首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
植物氮素吸收、运转和分配调控机制研究   总被引:3,自引:0,他引:3  
氮是影响植物生长发育的必需大量营养元素之一,是叶绿素、氨基酸、核酸、次生代谢产物的重要组分。目前在农业生产中氮肥施用过量、效率低下、对环境造成不利影响的问题非常严重。NH_4~+-N和NO_3~--N是植物吸收利用的主要无机氮素形态,植物在演替过程中逐渐形成高效吸收和利用氮素的生理和分子机制。本文重点综述了植物根系从土壤中吸收NH_4~+-N和NO_3~--N,再通过木质部和韧皮部转运至地上部并在各器官进行分配、利用的生理过程和分子调控机制研究进展,并对今后的氮素吸收、运转和分配的研究重点提出展望,这为生产上促进植物氮素吸收和利用,提高氮效率和增强农业生产力提供了理论基础。  相似文献   

2.
氮素形态对植物生长影响的研究进展   总被引:10,自引:0,他引:10  
铵态氮和硝态氮作为植物从土壤中吸收的主要无机态氮素,对植物的形态学特征以及生理过程具有不同的影响。从植物对不同形态氮素的吸收利用机制,氮素形态调控植物养分吸收、根系发育、光合生理、产量与品质形成及氮转运蛋白基因表达等方面进行了综述,阐述了氮素形态调控植物生长的机理,并提出了氮素形态研究中需要进一步阐明的问题。  相似文献   

3.
概述了土壤对磷吸收、迁移、同化以及磷在植物体内分布、吸收、转运、利用的机理;总结了低磷胁迫植物的生理生化响应、植物激素的调控效应、遗传变化、驯化适应;揭示了植物低磷代谢信号网络系统、分子应答调控机制和代谢酶的适应性变化,并阐述了低磷胁迫条件下植物的基因性状鉴定和基因工程应用的研究进展.最后展望了提高低磷胁迫植物磷利用效率的途径、面临的挑战及应用前景.  相似文献   

4.
综述了反刍动物体内氨与尿素代谢的研究进展,阐述了氨在胃肠道的来源和去路,讨论了尿素循环的过程及其影响因素,介绍了研究氨的产生、吸收与尿素循环的方法,探讨了调控尿素循环的途径。综合分析认为,尿素循环利用是反刍动物机体内源氮重吸收中最重要的组成部分,通过减少氨吸收和氨基酸分解代谢来减少日粮氮转化成尿素,或者提高肝脏中合成的尿素及再循环至胃肠道的尿素转化成微生物蛋白质的效率,可提高日粮氮素的利用效率。因此,开展尿素循环规律的研究,以建立实用日粮条件下含氮化合物的整体代谢模型,对调控反刍动物体内氮素营养至关重要。  相似文献   

5.
氮素在植物中的利用综述   总被引:1,自引:0,他引:1  
氮素是植物生长的必需营养元素,世界范围内常施用大量氮肥以提高作物的产量。然而,氮肥不仅价格昂贵,还会污染环境,威胁人类身体健康。解决这一问题的其中一个策略是开发一些能够固氮和高效利用氮肥的作物,这样可以在减少氮肥施用的情况下获得较高的作物产量。本文梳理了植物对氮元素从源到库器官的吸收、重组和利用的整个过程,分析了植物中参与分配和瞬时存储的无机氮和有机氮的形式,以及它们如何影响氮的可用性、代谢和再活化。同时,介绍了氮素转运蛋白在源和库器官中的基本功能及其在调节氮的运输、氮信号传导调控中的重要性。认为氮素转运蛋白是提高氮素利用效率和作物产量有效靶标,这为如何结合当前的研究发现来推动未来的作物工程发展提供了有价值的线索。  相似文献   

6.
钼(Mo)作为植物必需的微量元素,在促进植物生长发育和增强植物抗逆性方面发挥着关键作用。植物对钼的吸收转运主要受到钼酸盐转运蛋白基因MOT1和MOT2调控,钼进入植物体内以含钼酶形式参与植物生长代谢,其中对植物抗逆性方面的调控主要表现为:钼通过含钼酶硝酸还原酶、醛氧化酶、黄嘌呤脱氢酶影响植物体内的光合碳氮代谢、激素合成和活性氧代谢进而调控植物抗寒性;钼通过硝酸还原酶和醛氧化酶介导的信号转导过程调控根系发育、养分水分利用及抗旱基因表达,进一步影响脂质合成与代谢调控植物抗旱性;最新研究还发现钼在植物适应盐胁迫、缓解重金属胁迫方面也具有重要作用。这些研究结果为通过钼营养调控提升植物的抗逆性提供了新思路。  相似文献   

