首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
分别在300、500℃和700℃下制备水稻、小麦和玉米秸秆生物炭,对比以不同类型生物炭为载体制备的炭基硫酸盐还原菌(SRB)对Cr(Ⅵ)的吸附效应,筛选出吸附效果最佳的炭基菌剂。采用扫描电镜、傅里叶红外光谱和比表面积测试仪对生物炭进行表征分析,研究了溶液pH、吸附时间、生物炭添加量和Cr(Ⅵ)初始浓度对炭基SRB吸附Cr(Ⅵ)的影响,并结合吸附动力学和等温吸附模型探讨其对Cr(Ⅵ)的吸附过程及作用机制。结果表明:以700℃限氧热解小麦秸秆(XM700)为载体制备的炭基SRB(IBXM700)对Cr(Ⅵ)的吸附效果最佳,其最佳吸附条件为pH=5、生物炭添加量0.6 g·100 mL~(-1)、吸附时间24 h、Cr(Ⅵ)的初始浓度100 mg·L~(-1);IBXM700对Cr(Ⅵ)的吸附更符合拟一级动力学,以离子交换和表面物理吸附为主,以化学吸附作用为辅,其等温吸附符合Langmuir模型,属于单分子层吸附;SRB能还原SO_4~(2-)为S~(2-),或分泌还原酶将Cr(Ⅵ)还原为Cr(Ⅲ),从而达到去除目的。研究表明,IBXM700去除Cr(Ⅵ)的主要机制为吸附作用与还原作用。  相似文献   

2.
以甘蔗渣为原材料,在限氧条件下经600℃碳化制备生物炭RC,经800℃碳化制备生物炭HC,分别研究两者对Cr (Ⅵ)的吸附-还原反应。采用扫描电子显微镜-能谱(SEM-EDS)、比表面积和孔隙分析(BET)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和拉曼光谱(RS)等对甘蔗渣生物炭表面性质进行表征,从吸附等温线、吸附动力学等角度探讨甘蔗渣生物炭对Cr (Ⅵ)的吸附-还原反应特征及其机理。结果表明:甘蔗渣生物炭具有丰富的孔隙结构和表面活性基团,且随着碳化温度升高,甘蔗渣生物炭表面孔隙度和芳香化程度增加,而含氧官能团OH、C O等相对含量则降低。HC对Cr (Ⅵ)的吸附-还原去除效果最好,总去除量高达117.28 mg·g-1,较RC增加了82.42 mg·g-1,其中吸附反应的去除量为76.00 mg·g-1,比RC增加了67.99 mg·g-1。随着碳化温度升高,生物炭缺陷程度降低,电子传递能力增强。HC对Cr (Ⅵ)的还原量为87.40 mg·g-1,较RC增加了57.03 mg·g-1。吸附等温线和吸附动力学拟合结果显示,甘蔗渣生物炭对Cr(Ⅵ)的吸附更符合拟二级动力学模型。Langmuir模型适用于HC对Cr(Ⅵ)的吸附,Freundlich模型适用于RC对Cr (Ⅵ)的吸附。XPS和FTIR分析结果显示,甘蔗渣生物炭对Cr (Ⅵ)的去除机理为静电吸附、还原和络合作用,其中RC、HC吸附作用的相对贡献率分别为22.98%、64.80%,还原反应的相对贡献率分别为87.12%、74.52%,表明甘蔗渣生物炭对Cr (Ⅵ)的去除过程以还原为主。  相似文献   

3.
以猪粪和水稻秸秆为原料,在300 ℃和600 ℃的条件下制备生物炭,研究其对Cd2+的吸附性能,分析溶液初始pH值、吸附时间和Cd2+浓度对吸附的影响。结果表明:溶液初始pH值对生物炭吸附Cd2+有影响,当pH值从2.0升高至7.0时,生物炭对Cd2+的吸附量表现为先升高后趋于稳定。生物炭对Cd2+的吸附过程可以用准二级动力学方程较好地拟合(R2>0.99)。水稻秸秆生物炭对Cd2+的吸附约4 h达到平衡,而猪粪生物炭吸附对Cd2+的吸附约6 h达到平衡。生物炭对Cd2+的等温吸附过程可用Langmuir方程较好地拟合(R2>0.95),生物炭对Cd2+的吸附量随着热解温度的升高而增加,600 ℃制备的水稻秸秆生物炭的吸附量最大,达到59.84 mg·g-1。  相似文献   

