令控制以PLC (可编程逻辑控制器)为核心的智能灌溉控制系统,从而实现对作物生长环境的实时监控和高产、高效、精准灌溉智能化灌溉目的。  相似文献   

6.
随着农业技术的不断发展,农业生产向着精细化、智能化的方向发展,而温室自动化生产监控技术是智能农业的代表技术之一,通过对智能温室的远程监控可以对地块中的土壤信息、农作物的生长信息等进行全程监测,对作物的长势、产量做出分析及预测,并对每个小区做出科学决策,提高农业生产的精确性和生产效益。本研究提出一种基于LPC2132单片机及GSM技术的智能温室远程监控系统。  相似文献   

7.
基于无线传感器网络的智能温室实时监控和辅助决策系统设计采用数据采集、数据处理和信息发布三层结构设计。数据采集子系统由无线微处理器和传感器节点组成,基于ZigBee协议构建;数据处理部分负责数据预处理和实时辅助决策,引入生长模型进行生长管理,辅助决策模块根据温室实时环境和植物当前的生长状态进行智能监测,并以Web、移动终端等多种方式向管理者提供生产决策信息;信息发布采用Web网站形式,集成种植信息管理、生长信息管理、技术对策支持、历史数据查询、统计分析等功能。  相似文献   

8.
基于GPRS和GSM的水稻智能灌溉系统   总被引:1,自引:1,他引:0  
针对目前水稻远程灌溉系统存在的硬件资源浪费、系统响应差等弊端,应用了一种"服务器—用户手机"直接通讯的方式,并设计了一套基于GPRS(General Packet Radio Service)和GSM(Global System for Mobile Communications)的水稻智能灌溉系统。该系统以STC12C5A60S2单片机作为现场终端的核心处理器,通过GPRS DTU无线通信模块完成现场终端与远程服务器之间的通讯,利用GSM短消息方式实现用户手机与远程服务器之间的信息交互,极大地减少了现场终端的任务处理量,加快了系统的实时性。系统能够通过液位传感器获取田间水位信息,并根据水稻不同时期的需水量完成灌溉或排水操作。同时,系统通过对水稻灌溉监控管理软件的设计实现了服务器软件监控和用户手机监控的双重监控功能。试验结果表明,该系统工作稳定,灌溉控制精度在93%以上,能够达到远程监控、灌溉的目标。  相似文献   

9.
本研究基于农业物联网技术设计了针对于草莓大棚的信息监测系统,有效保证了草莓的健康生长,并提高了产量。本系统先就传感器节点的分布以及软件部分进行了合理的设计,传感器采集到数据后通过Zig Bee无线网络技术短距离传输至控制器网关,控制器网关再通过ME3000_V2通信模块将数据远距离传输至监控终端。用户可以远程实时监控大棚内的环境参数,也可以调用历史数据进行分析,使用户能够时刻观察到草莓的生长情况,从而保证其健康地生长。  相似文献   

10.
为了更好地发挥中药材氮气养护贮藏技术优势,便于用户实时掌握和控制中药材氮气养护贮藏环境信息,解决密封贮藏库内环境实时监测及贮藏环境及时调控等问题,研发了基于物联网的中药材氮气养护贮藏环境监测报警系统,主要监控中药材贮藏环境中的氮气浓度,低于设定阈值时自动报警和发送信息,系统分为报警控制终端、网络通信和用户终端3个部分,其中报警控制终端为气体浓度监测的控制系统和相关设备,网络通信通过GPRS实现,用户终端为PC和Android操作系统。该系统研究和实现了一套基于物联网的中药材养护贮藏库远程智能监控,以期实时掌握和控制中药材库内气体环境状况。  相似文献   

11.
结合现代果园大规模经营发展模式和建设精细农业的需求,设计了基于ZigBee和GPRS的远程果园智能灌溉系统,该系统运用GPRS网络技术和由单片机、土壤水分传感器、零压启动电磁阀、CC2430组成的ZigBee无线传感器网络进行数据传输和控制.通过分析采集到的土壤水分数据,结合系统预设阀值发送命令控制零压电磁阀实现设备的远程控制和智能化灌溉.实际应用表明,该系统工作性能稳定,在数据采集、传输及远程控制等方面均达到了设计要求,有较好的推广价值.  相似文献   

