首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
改进了一种基于新型的荧光染料——二氧化硅的核壳荧光纳米颗粒的纳米pH传感器,以异硫氰酸荧光素(FITC)标记的羊抗人免疫球蛋白IgG为核材料,采用实验条件简单的油包水的微乳液方法制备荧光纳米颗粒,该方法有效地防止了荧光染料在二氧化硅壳层中的泄露。这种FITC的核壳荧光纳米颗粒对pH敏感,在pH值5.5—7之间呈线性响应,且能被单个小鼠巨噬细胞吞噬,借此用于单细胞中pH的实时监测。  相似文献   

2.
以黄瓜绿斑驳花叶病毒为检测对象,应用黄瓜绿斑驳花叶病毒的特异性抗体,以稀土荧光纳米颗粒为标记物,制备黄瓜绿斑驳花叶病毒荧光纳米颗粒试纸条,建立高效、灵敏、准确检测黄瓜绿斑驳花叶病毒的荧光免疫技术体系,旨在研发一种可用于快速、便捷检测黄瓜绿斑驳花叶病毒(CGMMV)的检测方法。  相似文献   

3.
采用MTT分析方法结合激光共聚焦荧光显微成像系统研究了无机硅壳类纳米颗粒,包括无机二氧化硅纳米颗粒(SiNP)、二氧化硅壳荧光纳米颗粒(FSiNP)以及二氧化硅磁性纳米颗粒(MSiNP)对COS-7细胞、HNE1细胞和MCF-7细胞的毒性。研究结果表明:在有效浓度范围内,无机硅壳类纳米颗粒具有很好的生物相容性,对细胞的生长和代谢没有明显的影响,从而为无机二氧化硅纳米颗粒在生物医学中的应用提供了坚实的理论依据。  相似文献   

4.
采用反相微乳液法,制备了以亚甲基蓝为内核材料的亚甲基蓝二氧化硅纳米颗粒,通过优化亚甲基蓝的包裹浓度获得荧光信号较强的纳米颗粒,并初步考察了其用于Hela细胞标记与体内示踪的可行性.通过MTT实验考察了颗粒对细胞的毒性影响以及较为适宜的标记细胞的浓度,结果表明:当颗粒浓度为1 mg/mL时,细胞的存活率仍有80%左右.利用激光共聚焦显微镜考察了Hela细胞对颗粒的吞噬情况以及颗粒在细胞内的分布情况,结果表明,该颗粒能被Hela细胞吞噬且主要分布在溶酶体内.活体荧光成像结果显示,尾静脉注射该颗粒后,裸鼠全身都发射出近红外荧光信号,随着血液的循环,颗粒慢慢聚集在肝脏等器官中.以上结果表明,包裹亚甲基蓝的二氧化硅纳米颗粒可以用于细胞的标记和体内示踪成像.  相似文献   

5.
将腺苷的核酸适配体设计成两段DNA链,一段修饰在硅包银纳米颗粒上,另一段修饰在磁性颗粒上.利用腺苷与其核酸适配体的特异性结合,通过检测磁性分离后上清液中硅包银纳米颗粒的光散射信号变化,实现了腺苷检测.方法的线性范围为8.0×10~(-6)~5.0×10~(-4)mol/L,线性相关系数(r)为0.981 8,其他的核苷不干扰测定.  相似文献   

6.
以交联法制备壳聚糖纳米颗粒,用透射电子显微镜和Zeta电位仪对壳聚糖纳米颗粒进行表征,发现颗粒呈球形,粒径约为50rim,微球表面光滑、球形团整、颗粒比较均匀、分散性好,电位约为11.1mv;琼脂糖凝胶电泳结果显示,壳聚糖纳米颗粒能有效地结合质粒DNA,并能保护所结合的DNA防止DNaseⅠ的酶切;将含GFP基因的壳聚糖纳米颗粒复合物使用基因枪转化洋葱表皮细胞,在倒置荧光显微镜下观察,发现细胞表达了绿色荧光蛋白,表达效率为8%.  相似文献   

