首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
大豆品质调控基因克隆和功能研究进展   总被引:1,自引:0,他引:1  
大豆(Glycine max L.)是世界上重要的经济作物,为人类生活提供所需的食用油和植物蛋白。大豆油脂、蛋白质和异黄酮含量决定了大豆的经济价值,大豆品质的优劣直接关系到食用者的身体健康,因此,越来越受到广大科研工作者的关注。大豆油脂脂肪酸组成对油的营养价值、耐储性及加工工艺等都有很大影响。油脂的组成和积累受脂肪酸合成途径中多种酶活性的影响,这些基因的表达还受到转录前、转录和转录后水平的调控,有许多相关基因参与此过程。目前大豆油脂的转录调控研究较多。研究表明,GmDOF4和GmDOF11类转录因子可以激活乙酰辅酶A羧化酶和长链脂酰辅酶A合成酶,从而提高了种子油分含量。转录因子GmMYB73可以通过抑制GL2进而促进磷脂酶D的活性,增加了转基因种子的油含量。转录因子GmbZIP123主要通过诱导蔗糖转运蛋白基因(AtSUC1、AtSUC5)和细胞壁转化酶基因(AtcwINV1、AtcwINV3和AtcwINV6)的表达,促进蔗糖从叶片到种子的运输,为油脂合成提供更多原料和能量,从而提高种子油脂含量。转录因子GmNFYA通过激活WRI及油脂合成相关基因,从而提高了种子油含量。大豆籽粒富含蛋白质,占籽粒干物质的40%左右(31%—55%)。大豆蛋白含有8种人体必需的氨基酸,是一种品质优良的植物性蛋白质,在膳食中可以代替部分动物性蛋白质。植物中油分和蛋白质往往是负相关的,GmDOF4和GmDOF11类转录因子可以提高植物油份含量,但其直接结合CRA1启动子,从而下调储藏蛋白的表达。大豆异黄酮是大豆生长过程中形成次生代谢产物,具有多种生物活性,在动植物体内有着广泛的生理作用。近年来大豆异黄酮已成为大豆最引人注目功能成分之一,也是食品与营养学研究热点之一。类黄酮类物质可能通过调节结节的产生从而调控植物的根瘤发育、生长繁殖和固氮作用。大豆异黄酮对乳腺癌、前列腺癌、心血管疾病和骨质疏松症的治疗也表现出其他一些有益的效应。目前研究表明,GmMYB176可以调控CHS8的表达,而干扰GmMYB176的表达降低了大豆根毛中异黄酮的水平,这表明GmMYB176对于异黄酮的生物合成是必需的。本文综述了大豆种子油分、蛋白以及异黄酮含量相关基因的研究进展,并对大豆种子油分、蛋白及异黄酮在转录水平和/或其他方面所受到的调控进行阐述。  相似文献   

2.
盐胁迫是限制植物生长和产量的重要环境因子之一。经过长期的进化,植物已形成了一套响应盐胁迫的调控机制。转录组学可以从植物mRNA整体转录水平揭示植物响应盐胁迫的调控机制,对研究植物抗盐、耐盐具有重要意义。本文针对转录组学在植物响应盐胁迫调控机制中的研究,简述了植物体内的信号传导、渗透调节、内源激素合成、光合作用、活性氧清除、次生代谢与细胞壁合成、转录因子等有关的差异表达基因,从转录水平上分析了植物的耐盐机制,为今后植物抗逆分子研究提供参考。  相似文献   

