首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
[目的]优化甘草苷及异甘草素的提取工艺。[方法]以2种甘草总黄酮提取物为原料,在酸性条件下用超声波提取甘草苷及异甘草素;采用正交设计优化2种成分的提取工艺;利用HPLC法检测其含量。[结果]原料Ⅱ是提取甘草苷及异甘草素的较优材料,甘草苷的最佳提取条件:酸浓度为0.5 mol/L,超声提取时间为1.5 h,提取温度为70℃,料液比为1∶20;异甘草素的最佳提取条件:酸浓度为2.0 mol/L,超声提取时间为1.5 h,提取温度为70℃,料液比为1∶10。[结论]该工艺简单、易行,重复性好,适合甘草苷及异甘草素的工业化提取。  相似文献   

2.
以乌拉尔甘草毛状根为材料、总黄酮含量为指标,采用超声法提取,分别以提取溶剂、料液比、超声温度、超声时间为单因素,确定影响提取率的因素与水平,通过正交法优化,确定提取工艺的最佳条件。采用比色法测定比较3种甘草毛状根中总黄酮的含量,通过高效液相色谱法分析比较3种甘草毛状根中甘草苷、异甘草苷和光甘草定的含量。通过红细胞溶血和鸡胚绒毛尿囊膜试验、DPPH自由基与ABTS自由基清除试验和酪氨酸酶酶活抑制试验,分别比较3种甘草(乌拉尔甘草、光果甘草和胀果甘草)毛状根提取液的刺激性、体外抗氧化和抑制酪氨酸酶酶活的能力。结果表明,在溶剂为75%丙二醇、料液比1 g∶15 mL、超声温度50℃、超声时间40 min条件下,乌拉尔甘草毛状根总黄酮提取率最高,为1.25%。在3种甘草毛状根中,乌拉尔甘草毛状根中异甘草苷的含量最高,光果甘草毛状根中总黄酮、甘草苷和光甘草定的含量均最高;3种甘草毛状根提取液(浓度≤625 mg/L)对红细胞及鸡胚绒毛尿囊膜均无刺激性;3种甘草毛状根提取液清除DPPH自由基的半抑制浓度(IC50)依次为1 100、570、540 mg/L,清除ABTS自由基...  相似文献   

3.
超声波辅助法提取甘草总黄酮工艺的研究   总被引:1,自引:1,他引:0  
[目的]优化甘草中总黄酮的提取工艺。[方法]以乙醇为提取剂,采用超声波法辅助提取甘草中的总黄酮,并采用正交设计试验优化甘草总黄酮的提取工艺。[结果]在提取液乙醇浓度75%、料液比1∶25、超声功率350 W,超声时间25 m in的条件下,甘草总黄酮提取得率最高达1.943%,各因素影响顺序为乙醇浓度〉料液比〉超声功率〉超声时间。[结论]该试验为甘草的进一步开发利用提供了科学依据。  相似文献   

4.
以MS,B5,N6,NN,6,7-V,WP为基本培养基,分析了不同类型培养基对甘草愈伤组织生长及黄酮类化合物生物合成的影响,并考察了培养基中添加的激素种类和浓度以及培养基酸碱度的作用。结果表明:在6种基本培养基中,以B5培养基最利于生物量的积累,异甘草素含量最高WP培养基最利于甘草素的合成,其次是6,7-V培养基,以N6培养基最差;当培养基中添加0.1mg/L NAA时,甘草素含量最高,达57.24μg/g,当培养基中添加1.0mg/L NAA时,异甘草素含量最高,达36.45μg/g;pH值为6时,甘草愈伤组织生物量积累最高,同时对黄酮类化合物甘草苷和甘草素的生物合成也最为有利,尤其是甘草苷,积累量最高,达46.88μg/g,比其它pH值处理高152.8%~245.5%。  相似文献   

5.
王彦芳  赵海燕  马永平  袁飞娟 《安徽农业科学》2011,39(26):15956-15957,15959
[目的]研究超声波辅助处理对甘草中总黄酮提取效果的影响。[方法]采用正交试验,研究乙醇体积分数、料液比、提取时间对甘草黄酮提取率的影响;在最佳醇提条件下,采用单因素试验确定不同超声功率和时间对甘草黄酮提取率的影响。[结果]正交试验结果表明,甘草黄酮的最佳提取条件为:浓度75%的乙醇,料液比1∶14(g/m l),提取时间2 h。在此最佳醇提条件下对原料进行超声前处理,确定最佳超声条件为超声波功率100 W,时间1 h。[结论]采用最佳提取的工艺条件,甘草黄酮提取率可达2.69%。  相似文献   