7.
以转基因水稻科丰6号不同含量的水稻种子为样品,对影响检测结果的主要前处理措施,包括样品研磨颗粒细度与DNA提取过程中样品CTAB裂解缓冲液温育时间等,进行分析筛选.结果表明,样品颗粒细度与CTAB缓冲液温育时间的不同处理组合对提取的DNA含量影响极显著,其中,样品颗粒细度100目与CTAB缓冲液温育时间8 h(过夜)处理的样品DNA提取效果与荧光PCR检测结果均最佳.采用最佳前处理组合,样品的主要转基因成分(Ca MV 35S、NOS、Cry1Ab)检出限从通常的转基因含量质量分数0.01%降到0.001%,使得水稻种子转基因成分荧光PCR检测灵敏度提高10倍,大幅度提高了检测结果的准确性.  相似文献   

8.
[目的]评价磷酸钙纳采颗粒的基因转染能力,确定其是否具有潜在的DNA疫苗佐剂活性.[方法]以柠檬酸钠作为分散荆,通过共沉淀法合成粒径分布狭窄的磷酸钙纳米颗粒.通过细胞毒性试验评价其安全性,并利用荧光显微镜和流式细胞仪对其基因转染能力进行评价.[结果]成功制备了粒径分布狭窄的磷酸钙纳米颗粒,其平均水合粒径和表面电势分别为692.6 nm和-11.1 mV.同时该材料对293T细胞无明显的毒性作用,且可显著提高pEGFP的细胞转染效率.[结论]柠檬酸钠修饰的磷酸钙纳米颗粒安全性好,具有较强的基因转染能力,是一种潜在的DNA疫苗载体或佐剂.  相似文献   

9.
硅是地壳内含量第二丰富的元素。近年来,人们开始探索硅的纳米材料在农业领域的运用。为更好地将二氧化硅纳米颗粒应用于园艺植物生产,以黄瓜栽培品种新唐山秋瓜(Cucumissativuscv."QiuguaofNew Tangshan")为材料,采用盆栽的方式研究不同施入量下(0、5、10和20m L)浓度为30%的二氧化硅溶液对黄瓜根系解剖结构、根毛形成、黄瓜叶片光合色素含量、叶绿素荧光参数以及气体交换的影响。结果表明,二氧化硅纳米颗粒对黄瓜的根系解剖结构并没有显著的影响,但对根毛形成的影响较大,在每盆20m L二氧化硅溶液条件下的根毛密度最高。施入不同量的二氧化硅溶液对黄瓜叶片光合色素含量均有提高但并不明显,且在较低施入浓度下,光合作用机制得到一定的提高。黄瓜叶片的净光合速率随着二氧化硅施入量的增加逐渐增加,但施入量对蒸腾速率的影响不明显。综上,二氧化硅纳米颗粒通过促进根毛形成以及提高净光合速率能够提高植物的生长机理,进而促进植物生长和产量的提高,将其运用于农业生产及园艺作物生产上具有广阔前景。  相似文献   

10.
通过考察水与表面活性剂的摩尔比(R),TEOS的量、氨水的量及包壳次数对基于Triton X 100/环已烷/正已醇/水反相微乳液体系制备二氧化硅纳米颗粒尺寸的影响,开展了基于反相微乳液法的尺寸可控性二氧化硅纳米颗粒制备研究.结果表明:在其他参数都恒定的情况下,通过改变微乳液体系中上述某一组分的量,可以在一定程度上实现二氧化硅纳米颗粒的尺寸可控性合成.首先,水与表面活性剂的摩尔比(R)对二氧化硅纳米颗粒的尺寸影响最大,随着R值的增大,颗粒的粒径逐渐减小,当R值达到18时,二氧化硅纳米颗粒的形貌变得不再是很规则的球形结构,并且分散性降低,团聚现象明显;其次是氨水的量,随着氨水量的增多,颗粒的粒径先减小,之后不再发生明显变化;另外随着包壳次数的增多,颗粒的粒径随之增大,并且颗粒之间的分散性也有所提高;但是TEOS的量对颗粒粒径的影响不明显.  相似文献   