3.
唐科志  周常勇 《中国农业科学》2020,53(22):4584-4600
【目的】 明确红橘(Citrus reticulata Blanco, cv. Hongjv)接种褐斑病致病菌——链格孢菌橘致病型(Alternaria alternata tangerine pathotype)后基因种类和表达量在转录水平的变化规律,确定红橘响应该致病型侵染的关键基因。【方法】 采用链格孢菌橘致病型接种红橘离体叶片,28 h后选取感病叶片和未接种叶片提取RNA,进行转录组高通量测序,然后利用生物信息学分析,以甜橙基因组为参考,以|log2 fold change|≥1,q-value≤0.01为阈值选取感病和健康红橘叶片转录组的差异表达基因,应用GO数据库对差异表达基因(differentially expressed gene,DEG)进行功能分类,KEGG分析代谢途径,MapMan软件分析生物胁迫信号通路相关基因的表达变化。采用qRT-PCR方法对测序结果进行验证。【结果】 红橘接种链格孢菌橘致病型28 h后产生大量与胁迫相关的差异表达基因,获得上调差异基因5 173个,下调差异基因6 555个。GO功能分类显示差异基因主要与蛋白结合、膜、氧化还原过程等相关。通过KEGG富集和MapMan软件分析发现,红橘在受链格孢菌橘致病型胁迫的过程中基础代谢被严重破坏。乙烯、水杨酸和生长素等寄主防御相关的植物激素信号转导途径多个基因表达出现差异,其中乙烯起主导作用,乙烯受体ETR 3个成员被不同程度激活,下游激酶和乙烯响应因子均上调,生长素大部分关键信号基因、绝大部分生长素响应因子ARF和水杨酸合成途径的基因均下调表达。同时,黄酮醇、花青素、萜类化合物和生物碱合成相关基因受该菌诱导显著变化,萜类合成中大部分基因下调,而黄酮类合成相关上调基因数量和表达趋势均强于表达下调基因,有抗虫和抑菌作用的硫代葡萄糖苷基因呈上调趋势。进一步研究发现,大量参与抗逆过程的转录因子如WRKY、bZIP、ERF、MYB、NAC被诱导激活,其中大部分WRKY和bZIP转录因子受该菌正向调控,超过50%的ERF家族基因表达上调;在转录因子调控下,PTI及ETI响应基因如受体激酶、R蛋白、NBS抗病蛋白等大量表达,多个PR家族抗菌蛋白基因上调表达,22个抗氧化保护酶系统POD成员基因受到活性氧信号激发大量表达。以上结果表明链格孢菌橘致病型侵染对寄主内部生理状态产生显著影响。选取了19个与植物抗病相关基因进行qRT-PCR分析,其基因表达趋势与测序数据一致。【结论】 获得了红橘响应链格孢菌橘致病型侵染的差异表达基因及显著上调表达基因,其主要富集于代谢过程、应激反应及转录调控等条目中,这些基因的相互协同调控是红橘对该致病型产生防御反应的重要机制。  相似文献   

4.
花青素作为一种抗氧化物质,具有多种保健功效。与其他颜色花生相比,黑种皮花生具有良好的感官品质,且花青素含量更高。为了揭示花生黑种皮花青素形成和调控的分子机理,本研究以黑种皮花生(YH29)和粉红种皮花生(WH10)为研究对象,通过RNA-seq技术比较其转录组的差异。结果表明,与粉红种皮花生相比,黑种皮花生中1 539个基因表达上调,1 275个基因表达下调。KEGG分析发现花青素生物合成、苯丙素生物合成、类黄酮生物合成等多个与色素积累相关的通路在黑色种皮花生中富集。在黑种皮花生中,苯丙氨酸解氨酶、查尔酮合成酶等5个与花青素合成相关的关键酶基因表达上调,而与花青素生物合成途径竞争同一底物的一些关键酶基因,如柚皮素和甘草素基因,则表达下调,这使得有更多的底物流向花青素合成途径,这些基因的协同表达可能是黑种皮花青素高水平积累的关键。另外,两个R2R3-MYB转录因子在黑种皮花生中也表达上调,可能是引起花青素合成关键基因表达差异的关键因素。我们的研究结果为深入研究花生种皮花青素合成的分子机理及培育高花青素含量的花生新品种提供了参考。  相似文献   

