首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diagnostic ice-ocean model of the Arctic, Greenland, and Norwegian seas is constructed and used to examine the role of ocean circulation in seasonal sea-ice simulations. The model includes lateral ice motion and three-dimensional ocean circulation. The ocean portion of the model is weakly forced by observed temperature and salinity data. Simulation results show that including modeled ocean circulation in seasonal sea-ice simulations substantially improves the predicted ice drift and ice margin location. Simulations that do not include lateral ocean movment predict a much less realistic ice edge.  相似文献   

2.
An active subglacial water system in West Antarctica mapped from space   总被引:1,自引:0,他引:1  
Satellite laser altimeter elevation profiles from 2003 to 2006 collected over the lower parts of Whillans and Mercer ice streams, West Antarctica, reveal 14 regions of temporally varying elevation, which we interpret as the surface expression of subglacial water movement. Vertical motion and spatial extent of two of the largest regions are confirmed by satellite image differencing. A major, previously unknown subglacial lake near the grounding line of Whillans Ice Stream is observed to drain 2.0 cubic kilometers of water into the ocean over approximately 3 years, while elsewhere a similar volume of water is being stored subglacially. These observations reveal a wide spread, dynamic subglacial water system that may exert an important control on ice flow and mass balance.  相似文献   

3.
Understanding ancient climate changes is hampered by the inability to disentangle trends in ocean temperature from trends in continental ice volume. We used carbonate "clumped" isotope paleothermometry to constrain ocean temperatures, and thereby estimate ice volumes, through the Late Ordovician-Early Silurian glaciation. We find tropical ocean temperatures of 32° to 37°C except for short-lived cooling by ~5°C during the final Ordovician stage. Evidence for ice sheets spans much of the study interval, but the cooling pulse coincided with a glacial maximum during which ice volumes likely equaled or exceeded those of the last (Pleistocene) glacial maximum. This cooling also coincided with a large perturbation of the carbon cycle and the Late Ordovician mass extinction.  相似文献   

4.
We report on the discovery of a grounding-line sedimentary wedge ("till delta") deposited by Whillans Ice Stream, West Antarctica. Our observation is that grounding-line deposition serves to thicken the ice and stabilize the position of the grounding line. The ice thickness at the grounding line is greater than that of floating ice in hydrostatic equilibrium. Thus, the grounding line will tend to remain in the same location despite changes in sea level (until sea level rises enough to overcome the excess thickness that is due to the wedge). Further, our observation demonstrates the occurrence of rapid subglacial erosion, sediment transport by distributed subglacial till deformation, and grounding-line sedimentation, which have important implications for ice dynamics, numerical modeling of ice flow, and interpretation of the sedimentation record.  相似文献   

5.
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.  相似文献   

6.
Satellite radar interferometry (SRI) provides a sensitive means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the ice sheets to climatic change or internal instability. The detection limit is about 1.5 millimeters for vertical motions and about 4 millimeters for horizontal motions in the radar beam direction. The grounding line, detected by tidal motions where the ice goes afloat, can be mapped at a resolution of approximately 0.5 kilometer. The SRI velocities and grounding line of the Rutford Ice Stream, Antarctica, agree fairly well with earlier ground-based data. The combined use of SRI and other satellite methods is expected to provide data that will enhance the understanding of ice stream mechanics and help make possible the prediction of ice sheet behavior.  相似文献   

7.
High-resolution, continuous multivariate chemical records from a central Greenland ice core provide a sensitive measure of climate change and chemical composition of the atmosphere over the last 41,000 years. These chemical series reveal a record of change in the relative size and intensity of the circulation system that transported air masses to Greenland [defined here as the polar circulation index (PCI)] and in the extent of ocean ice cover. Massive iceberg discharge events previously defined from the marine record are correlated with notable expansions of ocean ice cover and increases in PCI. During stadials without discharge events, ocean ice cover appears to reach some common maximum level. The massive aerosol loadings and dramatic variations in ocean ice cover documented in ice cores should be included in climate modeling.  相似文献   

8.
Remote sensing of the fram strait marginal ice zone   总被引:1,自引:0,他引:1  
Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.  相似文献   

9.
南极普里兹湾关键物理海洋学问题研究进展及未来趋势   总被引:5,自引:2,他引:3  
南极普里兹湾及其邻近海域关键物理海洋学问题包括水团特性、环流特征和冰架 海洋 海冰相互作用过程等。该海域水团可以分为南极表层水、绕极深层水、南极底层水、南极陆架水和南极冰架水等,受外部条件影响,这些水团时空变化显著。普里兹湾区域的环流以普里兹湾流涡,西向的沿岸流和东向的绕极流,以及两者之间的南极辐散带的环流为主要特征,地形是环流特征的关键影响因素。埃默里冰架 海洋的相互作用过程显著影响普里兹湾海域的水团特性和环流状况。冰泵机制,是埃默里冰架外海水进入冰穴,并引起冰架底部消融和冻结的重要原因。冰架 海洋 海冰相互作用形成的低温高盐水,是普里兹湾形成南极底层水的潜在因素之一。加强现场观测,并建立高分辨率的冰架 海洋 海冰耦合模型系统是研究普里兹湾海域物理海洋学关键过程和变化机制的重要手段,是南极研究的发展趋势。  相似文献   