11.
[目的]将链替代扩增技术与核酸修饰纳米金积聚变色的光学特性相结合,设计了一种新型的直观检测3′端暴露单链核酸的方法,实现对单链核酸的高灵敏度检测。[方法]设计一条含有硫代修饰酶切位点的单链核酸(ZDNA),其酶切位点5′端是能将核酸修饰纳米金变色的Linker序列,3′端是能与Target单链核酸3′端完全互补的H序列。当无Target存在时,Linker会充分暴露,能使核酸修饰纳米金积聚呈现紫色;但是当Target存在时,会与H序列完全互补,作为ZDNA的引物进入链替代扩增循环,形成的新链不断与Linker序列互补,不能使核酸修饰纳米金积聚呈现红色,从而间接检测了Target单链核酸。[结果]通过一系列试验确定检测体系,具体为:40μl修饰纳米金溶液(0.52 nmol/L)加入10μl酶循环体系(ZDNA20 nmol/L,33 mmol/L Tris-HCl(pH值7.9);10 mmol/L MgCl2;66 mmol/LNaCl;0.5 mmol/LdNTP;0.1 mg/ml BSA;0.05 U/μl klenow;1 U/μl Hinc II),直观或紫外检测并绘制Target浓度与纳米金积聚程度的标准曲线,表明Target浓度在1~200 pmol/L的范围内呈现良好的线性关系,R2=0.946,最低检测限是1 pmol/L。[结论]链替代扩增-纳米金比色检测单链核酸方法简便、直观、成本低,与传统修饰纳米金比色检测DNA方法相比,灵敏度提高了104倍。  相似文献   

12.
A DNA array detection method is reported in which the binding of oligonucleotides functionalized with gold nanoparticles leads to conductivity changes associated with target-probe binding events. The binding events localize gold nanoparticles in an electrode gap; silver deposition facilitated by these nanoparticles bridges the gap and leads to readily measurable conductivity changes. An unusual salt concentration-dependent hybridization behavior associated with these nanoparticle probes was exploited to achieve selectivity without a thermal-stringency wash. Using this method, we have detected target DNA at concentrations as low as 500 femtomolar with a point mutation selectivity factor of approximately 100,000:1.  相似文献   

13.
选用廉价、多孔、可再生的竹炭作为模板,结合溶胶-凝胶法成功地制备了纳米Co3O4。借助X-射线衍射(XRD)测试以及透射电镜(TEM)测试对所制备的纳米材料的晶型和形貌大小进行了表征。测试结果表明产物为球形立方相Co3O4,其平均直径为35nm左右。进一步通过循环伏安和恒流充放电测试研究了所得纳米Co3O4样品的电容器性能。测试结果表明,所得Co3O4电极在6mol/L KOH溶液中,-0.1~0.5V(vs Ag/AgCl)电位范围内,具有较好的循环稳定性,单电极的放电比容量达到了250F/g。  相似文献   

14.
Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase   总被引:2172,自引:0,他引:2172  
A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction. The enzyme, isolated from Thermus aquaticus, greatly simplifies the procedure and, by enabling the amplification reaction to be performed at higher temperatures, significantly improves the specificity, yield, sensitivity, and length of products that can be amplified. Single-copy genomic sequences were amplified by a factor of more than 10 million with very high specificity, and DNA segments up to 2000 base pairs were readily amplified. In addition, the method was used to amplify and detect a target DNA molecule present only once in a sample of 10(5) cells.  相似文献   