5.
氮素是小麦生长发育过程中重要的营养元素,利用转录组技术鉴定参与小麦低氮胁迫分子调控网络的基因,对揭示小麦耐低氮分子机理、开展耐低氮育种具有重要参考意义。采用Illumina HiseqTM 2500高通量测序技术,对小麦品种晋麦47正常生长和低氮胁迫下的叶片进行转录组测序,筛选差异表达基因并在GO、KEGG 数据库中进行比对注释,分析小麦低氮胁迫响应相关基因。结果显示,对照组与低氮组分别获得高质量序列52 383 726和52 192 061条,检测到差异表达基因1 267个,其中上调表达基因179个,下调表达基因1 088个。差异基因GO功能注释到3个大类的44个功能组。差异表达基因被注释到178个途径上,主要富集于氨基酸代谢、碳水化合物代谢、脂类代谢和信号传导等途径。转录因子分析发现,在低氮条件下变化明显的转录因子家族包括WRKY、MYB和NAC等。  相似文献   

6.
氮素是小麦生长发育过程中重要的营养元素,利用转录组技术鉴定参与小麦低氮胁迫分子调控网络的基因,对揭示小麦耐低氮分子机理、开展耐低氮育种具有重要参考意义。采用Illumina HiseqTM 2500高通量测序技术,对小麦品种晋麦47正常生长和低氮胁迫下的叶片进行转录组测序,筛选差异表达基因并在GO、KEGG 数据库中进行比对注释,分析小麦低氮胁迫响应相关基因。结果显示,对照组与低氮组分别获得高质量序列52 383 726和52 192 061条,检测到差异表达基因1 267个,其中上调表达基因179个,下调表达基因1 088个。差异基因GO功能注释到3个大类的44个功能组。差异表达基因被注释到178个途径上,主要富集于氨基酸代谢、碳水化合物代谢、脂类代谢和信号传导等途径。转录因子分析发现,在低氮条件下变化明显的转录因子家族包括WRKY、MYB和NAC等。  相似文献   

7.
【目的】谷子适应性强,抗旱耐瘠,是起源于中国的重要作物。通过转录组测序技术分析谷子萌发不同吸水期的转录组差异,以期获得谷子萌发过程中的差异表达基因,寻找调控谷子萌发的重要代谢途径和代谢物。【方法】以晋谷20为材料,构建谷子萌发过程中开始快速吸水期、滞缓吸水期和重新大量吸水期的cDNA文库,进行转录组分析;采用K-Means开展基因表达聚类分析;利用DESeq筛选差异表达基因;通过COG、GO、KEGG等对差异表达基因进行功能注释;利用KEGG富集挖掘不同吸水期调控种子萌发的关键代谢途径和关键基因;并采用qRT-PCR验证其可靠性;用HPLC分析关键代谢物含量。【结果】转录物测序分析获得谷子萌发开始快速吸水期、滞缓吸水期和重新大量吸水期覆盖整个基因组的基因表达谱,共获得33 643个基因,识别9个具有不同表达模式的共表达基因簇。比较种子萌发的开始快速吸水期与滞缓吸水期、滞缓吸水期与重新大量吸水期、开始快速吸水期与重新大量吸水期,分别筛选出3 893、4 612和8 472个差异表达基因。KEGG富集分析表明,3个比较的差异表达基因都显著富集到phenylpropanoid biosynthesis、phenylalanine metabolism、starch and sucrose metabolism代谢途径;开始快速吸水期与滞缓吸水期、开始快速吸水期与重新大量吸水期的差异表达基因还显著富集到plant hormone signal transduction途径。并且3个比较中富集到phenylpropanoid biosynthesis和phenylalanine metabolism代谢途径的差异表达基因数都最多,其中过氧化物酶基因(peroxidase)比例最高。通过qRT-PCR对4个苯丙烷生物合成途径相关基因的分析表明,其表达趋势与转录组分析结果基本一致,其中,4-香豆酸-CoA连接酶3(4-coumarate-CoA ligase 3)在谷子种子中存在已形成mRNA,萌发吸水过程中呈先下调后上调再下调的表达趋势。苯丙烷类相关代谢物含量分析显示,芥子酸在种子中大量储备,在萌发过程中呈下调趋势;阿魏酸、对香豆酸和咖啡酸呈先上调后下调趋势。【结论】谷子萌发过程中,不同吸水期的差异表达基因显著与苯丙烷生物合成途径和苯丙氨酸代谢途径相关;其上游基因4-香豆酰-辅酶A连接酶和下游基因过氧化物酶家族成员在谷子萌发响应水分过程中发挥调控作用;中间产物芥子酸可能参与种子的休眠与萌发。  相似文献   