4.
以小麦秸秆为原料,通过高温热解和硝酸改性得到小麦秸秆生物炭吸附材料,将其应用于水中重金属六价铬[Cr(Ⅵ)]的处理,研究改性时间、溶液初始pH值、投加量对吸附效果的影响,并采用Freundlich和Langmuir等温吸附方程对等温吸附过程进行拟合。扫描电子显微镜(scanning electron microscope,简称SEM)表征结果表明,采用硝酸改性后的小麦秸秆生物炭内部结构舒展,孔隙丰富,具有更大的吸附空间,更有利于材料对Cr(Ⅵ)的吸附作用。批量处理吸附试验结果表明,对于50 mL浓度为100 mg/L的含Cr(Ⅵ)废水,改性小麦秸秆生物炭的最佳吸附条件为pH值3、吸附剂用量0.6 g、吸附时间12 h。等温吸附试验结果表明,吸附过程更符合Freundlich模式,最大吸附量可达到41.938 mg/g。  相似文献   

5.
为明确施用玉米秸秆生物炭对重金属镉(Cd)生物有效性及其产生的植株生长胁迫效应的影响,本研究向模拟土壤溶液中加入0%和2%(m/V)的玉米秸秆生物炭,在不同pH值(4.3和7.0)条件下,通过等温吸附实验分析了Cd2+在生物炭上的吸附行为,并结合生菜(Lactuca sativa var.longifolia)幼苗植株的生长、根毒性及其Cd积累量的研究,探讨了生物质炭影响下Cd生物有效性与其环境行为之间的关系。结果表明,生物炭表面负电荷量随溶液pH值的增大而增加,玉米秸秆生物炭能够通过静电效应吸附Cd2+;Langmuir方程能够较好地拟合Cd2+在玉米秸秆生物炭上的吸附行为,且方程表征的Cd2+最大吸附量参数Qm随pH值的增大而增加。生菜幼苗的根长和干质量均随生物炭的施加而增大,而根中Cd积累量则随生物炭的施加而降低;与模拟土壤溶液中Cd总量(Cdtotal)和根中Cd积累量相比,溶液中Cd2+浓度指标能够更好地预测幼苗根伸长抑制率RRE(r2=0.80,P<0.001)和根中Cd积累量(r2=0.88,P<0.001)。上述研究结果表明,施加玉米秸秆生物炭能够有效降低重金属污染物的生物有效性及其生态环境风险。  相似文献   

6.
不同改性生物炭对溶液中Cd的吸附研究   总被引:2,自引:0,他引:2  
为研究生物炭对溶液中重金属Cd的吸附去除效果,进一步提升生物炭对Cd的吸附性能,以玉米芯、玉米秸秆、木屑为原料,分别在400℃、500℃、600℃和700℃密闭缺氧条件下热解制备生物炭,通过微波改性、Na OH改性方法对生物炭进行改性处理,研究初始浓度、溶液p H、吸附时间等因素对生物炭吸附Cd效果的影响,筛选出适合用于处理镉污染水体的生物炭品种。结果表明:当Cd浓度为100 mg/L时,玉米秸秆-600℃-Na生物炭(B-6-Na)对Cd的吸附可用Langmuir方程拟合,吸附量可达78.7 mg/g,去除率为78.7%,基本达到吸附平衡的时间为60~120 min;当溶液p H达到7时,三种生物炭对Cd吸附率均超过80%以上;600℃条件下经Na OH溶液改性制备的玉米秸秆生物炭能够更好地吸附溶液中的Cd。该研究结果为制备对污染物具有高效、深度净化功能的生物炭方法提供参考,在深入研究生物炭在重金属Cd污染修复的可行性方面提供理论支撑。  相似文献   