12.
不同作物的生长发育对土壤湿度有不同的需求,为了给温室大棚农作物提供一个最适宜的生长环境,结合温室大棚现有滴灌系统的特点,设计了一套以ARM11为控制核心、土壤湿度传感器为采集模块、WIFI模块为通信模块的土壤湿度自动控制系统。此系统通过控制与滴灌系统连接的电磁阀保证土壤湿度在适宜的范围内,实现了温室大棚内土壤湿度的远程监测与自动控制;温室大棚管理人员不仅能使用HTTP协议随时、随地访问嵌入式Boa WEB Server来获取实时的土壤湿度数据,还可以通过SQLite嵌入式数据库查询存储的土壤湿度的历史数据。系统测试结果表明,该系统能实现农作物土壤湿度的远程监测与智能调控,运行可靠,测量的土壤湿度绝对误差为±3%,有一定的实用性。  相似文献   

13.
我国耕地保护补偿评估与“纵横模式”构建   总被引:1,自引:0,他引:1  
现行耕地保护政策是一种“委托-代理”式的体制,其核心是指标管理加上监督惩罚,忽视了调动地方政府 保护保耕地的积极性,导致中央和地方在耕地保护上的激励不相容。从土地财政、廉价土地出让和违法超额占地等3 个方面评估了我国耕地保护的数量;从粮食盈余、财政支农、可持续发展3个方面估算了耕地保护的质量。通过对各省 耕地数量保护和耕地质量保护的测算,划分出耕地保护赤字区、平衡区和盈余区。根据分析的结论,补充并完善了耕地 保护补偿的“纵横模式”,促进耕地保护外部性内部化,公平分担耕地保护的成本,具有理论和实践的可行性。  相似文献   

14.
针对目前温室大棚环境监测系统存在布线困难、灵活性低和成本高等问题,构建了基于无线传感器网络(WSN)的温室大棚环境监测系统,并重点对传感节点和网关节点进行了设计。该系统的传感器节点负责对环境参数进行采集,并通过无线传感器网络将数据发送到网关节点,网关节点再向远程监测平台传输数据。节点硬件的微处理器模块采用MSP430F149单片机进行数据处理和控制;无线通信模块由nRF905射频芯片及其外围电路组成,负责对数据进行传输和接收;传感器模块采用AM2301传感器进行数据测量;电源模块以LT1129-3.3、LT1129-5和Max660组成的电路提供3.3和±5.0 V电源。节点的无线路由协议和时间同步算法均采用C语言开发,实现节点数据采集与处理、规则转发和远程传输等功能。远程监测软件采用NET.ASP、HTML和C#开发,为用户提供形象直观的Web模式远程数据管理平台。该系统在青海省西宁市温室大棚进行了组网测试,结果表明系统运行稳定可靠,网络平均丢包率为2.4%,有效解决了温室环境监测系统中存在的问题,满足温室大棚栽培环境监测的应用要求。  相似文献   

15.
由于不同地区不同季节的土壤和气候环境不同,特别是丘陵山区果园之间的土壤养分、水分和温度差异明显,这就需要因地制宜的来实施柑橘生产的施肥或灌溉。本文借助物联网技术、人工智能技术、通信技术和ZigBee无线网络技术,建立柑橘土壤水分养分实时监测系统,能够实时监测土壤水分、温度和养分的变化,并根据这些变化及时给出专家决策意见。测试表明,该系统有助于指导果农进行科学的施肥或灌溉,提高柑橘生产的精准化作业水平,降低劳动力成本,减少乱施化肥造成的环境污染。  相似文献   

16.
智慧苹果园“空-天-地”一体化监控系统设计与研究   总被引:1,自引:0,他引:1  
针对传统苹果园存在的数据监测体系不完善、管理缺乏科学数据等问题,开发了一种苹果园“空-天-地”一体化监控系统。综合应用卫星遥感、无人机、农业物联网、人工智能等现代信息与智能装备技术,集成果园信息采集装置套件,并基于SSM框架(SpringMVC、Spring、Mybatis)构建果园监测集成数据中台。通过果园“空-天-地”一体化的信息技术采集体系集成创新和基于AI的苹果病虫害图像识别应用,实现覆盖果园土壤、生态环境、果树个体及群体的立体化监测服务功能,提高果园监测效率与数据可信度,对促进苹果园生产管理向着科学化、数字化、智能化转变的新业态升级具有重要研究意义。  相似文献   