8.
【目的】谷子适应性强,抗旱耐瘠,是起源于中国的重要作物。通过转录组测序技术分析谷子萌发不同吸水期的转录组差异,以期获得谷子萌发过程中的差异表达基因,寻找调控谷子萌发的重要代谢途径和代谢物。【方法】以晋谷20为材料,构建谷子萌发过程中开始快速吸水期、滞缓吸水期和重新大量吸水期的cDNA文库,进行转录组分析;采用K-Means开展基因表达聚类分析;利用DESeq筛选差异表达基因;通过COG、GO、KEGG等对差异表达基因进行功能注释;利用KEGG富集挖掘不同吸水期调控种子萌发的关键代谢途径和关键基因;并采用qRT-PCR验证其可靠性;用HPLC分析关键代谢物含量。【结果】转录物测序分析获得谷子萌发开始快速吸水期、滞缓吸水期和重新大量吸水期覆盖整个基因组的基因表达谱,共获得33 643个基因,识别9个具有不同表达模式的共表达基因簇。比较种子萌发的开始快速吸水期与滞缓吸水期、滞缓吸水期与重新大量吸水期、开始快速吸水期与重新大量吸水期,分别筛选出3 893、4 612和8 472个差异表达基因。KEGG富集分析表明,3个比较的差异表达基因都显著富集到phenylpropanoid biosynthesis、phenylalanine metabolism、starch and sucrose metabolism代谢途径;开始快速吸水期与滞缓吸水期、开始快速吸水期与重新大量吸水期的差异表达基因还显著富集到plant hormone signal transduction途径。并且3个比较中富集到phenylpropanoid biosynthesis和phenylalanine metabolism代谢途径的差异表达基因数都最多,其中过氧化物酶基因(peroxidase)比例最高。通过qRT-PCR对4个苯丙烷生物合成途径相关基因的分析表明,其表达趋势与转录组分析结果基本一致,其中,4-香豆酸-CoA连接酶3(4-coumarate-CoA ligase 3)在谷子种子中存在已形成mRNA,萌发吸水过程中呈先下调后上调再下调的表达趋势。苯丙烷类相关代谢物含量分析显示,芥子酸在种子中大量储备,在萌发过程中呈下调趋势;阿魏酸、对香豆酸和咖啡酸呈先上调后下调趋势。【结论】谷子萌发过程中,不同吸水期的差异表达基因显著与苯丙烷生物合成途径和苯丙氨酸代谢途径相关;其上游基因4-香豆酰-辅酶A连接酶和下游基因过氧化物酶家族成员在谷子萌发响应水分过程中发挥调控作用;中间产物芥子酸可能参与种子的休眠与萌发。  相似文献   

9.
花青素是植物的主要代谢产物,在植物的生长发育过程中扮演重要角色。其合成受多种结构基因和调控基因的控制。文中综述了模式植物拟南芥的花青素合成途径,着重介绍了调控花青素合成途径转录因子的最新进展,为植物代谢工程和观赏园艺植物分子育种提供参考。  相似文献   