7.
为增强秸秆炭对水体中铬(Ⅵ)的吸附能力,利用FeCl3溶液,把氧化铁引入其孔隙中,通过响应面实验方法优化制备过程。得到最优氧化铁改性秸秆炭(以最优改性炭表示)的制备条件为炭化温度400℃,铁与炭质量比0.85。最优改性炭和未改性炭特性通过元素分析、BET比表面积、扫描电镜、红外光谱和X射线衍射等表征测定,结果表明:最优改性炭表面粗糙,比表面积和孔隙体积增大,孔隙中含有多种氧化铁成分。最优改性炭吸附铬性能表明:Langmuir理论最大铬吸附量为30.96 mg·g-1;吸附过程符合准二级动力学模型;随溶液pH值的增大,铬吸附量减小;随炭用量的增加,铬去除率增大。研究表明:改性秸秆炭的铬(Ⅵ)吸附能力得到显著提升,可用于水体中铬(Ⅵ)的吸附去除,这也为高效利用农作物秸秆提供新途径。  相似文献   

8.
【目的】研究不同秸秆转化生物炭对红壤性水稻土养分含量及微生物群落结构的影响差异,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以水稻和玉米秸秆300℃、400℃和500℃裂解得到的生物炭为添加材料,以发育于第四纪的红壤性水稻土为供试土壤,通过135 d室内培育试验,研究秸秆生物炭添加对红壤性水稻土pH、有机碳和养分含量、土壤微生物生物量碳(MBC)的影响,及其对磷脂脂肪酸(PLFA)表征的微生物群落结构的影响。试验共设7个处理:对照(CK)、添加水稻秸秆炭300℃(RB300)、400℃(RB400)、500℃(RB500)和添加玉米秸秆炭300℃(CB300)、400℃(CB400)、500℃(CB500)。【结果】物料类型和制备温度因素显著影响裂解得到生物炭材料的养分含量和化学性质。培育试验表明,两种秸秆生物炭的添加,平均提高土壤pH值0.16个单位;土壤有机碳、速效磷和速效钾水平,分别比对照增加26.1%、20.6%和281.8%。水稻秸秆炭对土壤速效钾水平促进作用较大,而玉米秸秆炭则主要增加速效磷含量。低温裂解秸秆炭(300℃)的添加,并没有显著影响土壤碱解氮和无机氮含量;而添加RB500和CB500处理的碱解氮分别比对照低10.4%和8.1%,硝态氮含量分别比对照高63.6%和100.7%(P<0.05)。添加生物炭处理,微生物生物量碳和磷脂脂肪酸总量平均比对照增加63.4%和47.5%,但添加300℃秸秆炭处理与对照差异不显著;两种秸秆炭的输入均可以增加革兰氏阴性细菌(G-)、革兰氏阳性细菌(G+)、放线菌和真菌的含量,且不同制备温度处理间的差异表现为300℃<400℃<500℃。主成分分析表明,水稻秸秆炭对土壤微生物群落结构的影响较玉米秸秆炭更为显著;不同温度水稻秸秆炭间,群落结构差异明显,而不同温度玉米秸秆炭间没有区分开来。典范对应分析结果表明,生物炭添加可以通过改变土壤性质,间接影响微生物群落结构;其中,土壤速效磷、有机碳和速效钾含量与土壤微生物群落分布显著相关。【结论】水稻和玉米秸秆炭均可以改良红壤性水稻土的酸度,提高土壤养分含量和微生物量水平;两种秸秆炭的添加均改变了土壤微生物群落结构,其中以水稻秸秆炭的影响更为明显。  相似文献   

9.
甘蔗渣生物炭对水体铬吸附反应研究   总被引:1,自引:0,他引:1  
【目的】探究甘蔗渣生物炭对铬(Cr)的最佳吸附条件和吸附机理。【方法】在N_2保护和350、450、550℃3种温度条件下制备甘蔗渣生物炭,通过扫描电镜(SEM)比较炭化前后甘蔗渣外观的变化,通过批量处理试验研究制备温度、用量、Cr初始质量浓度、吸附时间等因素对甘蔗渣生物炭吸附Cr(Ⅲ)和Cr(Ⅵ)的影响。【结果】甘蔗渣生物炭孔隙度随制备温度的升高而增大。制备温度越低,对Cr(Ⅵ)去除效率越高,当Cr(Ⅵ)质量浓度和炭用量分别为50 mg/L和15 g/L时,反应7 d后,350℃制备的生物炭对Cr(Ⅵ)的最大吸附量为5.703 mg/g,去除率可达92.39%;制备温度越高,对Cr(Ⅲ)去除效率越高,当Cr(Ⅲ)质量浓度和炭用量分别为75 mg/L和10 g/L时,反应7 d后,550℃制备的生物炭对Cr(Ⅲ)的最大吸附量为9.158mg/g,去除率达97.06%。甘蔗渣生物炭对Cr吸附等温线可用Langmuir模型拟合,Cr(Ⅵ)和Cr(Ⅲ)吸附动力学曲线分别符合拟一级和拟二级反应动力学模型。【结论】不同温度下制备的甘蔗渣生物炭对不同价态Cr的吸附具有选择性,其中350℃制备的生物炭对Cr(Ⅵ)的吸附效率最高,而550℃制备的生物炭对Cr(Ⅲ)的吸附效率最高。  相似文献   