17.
GNSS-R陆面遥感为重要补充的土壤水分监测体系设计   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了GNSS-R陆面遥感的原理和发展现状,在重庆市土壤水分监测现状分析基础上,设计了一种面向用户需求的土壤水分综合监测体系.在方案设计中,对人工测墒、地面气象站、自动土壤水分监测、卫星遥感干旱监测、 GNSS-R陆面遥感等5种监测手段进行了时间分辨率、空间分辨率、观测代表性的对比分析,说明将GNSS-R陆面遥感作为重要补充进行综合土壤水分监测体系设计是可行的、有益的.研究表明, GNSS-R路面遥感的应用可进一步提高重庆市土壤水分监测体系时空分辨率,填补自动土壤水分观测和卫星遥感在时间分辨率、空间分辨率之间的衔接空白,拓展GNSS连续跟踪站网新应用.与雷达估测降水、卫星重力、陆面资料同化结合,可为长江上游水资源动态监测提供支撑.  相似文献   

18.
基于物联网和LSTM的柑橘园土壤含水量和电导率预测模型   总被引:2,自引:1,他引:1  
目的 构建柑橘果园环境信息物联网实时采集系统,建立基于物联网和长短期记忆(LSTM)的柑橘园土壤含量和电导率预测模型,为果园灌溉施肥管理、效果预测评估提供参考依据。方法 利用土壤温度、含水量、电导率三合一传感器,在柑橘果园中设置5个节点和1个气象站,通过ZigBee短距离无线通信和GPRS远距离无线传输,将果园气象数据和土壤墒情数据传输至远程服务器。利用LSTM模型建立气象数据与土壤含水量和电导率的预测模型,计算均方根误差(RMSE)和决定系数(R2)以进行性能评估。结果 物联网系统能够实现远程传输柑橘果园环境数据,建立了基于LSTM和广义回归神经网络(GRNN)的土壤含水量和电导率预测模型,模型在5个节点的数据集的训练结果分别为:LSTM模型训练的土壤含水量和电导率的RMSE范围分别为6.74~8.65和6.68~8.50,GRNN模型训练的土壤含水量和电导率的RMSE范围分别为7.01~14.70和7.60~13.70。利用生成的LSTM模型和气象数据进行拟合,将土壤含水量和电导率的预测值与实测值进行回归分析,LSTM模型拟合的土壤含水量和电导率的R2范围分别为0.760~0.906和0.648~0.850,GRNN模型拟合的土壤含水量和电导率的R2范围分别为0.126~0.369和0.132~0.268,说明LSTM模型的性能表现较好。结论 建立了柑橘果园环境的物联网信息传输系统,构建的基于LSTM的果园土壤含水量和电导率预测模型具有较高的精度,可用于指导柑橘果园的灌溉施肥管理。  相似文献   

19.
[目的]研发农田玉米土壤墒情远程监测云平台,获取实时动态农田玉米土壤墒情信息,为玉米科学灌溉提供数据支持,以保证夏玉米高产稳产.[方法]采用GPRS网关接入互联网,433 Mhz无线电组成本地局域网的方式,在河南省永城市等市(县)的玉米田地安置土壤墒情监测点,对土壤墒情信息进行自动采集和分析.[结果]土壤墒情远程监测云平台能够实现玉米大田土壤墒情的实时动态监测、在线地图定位、历史数据查询和统计分析及短信预警等功能.自2015年以来,在河南省永城市、汝州市、西华县和原阳县等市(县)进行应用,测试结果表明,该云平台可准确地对农田玉米土壤墒情的变化规律进行长期实时定位监测;通过土壤墒情监测数据分析可知,其监测数据可以真实反映农田玉米土壤墒情实际状况.[结论]设计的土壤墒情远程监测云平台能够满足农田玉米土壤墒情科学监测需求,为玉米实现精准灌溉提供了在线数据采集与分析平台.  相似文献   

20.
谢彤 《安徽农业科学》2013,(18):8048-8049,8068
提出了一款基于STC89C52单片机的智能温室灌溉控制系统,实现了作物根系处土壤湿度的监测与自动控制。该系统以STC89C52单片机为核心,主要包含数据采集电路、单片机数据处理电路、数据通信电路、控制驱动电路和人机交互电路5部分。系统采用传感器测量土壤湿度,经单片机与设定湿度进行比较后,输出灌溉参数到控制继电器,实现了温室环境的调节。经试验测量,该系统所测湿度与湿度计所测湿度相差在5%以内,且运行稳定,操作简单,准确性和快速性指标能满足设施农业灌溉的要求,另外,该系统成本低,可维护性强,从而具有良好的推广应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号