10.
[目的]本文旨在阐明黄瓜植株接种促生解淀粉芽胞杆菌SQR9后其根系基因的表达谱变化特征,从植物响应微生物的角度揭示植物根际促生细菌(plant growth-promoting rhizobacteria, PGPR)的作用机制。[方法]利用Illumina高通量测序技术研究接种菌株SQR9对黄瓜根系基因表达谱影响的转录组特征,对显著差异表达基因进行GO功能和KEGG富集分析。[结果]与未接种的对照黄瓜植株比较,菌株SQR9接种72 h后黄瓜根系有484个基因的表达发生显著变化,包括300个上调基因和184个下调基因。Real-time PCR验证表明基因表达差异趋势与转录组测序结果一致,证明测序结果可信。黄瓜根系响应菌株SQR9的差异基因主要参与碳水化合物代谢、氨基酸代谢、次级化合物代谢和信号转导途径等。在植物促生方面,氨基酸代谢途径中ASP1基因(编码天冬氨酸转氨酶)表达上调约4倍;糖酵解途径中PDC基因(编码丙酮酸脱羧酶)和卡尔文循环中FBA6基因(编码果糖二磷酸醛缩酶)表达均上调3~5倍;生长素响应途径中编码生长素抑制子的IAA8基因表达显著下调,而编码响应蛋白的基因SAUR77和SAUR21表达均上调3倍左右,表明菌株SQR9产生的外源吲哚乙酸(indole-3-acetic acid, IAA)激活了植物内源的IAA信号途径。在植物免疫方面,免疫信号途径转录因子的编码基因WRKY29和ERF1B表达上调,激活植物系统抗性并有助于提高抗病能力;编码抗胁迫因子的C_4H和ADH1基因表达也显著上调,提高植物抗逆能力。[结论]菌株SQR9可通过调控黄瓜根系代谢相关基因表达和激活免疫途径相关基因的方式促进黄瓜植株生长并提高其抗病能力。  相似文献   

11.
12.
【目的】在植物中,内质网胁迫(endoplasmic reticulum stress,ERS)和未折叠蛋白应答(unfolded protein response,UPR)参与环境胁迫响应过程,然而,玉米种子老化过程中内质网胁迫相关基因表达情况尚未见报道。文章利用基因数字表达谱技术探究玉米种子老化过程中内质网胁迫相关基因表达规律,以期为揭示种子衰老的分子机制提供理论依据。【方法】以玉米杂交种郑单958种子为材料,采用高温(45℃)高湿(相对湿度100%)的方法进行人工老化处理。分别提取未老化处理(对照)和老化处理3 d的玉米种胚总RNA,利用Illumina HiSeqTM 2000平台进行高通量测序。去除原始数据中的接头序列、包含模糊碱基的序列以及低质量序列,获得Clean reads,利用短序列比对软件SOAPaligner/ SOAP2将Clean Reads分别比对到玉米参考基因组和参考基因序列,采用RPKM(reads per kb per million reads)方法计算基因的表达量,根据FDR(false discovery rate)<0.001和|log2 ratio(T/CK)|≥1的标准筛选差异表达的基因,对获得的差异表达基因(differentially expressed genes,DEGs)进行KEGG(kyoto encyclopedia of genes and genomes)数据库功能注释分析,筛选出响应人工老化的内质网胁迫相关差异表达基因。利用qRT-PCR技术定量分析内质网胁迫相关基因在不同人工老化时间内的表达特性。【结果】基因数字表达谱鉴定结果表明,有104个差异表达基因在人工老化过程中参与内质网蛋白质加工(protein processing in endoplasmic reticulum)通路,其中内质网胁迫相关基因有97个(81个上调表达,16个下调表达)。对差异表达基因功能注释分析表明,内质网胁迫的标志性蛋白基因BiP以及分子伴侣蛋白基因CRTCNTGRP94等显著上调表达。参与内质网相关性降解(endoplasmic reticulum-associated degradation,ERAD)途径的有83个差异表达基因(70个上调,13个下调),其中启动ERAD途径的关键酶基因EDEM (ER degradation enhancing mannosidase I-like protein)下调,参与蛋白泛素化的E2泛素结合酶基因UbcH5、E3泛素连接酶基因Hrd1Doa10等也发生显著的表达变化。qRT-PCR结果表明,内质网胁迫相关基因在不同人工老化时间内表现表达多样性和复杂性。【结论】人工老化处理能造成玉米种胚细胞发生内质网胁迫。细胞通过上调分子伴侣基因表达和诱导ERAD途径响应内质网胁迫,但ERAD途径受阻可能引起错误折叠蛋白聚集,从而进一步加剧细胞损伤,最终导致种子活力降低甚至丧失。  相似文献   