10.
不同热解温度生物炭对Pb(Ⅱ)的吸附研究   总被引:3,自引:0,他引:3  
以稻壳(RH)和棉花秸秆(CS)为原料,在300、400、500、600、700℃下制备了生物炭,研究不同添加量、不同初始pH、吸附时间对生物炭吸附水溶液中Pb~(2+)的影响。结果表明:生物炭添加量越大对Pb~(2+)的去除效果越好;热解温度越高,达到同样去除效果所需生物炭的量越少;吸附效果与溶液的pH呈正相关,pH在4~7的范围内,高温生物炭去除Pb~(2+)的效果更好。生物炭对Pb~(2+)的吸附更符合拟二级动力学模型(R~2≥0.992),热解温度越高,吸附速率越快,同时中温(500℃)和高温(600、700℃)生物炭对Pb~(2+)的平衡吸附量不低于49.0 mg·g~(-1)。制备稻壳和棉花秸秆生物炭较合适的温度是500℃。  相似文献   

11.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

12.
本研究以园林绿化废弃物刺桐为原料,在不同的热解温度下(300、500、700 ℃)制备生物炭,用动力学方程和等温吸附方程分别拟合生物炭对氨氮和磷的吸附性能。等温吸附方程拟合结果表明:生物炭对水中氨氮和磷的吸附量均随着氨氮和磷的初始浓度的增加而增大,且均能较好地拟合Langmuir吸附方程,且BC500吸附效果最好;动力学方程拟合结果表明:不同热解温度下得到的生物炭对氨氮和磷的吸附速率较快的过程分别发生在最初的300 min和60 min内,且均能较好地拟合准二级动力学方程;此外,生物炭对不同初始pH下对氨氮和磷溶液的吸附效果分别为pH7 > pH11 > pH3和pH11 > pH7 > pH3。  相似文献   

13.
氧化老化玉米秸秆生物炭吸附镉机理研究   总被引:1,自引:1,他引:0  
为研究玉米秸秆生物炭在经过模拟自然界老化后对Cd2+的吸附响应,本文利用H2O2对玉米秸秆生物炭进行氧化老化1、2、3次,利用元素分析仪、扫描电镜、红外光谱及碳谱等分析方法,分析老化前后生物炭对Cd2+的吸附及响应机理。结果表明:玉米秸秆生物炭氧化老化过程中形成硅酸盐沉淀;经过H2O2老化后H/C、O/C和(O+N)/C的原子比逐渐升高,使得生物炭含氧官能团上升、芳香性减弱、极性增强;老化1次(OYM1)、2次(OYM2)、3次(OYM3)后玉米秸秆生物炭碱性元素逐步被释放,碱性元素较未氧化玉米秸秆生物炭(YM)分别降低了48.23%、95.04%、95.74%;不同处理生物炭对Cd2+的最大吸附量表现为: YM(12.42 mg·g-1) >OYM1(5.98 mg·g-1) >OYM3(3.88 mg·g-1) >OYM2(3.61 mg·g-1),说明老化作用抑制了其对Cd2+的吸附。在玉米秸秆生物炭长期利用过程中,生物炭的老化促进无机组分发挥作用,吸附性能减弱,在进行土壤及水污染修复时应合理使用。  相似文献   