10.
Dust concentrations in ice of the last glacial maximum (LGM) are high in ice cores from Greenland and Antarctica. The magnitude of the enhancements can be explained if the strength of the hydrologic cycle during the LGM was about half of that at present. This notion is consistent with a large decrease (5 degrees Celsius) in ocean temperature during the LGM, as recently deduced from measurements of strontium and calcium in corals.  相似文献   

11.
Marine sediments from the Chilean continental margin are used to infer millennial-scale changes in southeast Pacific surface ocean water properties and Patagonian ice sheet extent since the last glacial period. Our data show a clear "Antarctic" timing of sea surface temperature changes, which appear systematically linked to meridional displacements in sea ice, westerly winds, and the circumpolar current system. Proxy data for ice sheet changes show a similar pattern as oceanographic variations offshore, but reveal a variable glacier-response time of up to approximately 1000 years, which may explain some of the current discrepancies among terrestrial records in southern South America.  相似文献   

12.
Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.  相似文献   

13.
Evidence from high-sedimentation-rate South Atlantic deep-sea cores indicates that global and Southern Ocean carbon budget shifts preceded thermohaline circulation changes during the last ice age initiation and termination and that these were preceded by ice-sheet growth and retreat, respectively. No consistent lead-lag relationships are observed during abrupt millennial warming events during the last ice age, allowing for the possibility that ocean circulation triggered some millenial climate changes. At the major glacial-interglacial transitions, the global carbon budget and thermohaline ocean circulation responded sequentially to the climate changes that forced the growth and decline of continental ice sheets.  相似文献   

14.
Recent sea-level contributions of the Antarctic and Greenland ice sheets   总被引:1,自引:0,他引:1  
After a century of polar exploration, the past decade of satellite measurements has painted an altogether new picture of how Earth's ice sheets are changing. As global temperatures have risen, so have rates of snowfall, ice melting, and glacier flow. Although the balance between these opposing processes has varied considerably on a regional scale, data show that Antarctica and Greenland are each losing mass overall. Our best estimate of their combined imbalance is about 125 gigatons per year of ice, enough to raise sea level by 0.35 millimeters per year. This is only a modest contribution to the present rate of sea-level rise of 3.0 millimeters per year. However, much of the loss from Antarctica and Greenland is the result of the flow of ice to the ocean from ice streams and glaciers, which has accelerated over the past decade. In both continents, there are suspected triggers for the accelerated ice discharge-surface and ocean warming, respectively-and, over the course of the 21st century, these processes could rapidly counteract the snowfall gains predicted by present coupled climate models.  相似文献   

15.
Glaciomarine sediments with middle Miocene microfaunal assemblages are exposed at the sea floor below the southern Ross Ice Shelf. Plio-Pleistocene sediments are not present. Post-Miocene glacial sediments may have been deposited but removed by relatively recent ice shelf grounding. A meager Recent microfauna is present in some core tops.  相似文献   

16.
Subpolar North Atlantic proxy records document millennial-scale climate variations 500,000 to 340,000 years ago. The cycles have an approximately constant pacing that is similar to that documented for the last glacial cycle. These findings suggest that such climate variations are inherent to the late Pleistocene, regardless of glacial state. Sea surface temperature during the warm peak of Marine Isotope Stage 11 (MIS 11) varied by 0.5 degrees to 1 degrees C, less than the 4 degrees to 4.5 degrees C estimated during times of ice growth and the 3 degrees C estimated for glacial maxima. Coherent deep ocean circulation changes were associated with glacial oscillations in sea surface temperature.  相似文献   

17.
We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.  相似文献   

18.
Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.  相似文献   

19.
Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand Southern Alps. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series.  相似文献   

20.
It has been suggested that as much as 90% of the discharge from the Antarctic Ice Sheet is drained through a small number of fast-moving ice streams and outlet glaciers fed by relatively stable and inactive catchment areas. Here, evidence obtained from balance velocity estimates suggests that each major drainage basin is fed by complex systems of tributaries that penetrate up to 1000 kilometers from the grounding line into the interior of the ice sheet. This finding has important consequences for the modeled or estimated dynamic response time of past and present ice sheets to climate forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号