15.
为了解磁性纳米颗粒在DNA分离纯化中的应用,采用文献综述和归纳总结的方法,阐述了1997—2021年以铁氧化物为核心的磁性纳米材料的研究进展,同时比较了材料结构和表面相关活性官能团的修饰对DNA提取效率的影响。结果表明:1)应用磁性纳米颗粒的固相萃取有着安全无毒、操作简单、可重复使用、能够实现自动化与高通量操作等多种优势,提取DNA效率相比于商业化试剂盒也有优势。2)目前磁性纳米材料已有比较全面的研究。磁性纳米颗粒的尺寸、孔径大小、磁化强度及引入的活性官能团不同等性质均对DNA的提取效率有影响,改变这些性质研发新型且高效的功能化磁性纳米颗粒或改变磁性纳米材料的制备方法、所提取DNA的形态性质、溶液的pH或盐浓度等试验条件,以提高DNA与材料的解吸率,不断优化磁性分离过程,提高DNA分离效率和质量。3)发展高通量商业化的核酸提取程序,是磁性固相萃取可观的发展前景。4)磁性纳米颗粒除了在核酸提取中的应用,在其他生物医学应用中也有着广泛的研究。以上结果均表明磁性纳米材料有着极强的研究发展前景。  相似文献   

16.
磁珠分离法快速提取大肠杆菌质粒DNA   总被引:2,自引:0,他引:2  
以单分散羧基功能化纳米磁性粒子为固相载体,PEG/NaCl为结合液,对大肠杆菌(Escherichia coli)裂解液中的质粒DNA进行了纯化研究.结果表明:PEG8000质量分数7.5%,NaCl浓度1.25 mol/L,磁珠用量0.9 mg时,在室温下,从1.5 mL大肠杆菌菌液中提取到的质粒DNA量为8.3μg...  相似文献   

17.
通过溶胶—凝胶化学方法成功地制备了一种约为500nm的SiO2纳米粒子,并以多聚赖氨酸(PLL)对其进行表面修饰,修饰后的纳米粒子能够有效地与DNA结合,同时可以控制DNA的结合数量,而且能够保护DNA免受DNaseⅠ的降解作用。此二氧化硅纳米基因载体有望代替金粒子通过基因枪转化法实现外源基因在植物细胞中的遗传转化。  相似文献   

18.
以纳米γ-Al2O3粉体为载体,应用等体积浸渍CH3COOCs制备Cs2O/γ-Al2O3催化剂,并通过TPD-CO2、XRD、TEM等手段对催化剂的碱性、结构和表面形貌进行表征,并将其用于催化红麻籽油制生物柴油反应.通过催化剂活性评价结果,分析了纳米固体超强碱制备过程及酯交换反应过程中各种因素的影响.结果表明,催化剂的粒径为10-25 nm,负载量为2mmol.g-1时,催化剂具有强碱性,其活性最好.甲醇与红麻籽油的摩尔比为9∶1,催化剂用量为油料的2.5%,反应时间3 h,转化率可达到90.7%.  相似文献   

19.
Single base substitutions can be detected and localized by a simple and rapid method that involves ribonuclease cleavage of single base mismatches in RNA:DNA heteroduplexes. A 32P-labeled RNA probe complementary to wild-type DNA is synthesized in vitro and annealed to a test DNA containing a single base substitution. The resulting single base mismatch is cleaved by ribonuclease A, and the location of the mismatch is then determined by analyzing the sizes of the cleavage products by gel electrophoresis. Analysis of every type of mismatch in many different sequence contexts indicates that more than 50 percent of all single base substitutions can be detected. The feasibility of this method for localizing base substitutions directly in genomic DNA samples is demonstrated by the detection of single base mutations in DNA obtained from individuals with beta-thalassemia, a genetic disorder in beta-globin gene expression.  相似文献   

20.
Echinomycin binding sites on DNA   总被引:25,自引:0,他引:25  
The preferred binding sites of echinomycin on DNA can be determined by a method called "footprinting." A 32P end-labeled restriction fragment from pBR322 DNA is protected by binding to echinomycin, and cleaved by a synthetic DNA cleaving reagent, methidiumpropyl--EDTA . Fe(II); the DNA cleavage products are then subjected to high-resolution gel analyses. This method reveals that echinomycin has a binding site size of four base pairs. The strong binding sites for echinomycin contain the central two-base-pair sequence 5'-CG-3'. From an analysis of 15 echinomycin sites on 210 base pairs of DNA, key recognition elements for echinomycin are contained in the sequences (5'-3') ACGT and TCGT (A, adenine; C, cytosine; G, guanine; T, thymine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号