7.
水稻氮代谢决定了氮素的吸收、转运和同化,最终影响产量形成.外施水杨酸(SA)对植物氮代谢和氮肥利用效率发挥积极作用,但对其作用方式及SA与氮代谢之间的关系知之甚少,尤其缺乏分子水平的解析.本文从氮素的吸收形式、生理生化代谢及内源SA含量变化等方面对水稻氮素吸收利用的研究进行了综述,旨在从氮代谢角度阐释植株对氮素的运移特性、SA的调节效应及可能的作用方式,为发展节肥增效栽培和环境友好型稻作提供新思路.  相似文献   

8.
NO-3不仅是植物从土壤中吸收的重要无机氮素形式,还是在植物体内转移的氮素形式,植物依赖硝酸盐转运体(Nitrate transporters,NRTs)参与吸收和转运NO-3.目前,许多学者主要对NRT1.1、NRT1.2、NRT2.1进行大量研究,而对其他硝酸盐转运体的功能及调控机制研究甚少.植物体作为一个整体,吸收、转运硝酸盐是一个连续的过程,在此过程中,各硝酸盐转运体间如何相互补充、相互协调,仍有待进一步研究.文章通过对NRTs蛋白的结构、生物学功能和调控机制进行综述,旨在阐明植物吸收、转运NO-3的生理机制,为通过基因工程手段提高作物氮素利用效率的研究提供理论依据.  相似文献   

9.
NO-3不仅是植物从土壤中吸收的重要无机氮素形式,还是在植物体内转移的氮素形式,植物依赖硝酸盐转运体(Nitrate transporters,NRTs)参与吸收和转运NO-3.目前,许多学者主要对NRT1.1、NRT1.2、NRT2.1进行大量研究,而对其他硝酸盐转运体的功能及调控机制研究甚少.植物体作为一个整体,吸收、转运硝酸盐是一个连续的过程,在此过程中,各硝酸盐转运体间如何相互补充、相互协调,仍有待进一步研究.文章通过对NRTs蛋白的结构、生物学功能和调控机制进行综述,旨在阐明植物吸收、转运NO-3的生理机制,为通过基因工程手段提高作物氮素利用效率的研究提供理论依据.  相似文献   

10.
植物对硝态氮的吸收及其调控   总被引:15,自引:0,他引:15  
硝态氮不仅是重要的营养元素,而且作为信号物质调节植物的生长发育,土壤中硝态氮的含量变化很大,为适应不同环境,植物进化出多种获得氮素的途径,因此了解植物适应氮营养胁迫的生理遗传特性在理论和实践上都具有重要的意义,本文就近年关于植物对硝态氮吸收和调控的工作进行了综述。  相似文献   

11.
从已发表论文和相关数据库中收集到与ABA代谢有关数据,构建脱落酸代谢网络图;根据信号传递网络性质,获得ABA信号传递中所需要的信号分子、受体、第二信使和激酶等信息.应用CellNetAnalyzer软件分析ABA信号传递网络,获得了信号传递路径与网络冗余性,为研究植物ABA代谢调控机理提供依据.  相似文献   

12.
13.
● The Green Revolution broadened the trade-off between yield and nitrogen-use efficiency. ● Root developmental and metabolic adaptations to nitrogen availability. ● Mechanisms of nitrogen uptake and assimilation have been extensively studied. ● Modulating plant growth-metabolic coordination improves nitrogen-use efficiency in crops. The Green Revolution of the 1960s boosted crop yields in part through widespread production of semidwarf plant cultivars and extensive use of mineral fertilizers. The beneficial semidwarfism of cereal Green Revolution cultivars is due to the accumulation of plant growth-repressing DELLA proteins, which increases lodging resistance but requires a high-nitrogen fertilizer to obtain high yield. Given that environmentally degrading fertilizer use underpins current worldwide crop production, future agricultural sustainability needs a sustainable Green Revolution through reducing N fertilizer use while boosting grain yield above what is currently achievable. Despite a great deal of research efforts, only a few genes have been demonstrated to improve N-use efficiency in crops. The molecular mechanisms underlying the coordination between plant growth and N metabolism is still not fully understood, thus preventing significant improvement. Recent advances of how plants sense, capture and respond to varying N supply in model plants have shed light on how to improve sustainable productivity in agriculture. This review focuses on the current understanding of root developmental and metabolic adaptations to N availability, and discuss the potential approaches to improve N-use efficiency in high-yielding cereal crops.  相似文献   