13.
人工劣变处理对玉米种胚差异基因表达的影响   总被引:1,自引:0,他引:1  
【目的】利用数字基因表达谱技术(digital gene expression tag profiling,DGE)探索人工控制劣变(controlled deterioration treatment,CDT)条件下玉米种胚差异基因的表达变化,为揭示种子劣变的分子机理提供依据。【方法】以玉米杂交种郑单958种子为材料,采用高温(45℃)高湿(相对湿度100%)方法处理72 h,以未处理材料为对照,利用DGE分别进行高通量测序,测序结果与参考基因组和参考基因数据库比对获得表达基因,利用RPKM(Reads Per Kb per Million reads)方法计算基因的表达量,根据FDR(false discovery rate)<0.001和|log2 ratio(T/CK)|≥1的标准筛选差异表达的基因,对获得的差异表达基因(digital expression genes,DEGs)进行GO(gene ontology)和KEGG(kyoto encyclopedia of genes and genomes)数据库功能注释,并对注释结果进行富集分析处理。【结果】对照玉米种胚中检测到32 000多种mRNAs。CDT处理后差异表达基因有4 713个。其中上调表达2 874个,下调表达1 839个。GO富集分析表明,这些基因涉及细胞组分、分子功能和生物学过程方面,其编码的蛋白主要分布在细胞器和细胞膜上,参与能量代谢、信号转导、刺激响应和衰老死亡等过程,具有结合、催化和抗氧化等功能。这些基因中,能被KEGG数据库注释的有2 470个,参与了288条代谢通路,其中有16条通路存在着显著性富集。这些通路中,参与能量代谢的基因共有113个,分别参与糖酵解/糖异生过程(59个)、磷酸戊糖途径(31个)和丙酮酸代谢过程(50个);其中,调节糖酵解/糖异生过程的烯醇化酶基因、3-磷酸甘油醛脱氢酶基因等、丙酮酸代谢中的丙酮酸激酶基因等和磷酸戊糖途径中的α-L-岩藻糖苷酶基因等上调幅度最大。还发现,调节NADH代谢相关的基因有25个(9个上调,16个下调);NADPH代谢的有10个(4个上调,6个下调)。这些基因的表达变化能够调节活性氧的产生和积累。【结论】DGE可以作为研究种子劣变和活力丧失的有效手段。CDT能够影响玉米种胚差异基因的表达,进而影响细胞能量代谢相关过程,主要表现在糖酵解途径受到抑制,导致ROS产生和积累,从而加速玉米种胚细胞的衰老及死亡,最终造成种子的劣变和活力丧失。在这个过程中,差异表达基因可能扮演重要角色。  相似文献   

14.
大豆LEA基因家族全基因组鉴定、分类和表达   总被引:3,自引:1,他引:2  
 【目的】鉴定大豆全基因组中的LEA家族基因,对其进行定位、分类以及组织表达分析,为植物LEA基因的功能研究与利用提供基础。【方法】利用大豆基因组数据库,通过生物信息学手段,鉴定并获得大豆LEA家族基因的全序列、定位和拷贝数信息;通过序列比对进行进化和分类分析;利用大豆发育表达芯片数据、NCBI中UniGene的EST表达数据进行组织表达谱分析。【结果】系统地分析鉴定了36个大豆的LEA家族基因,根据结构域的差异和系统发育分析将这些LEA基因分成8个亚家族。基因定位分析结果表明,这些基因分布于大豆的16条染色体上,启动子分析表明,几乎全部LEA基因的启动子区含有逆境反应顺式作用元件。各个发育阶段表达谱的分析结果表明,多数成员至少在一个组织中表达,10个差异表达的基因中有5个在种子发育时期优势表达,另外5个在其它部位优势表达。【结论】通过全基因组扫描,获得大豆基因组的36个LEA家族基因,它们分属于8个不同的亚家族,分布于16条大豆染色体上,启动子区含有逆境相关顺式作用元件,基因表达具有一定特异性。  相似文献   