14.
采用野生型水稻(WT,高硅)和硅缺失突变体水稻(lsi1,低硅)秸秆为原材料制备成300、500、700℃ 3种温度生物炭,探究高低硅秸秆生物炭对Cd2+的吸附特性及作用机制。野生型和突变型水稻秸秆原料总硅含量分别为17.88%和7.42%,制备出的高硅生物炭相对于低硅生物炭具有较高的硅含量、较大的比表面积和孔径。通过元素分析、电镜能谱扫描分析(SEM-EDS)、傅里叶红外光谱分析(FTIR)以及比表面积分析(BET-N2)等对两种生物炭进行分析,结果表明随温度上升两类生物炭均表现出产率下降、pH增大、比表面积上升,高低硅生物炭均能在471、788、1 090 cm-1波峰处观察到Si-O-Si键。吸附实验表明,高低硅生物炭均在pH为6、固液比为1 g·L-1时对水溶液中Cd2+吸附效果最佳。吸附动力学模型结果表明,高低硅生物炭的吸附动力学过程均符合准二级动力学模型(R2 >0.9),说明该过程以化学吸附为主。通过Langmuir和Freundlich模型进行等温吸附拟合,均能较好反映出高低硅生物炭的吸附行为与特性。结合高低硅生物炭的基本理化性质、FTIR分析和SEM-EDS观察的结果表明生物炭吸附机制主要为离子交换、沉淀和官能团络合作用。研究表明,热解温度较高的高硅生物炭吸附效果更好,这可能与其具有较高的硅含量、较大的比表面积与孔体积、较多的阳离子及较为丰富的官能团有关。  相似文献   

15.
以废弃的马尾松针为原材料,制备了易回收的成型马尾松针,并用于含铬(Cr)废水的吸附。通过磷酸与羧甲基纤维素钠反应将废弃马尾松针成型化,以重铬酸钾溶液作为模拟含铬废水,研究吸附剂投加量、pH、初始浓度等对成型马尾松针吸附Cr(Ⅵ)的影响。结果表明:成型马尾松针对水中Cr(Ⅵ)具有良好的去除效果,质量浓度为10 mg·L-1的Cr(Ⅵ)溶液,吸附剂投加量为10.0 g·L-1时,Cr(Ⅵ)去除率达到99%;成型马尾松针对Cr(Ⅵ)的吸附是一个先快速吸附、后缓慢达到平衡的过程,对于10 mg·L-1的Cr(Ⅵ)溶液,最终吸附平衡时间为6 h。马尾松针对Cr(Ⅵ)的去除率随着pH的升高而降低,在pH 1~4时,去除率超过90%;成型马尾松针对Cr(Ⅵ)的吸附符合Freundlich模型,吸附过程可以由准一级动力学模型描述;成型马尾松针去除Cr(Ⅵ)的主要机制是静电吸附、氧化还原和络合作用。研究表明,成型马尾松针在去除Cr(Ⅵ)方面具有良好的潜力,可实现废弃生物质资源的循环利用和废水中有毒重金属去除的双重目标。  相似文献   

16.
研究了在不同温度下制备的3种芦苇生物炭的基本理化性质及表观性能,以及不同时间、初始溶液pH值、初始溶液Pb2+浓度下这3种生物炭吸附率的变化。结果表明:对于3种生物炭的制备,随着温度升高,生物炭产率降低,灰分升高,pH值升高;随着热解温度升高,芦苇生物炭的C、N含量随之增加,而O、H含量随之降低;BET比表面积、Langmuir比表面积、T-plot微孔比表面积、BJH吸附累积比表面积均表现为L500L700L300;从生物炭对氮气吸附的量上看,存在L500L700L300的规律;吸附试验表明,500℃下制备的生物炭L500的吸附效果最佳,最佳吸附条件是初始溶液pH值为6,吸附时间为150 min,吸附温度为25℃。  相似文献   

17.
以玉米秸秆为原料,在350℃、低氧条件下热解制备生物炭,考察了吸附时间、重金属离子的初始浓度、溶液的初始p H值等因素对生物炭吸附Pb~(2+)、Cu~(2+)特征的影响。结果表明,准二级动力学方程能很好地反映低浓度条件下玉米秸秆生物炭对单一、复合污染溶液中Pb~(2+)、Cu~(2+)的吸附过程,玉米秸秆生物炭对单一、复合污染溶液中Pb~(2+)、Cu~(2+)的吸附以化学吸附为主。Langmuir模型能够更好地描述单一污染条件下玉米秸秆生物炭对Pb~(2+)的吸附行为,而对于单一污染条件下Cu~(2+)以及复合污染条件下Pb~(2+)、Cu~(2+)离子的等温吸附,Freundlich模型明显优于Langmuir模型。当溶液p H值从3上升到4时,玉米秸秆生物炭对单一污染条件下Pb~(2+)的去除率明显增加,当溶液的初始p H达到6时玉米秸秆生物炭对单一、复合污染条件下Pb~(2+)、Cu~(2+)离子去除率的增长趋势逐渐平缓。通过连续解吸试验发现,不同初始浓度下(0~400 mg/L)各种吸附方式对吸附总量的贡献率会不断变化,低浓度条件下以氢键吸附为主,随着初始浓度的上升,物理吸附的贡献率不断升高,取代了氢键吸附的主导地位。  相似文献   