14.
Metabolomics has been rapidly developed as an important field in plant sciences and natural products chemistry. As the only natural source for a diversity of monoterpenoid indole alkaloids (MIAs), especially the low-abundance antitumor agents vinblastine and vincristine, Catharanthus roseus is highly valued and has been studied extensively as a model for medicinal plants improvement. Due to multistep enzymatic biosynthesis and complex regulation, genetic modification in the MIA pathway has resulted in complicated changes of both secondary and primary metabolism in C. roseus, affecting not only the MIA pathway but also other pathways. Research at the metabolic level is necessary to increase knowledge on the genetic regulation of the whole metabolic network connected to MIA biosynthesis. Nuclear magnetic resonance (NMR) is a very suitable and powerful complementary technique for the identification and quantification of metabolites in the plant matrix. NMR-based metabolomics has been used in studies of C. roseus for pathway elucidation, understanding stress responses, classification among different cultivars, safety and quality controls of transgenic plants, cross talk between pathways, and diversion of carbon fluxes, with the aim of fully unravelling MIA biosynthesis, its regulation and the function of the alkaloids in the plant from a systems biology point of view.  相似文献   

15.
DREB转录因子是重要的转录因子之一,在调控与逆境相关基因的表达、提高植物对逆境胁迫适应性中发挥重要作用.文章综述DREB转录因子的克隆、结构特点、表达、与植物逆境胁迫的关系、信号传导及在植物抗逆基因工程中的应用等的研究进展,指出该领域研究存在的问题如:其他多个逆境条件下DREB类转录因子的研究、受DREB直接调控的基因的特点及其调控机制、DREB自身和结构调控及其调控基因形成的表达调控网络,今后须针对这些问题进行深入研究,为提高作物抗逆性和选育抗逆作物品种奠定基础.  相似文献   

16.
有效削减农业面源氮污染负荷是提升水环境质量的关键,也是当前关注的热点之一。氮排到水体是污染源,但其本身是农作物生长必需的营养元素。为此,提出了基于养分回用-替代化肥的农业面源污染氮负荷削减策略,利用农业生产系统对农业面源污染排放的氮进行消纳和回用,减少农田化肥氮投入并有效削减排入到水环境中的氮,达到农业生产与环境保护的双赢。重点介绍了面源污水中氮的农田直接回用、水生植物回收-有机肥还田替代、环境材料吸附净化-回收还田等几种技术途径及其应用,并指出了目前存在的不足及以后发展的方向。  相似文献   

17.
植物磷转运蛋白是植物磷营养中必需的一种膜蛋白。植物磷转运子在植物根系中负责磷的吸收、转运,其表达受磷调控,磷元素广泛存在于动植物组织中,是植物生长所必需的大量无机营养元素之一,在诸多代谢过程中都起着举足轻重的作用。在植株中,磷素通过磷酸盐转运蛋白吸收和转运,该蛋白在调控植株对磷素吸收、利用效率等方面具有重要作用。植物基因组中含有大量推测的以基因家族的形式存在的编码磷转运蛋白基因。目前已知的磷转运子分为五大家族Pht1、Pht2、Pht3、Pho1和Pho2。文中主要综述了水稻、大豆、玉米、小麦、拟南芥、番茄、苜蓿、马铃薯中Pht1家族的结构、功能及表达调控方面的研究进展。  相似文献   

18.
WRKY 转录因子是植物中特有的一类反式作用因子。WRKY 基因家族成员众多,是植物中最大的转录因子家族之一。目前,已在多种园艺植物中对该家族进行了全基因组鉴定。大量研究表明,WRKY 转录因子参与了植物中多种生物学过程,如营养剥夺、胚胎发生、种子发育、毛状体发育、叶片衰老及其他发育和激素调节的过程,是许多调控信号网络的重要组成部分。WRKY 转录因子还可参与植物适应各种逆境的转录调控,已被证明其在生物应激反应中发挥重要作用并参与植物的防御机制,其在植物防御病菌、病毒和虫害调控过程中的重要作用正被逐步揭示。此外,WRKY 转录因子在植物响应环境中非生物胁迫方面的作用也被不断解析,其可参与调控植物对干旱、温度、盐及渗透的响应,并在此过程中发挥正向或负向调节作用。本文基于近年来的相关研究成果,重点综述了 WRKY 转录因子在园艺植物生长发育、胁迫响应和代谢合成方面所发挥的作用和调控机理,进一步明确园艺植物 WRKY 转录因子的重要生物学功能,阐明 WRKY 转录因子介导的转录调控网络,为园艺植物优良性状相关的遗传资源挖掘和分子育种提供理论支撑。  相似文献   

19.
Starch, a major storage metabolite in plants, positively affects the agricultural yield of a number of crops. Its biosynthetic reactions use adenosine diphosphate glucose (ADPGlc) as a substrate; ADPGlc pyrophosphorylase, the enzyme involved in ADPGlc formation, is regulated by allosteric effectors. Evidence that this plastidial enzyme catalyzes a rate-limiting reaction in starch biosynthesis was derived by expression in plants of a gene that encodes a regulatory variant of this enzyme. Allosteric regulation was demonstrated to be the major physiological mechanism that controls starch biosynthesis. Thus, plant and bacterial systems for starch and glycogen biosynthesis are similar and distinct from yeast and mammalian systems, wherein glycogen synthase has been demonstrated to be the rate-limiting regulatory step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号