6.
为研究接种根瘤菌对甘草主要活性成分的影响,提高甘草质量与产量及开发优质菌剂,以无处理甘草为对照,将3种根瘤菌(Rhizobium mongolense subsp.loessense strain CCBAU 7190B、Agrobacterium tumefaciens IAM13129、Agrobacterium tumefaciens strain CCBAU 65237)菌液按照10 mL·株-1(675×10-6 CFU·mL-1)接种于乌拉尔甘草、光果甘草、胀果甘草的地下部分,采用高效液相色谱法(high performance liquid chromatography,HPLC)测定不同处理下甘草的甘草酸、甘草苷、甘草素、异甘草苷及异甘草素含量。结果表明,在3种菌株处理后,乌拉尔甘草、光果甘草和胀果甘草中5种活性成分含量均显著高于对照组(P<0.05)。由此表明,根瘤菌与甘草共生可以显著提高甘草酸、甘草苷、甘草素、异甘草苷、异甘草素含量的积累,为提高甘草质量与产量提供参考。  相似文献   

7.
以生酸枣仁为原料,以总黄酮的提取量为指标确定生酸枣仁中总黄酮的提取条件,并建立了一种同时测定生酸枣仁中斯皮诺素和6''-阿魏酰斯皮诺素含量的高效液相色谱(HPLC)分析方法。利用单因素试验和响应面试验进行优化,最终确定超声提取法提取总黄酮的最佳条件为:料液比为1 g∶50 m L,超声时间为60 min,超声功率为270 W,乙醇浓度为50%。在此条件下,生酸枣仁中总黄酮的提取量为6.37 mg/g。测定的色谱条件为:COSMOSIL C18色谱柱(4.6 mm×250 mm,5μm);梯度洗脱,流速为0.80 m L/min;柱温为25℃,检测波长为335 nm。斯皮诺素和6''-阿魏酰斯皮诺素在50~500μg/m L范围内具有良好的线性关系(r2=0.999,r2=0.999),平均加标回收率为99.96%和100.11%,最低检出限为2.07μg/m L和1.54μg/m L。该方法灵敏度高,专属性强,可用于生酸枣仁中斯皮诺素和6''-阿魏酰斯皮诺素的测定。  相似文献   

8.
[目的]研究不同浓度的钼对甘草生长、产量和有效成分积累的影响。[方法]以一年生的甘草移栽苗为试验材料,采用盆栽蛭石的试验方法,共设置4个钼浓度水平,分别为0,0.52,5.20和10.40mg/L,其中0.52mg/L即正常Hoagland营养液中钼的浓度。每周向盆内浇灌营养液,以达到处理的目的。采用电子天平分别测定不同处理时间下的甘草地上、根的鲜重和干重。按照《中国药典》(2010年版,一部)应用HPLC测定甘草根主要有效成分甘草酸和甘草苷的含量。[结果]结果表明,甘草地上部分、根的鲜重和干重均随钼处理浓度的增加而增加,试验处理后期差异显著。在处理105d时,在0mg/L处理下甘草各部位的干、鲜重最低,5.20和10.40mg/L处理下最高。然而,随着钼处理浓度的增加,甘草酸和甘草苷含量呈现出先增加后降低的趋势。在整个试验过程中,钼浓度为5.20mg/L处理下的甘草酸和甘草苷含量始终高于其他处理。[结论]5.20和10.40mg/L的钼浓度可以促进甘草地上和根增加,但是5.20mg/L钼更适合根中活性成分甘草酸和甘草苷的积累。  相似文献   

9.
甘草组培苗的培养基优化及其有效成分分析   总被引:1,自引:0,他引:1  
为了探明用甘草种子无菌幼苗不同部位进行组培繁育的优化条件及其有效成分含量,利用组织培养技术结合高效液相色谱法和紫外分光光度法研究了甘草幼苗各部位进行组培的适宜外植体、组培苗的优化培养基及其有效成分。结果表明:1)适宜分蘖培养的外植体为生长4~7d的无菌幼苗子叶段,培养基为MS+0.2mg/L NAA+1.0mg/L 6-BA。2)以MS+3.0mg/L IBA+0.1mg/L KT培养基进行生根培养,其真叶段的效果最好,成苗率达79.33%,但相同培养基又以茎尖的生根效果最好,成苗率达94.67%。3)组培苗移栽以培养30d以上,蛭石和河沙为基质的效果较好,移栽成活率可达88%以上。4)组培苗中检测的8种甘草黄酮成分都低于甘草药材,但甘草组培苗中的总黄酮含量高于甘草药材,多糠含量为154.2mg/g,极显著高于甘草药材(145.5mg/g)。甘草不同部位、培养基、移栽时间和基质都会显著影响甘草的成苗和移栽成活率,甘草组培苗都含有甘草黄酮和多糖等有效成分。  相似文献   

10.
[目的]利用响应面法优化超声提取甘草浸膏中甘草酸的工艺条件。[方法]在乙醇浓度、超声波时间及料液比等单因素试验的基础上,根据Box-Behnken的中心组合设计原理采用3因素3水平的响应面分析法优化超声波提取甘草酸的工艺条件。[结果]超声提取甘草酸的最佳工艺条件为乙醇浓度70%、超声波时间30 min、料液比2.8 g/L,在此条件下甘草酸含量为8.34%。[结论]建立了甘草浸膏中甘草酸超声提取最佳工艺条件,为甘草浸膏的精深加工及进一步研究甘草酸在食品和医药领域产业化应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号