18.
裂解温度及高锰酸钾活化对棉花秸秆生物炭性状的影响   总被引:1,自引:0,他引:1  
采用不同浓度的高锰酸钾溶液浸渍棉花秸秆在不同裂解温度下制备棉花生物炭,研究了高锰酸钾浓度及裂解温度对棉花生物炭性状的影响。结果表明,不同制备条件下获得的棉花生物炭的产率位于22.22%~47.17%之间,随着裂解温度的升高而降低,而不同生物炭灰分含量(9.99%~28.83%)、pH(9.7~12.1)及比表面积(2.34~167.58 m2·g-1)随着裂解温度的提高逐渐升高。棉花生物炭中元素以C和O元素为主。高锰酸钾处理会显著提高棉花生物炭pH及比表面积,并使炭表面官能团种类更为丰富。  相似文献   

19.
为解决水体中铜离子污染治理及玉米秸秆资源化利用等问题,以黑曲霉为改性菌剂,采用固态发酵法改性玉米秸秆,制备出复合生物吸附剂。采用傅里叶红外光谱仪(FT-IR)和扫描电子显微镜(SEM)表征改性玉米秸秆,同时对吸附剂的投加量(0.05~0.30 g)、溶液初始浓度(10~200 mg·L-1)、溶液初始pH(1.0~6.0)以及动力学和等温吸附线进行了研究。结果表明,通过黑曲霉固态发酵法改性后的玉米秸秆对Cu(Ⅱ)的饱和吸附量为33.6 mg·g-1,是天然玉米秸秆的2.65倍。FT-IR和SEM表征结果显示,改性材料表面空隙增多,更为粗糙,更多的活性基团得以暴露,这为吸附性能的提高提供了依据。改性玉米秸秆对Cu(Ⅱ)吸附30 min后达平衡,可用准二级动力学模型较好地拟合,吸附等温线符合Langmuir方程,该吸附过程以单分子层吸附为主。利用黑曲霉固态发酵技术改性玉米秸秆,是一种快速资源化处理玉米秸秆的方法。  相似文献   

20.
玉米秸秆生物炭对水中戊唑醇和稻瘟酰胺的吸附特性研究   总被引:1,自引:0,他引:1  
《山东农业科学》2019,(6):117-124
以农业废弃物玉米秸秆为材料,在300、500、700℃下采用限氧碳化法制备生物炭,并测定了生物炭的元素组成,利用扫描电镜(SEM)和红外光谱(FTIR)表征了生物炭的形貌结构特征,考察了生物炭对水中戊唑醇和稻瘟酰胺的吸附动力学和热力学特征,并评价了pH对生物炭吸附的影响。结果表明:随着碳化温度的升高,玉米秸秆生物炭C元素含量增大,表面微孔形变程度及粗糙程度增大,芳香族化合物增加,芳香化程度提高,对两种农药的吸附性增强。准二级动力学方程能更好地描述玉米秸秆生物炭对两种农药的吸附动力学过程,颗粒内扩散表明膜扩散和颗粒内扩散共同控制着生物炭对两种农药的吸附过程;Langmuir和Freundlich方程均可以较好地描述玉米秸秆生物炭对两种农药的吸附热力学过程,说明生物炭对两种农药的吸附同时存在物理吸附和化学吸附两种形式,但以化学吸附为主。吸附过程中焓变(ΔH~o)、熵变(ΔS~o)和吉布斯自由能变(ΔG~o)表明玉米秸秆生物炭对两种农药的吸附是自发的吸热过程。溶液pH值会对生物炭吸附两种农药产生较大影响,酸性条件下吸附率高,碱性条件下吸附率低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号