15.
大豆种子老化过程中活力指标的研究   总被引:6,自引:0,他引:6  
以两个大豆种子为供试材料,通过(58±1)℃热水老化,进行了不同老化水平大豆种子生活力及活力指标变化的研究。结果表明:大豆种子老化过程中,发芽势、发芽指数、活力指数都先于发芽率出现明显的下降;随着老化时间的延长,两个不同种皮的大豆品种耐贮能力出现差异;黑色种皮的晋豆3号较黄色种皮的晋豆20号种子在老化过程中各项活力指标都高,显示出其劣变的程度相对较小、耐贮;两个老化品种活力下降曲线均呈反S形曲线走向。  相似文献   

16.
以菏豆13号和辽豆11号为试材,研究不同贮藏温度和种子含水量对大豆种子活力的影响。结果表明:贮藏温度和种子含水量均能影响大豆种子活力;随贮藏时期的延长,大豆种子活力呈下降趋势;25℃贮藏各水分处理与4℃贮藏高水分(12%)处理影响大豆种子活力;-20℃贮藏时,水分条件对种子活力的影响反应敏感度较低,中水(8%)和低水(4%)处理可以减缓大豆种子老化速率,较好地保持大豆种子活力。  相似文献   

17.
春大豆种子田间劣变性和劣变抗性的差异蛋白质组学研究   总被引:3,自引:2,他引:1  
【目的】南方春大豆种子在生理成熟(R6或R7期)过程中易受高温高湿胁迫影响常会发生种子田间劣变,已经严重制约了中国南方春大豆生产和应用的发展。应用比较蛋白质组学技术,在蛋白表达水平上揭示高温高湿下南方春大豆种子田间劣变性和劣变抗性的机制,为遗传育种改良和新品种选育奠定种质基础。【方法】利用抗种子田间劣变种质湘豆3号和不抗种质宁镇1号为材料,在种子发育到生理成熟期时模拟田间高温高湿胁迫处理,运用双向电泳(2-DE)和MALDI-TOF/TOF鉴定技术研究春大豆种子蛋白质表达谱的变化。【结果】高温高湿胁迫处理和对照条件下(1、5、10、16和24 h),湘豆3号和宁镇1号大豆种子可溶性蛋白的每张2-DE重复胶上都可以检测到700多个可重复蛋白点,50个蛋白质点在处理与对照之间表达量上存在显著差异。其中有33个差异蛋白点经质谱分析成功鉴定;功能分类表明,这些成功鉴定的差异蛋白分别涉及细胞修复及防御(9%)、氧化还原平衡(12%)、蛋白合成(3%)、能量代谢(15%)、转运过程(15%)以及贮藏蛋白(31%)等代谢途径和细胞过程。此外,还有5个差异蛋白为未知功能蛋白。【结论】高温高湿胁迫下,抗性种质湘豆3号较不抗种质宁镇1号具有较强的抗氧化和细胞修复及防御能力,可能是其具有较强的抗种子田间劣变性的关键原因。  相似文献   

18.
19.
磷脂酶可水解膜双分子层的主要成分磷脂,在植物生长发育及逆境胁迫响应方面发挥着重要作用。磷脂酶在种子生长发育、贮藏和萌发阶段调控种子活力,影响植物遗传资源保存和农作物产量。文章归纳总结了磷脂酶在种子各阶段对其活力的影响,包括在种子生长发育期间调控淀粉合成影响种子活力的形成,在种子成熟阶段调控膜完整性影响种子的耐脱水能力,在贮藏期间可能调控细胞中的氧化损伤程度影响种子活力,在萌发阶段参与脱落酸(ABA)和赤霉素(GA)信号传导,调控种子的萌发及幼苗建成。然而由于磷脂酶多样且复杂的生物学功能,其调控种子活力的机制仍不明确。利用基因编辑及多组学技术手段,深入研究磷脂酶调控种子活力的生物学功能及调控机制,不仅有助于阐明种子老化的分子机制,还可为种质创新提供有价值的基因资源,具有重要的理论和实践意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号