首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将提取果胶后的柑橘皮渣与聚乳酸混合,以干法热压成型工艺制得可完全降解的育苗钵,并研究含70%~90%柑橘皮渣的育苗钵性能。试验发现,柑橘皮渣含量增大,育苗钵耐水性能和抗跌落性能减弱,密度和吸水率升高,保水性能变化较小;柑橘皮渣含量≤80%时,育苗钵在水中浸泡132 h依然保持完整,从1.2 m高处重复跌落20次不破碎。综合考虑育苗钵性能和成本,以80%柑橘皮渣和20%聚乳酸制备育苗钵较为合适。研究结果为利用废弃柑橘皮渣提供了一种新途径,也新增一种可完全降解育苗钵。  相似文献   

2.
刘诚  徐振锋  花军  吴昊 《安徽农业科学》2014,(35):12558-12560
充模时间是衡量薄板件真空模压成型效率的重要指标.为了解充模时间与真空压力及模具温度间的影响机制,该研究以亚麻纤维布为填充体,测量了真空模压成型过程中树脂流动前沿位置与时间的对应关系.同时利用Darcy定律的二维形式计算亚麻纤维布的渗透率值,并通过液体模塑成型仿真软件PAM-RTM对亚麻纤维布真空模压成型过程进行了仿真,分别获得真空压力与温度对充模时间的影响规律.工艺试验验证了仿真模型的正确性,试验中测得亚麻纤维布真空模压成型薄板件的拉伸强度与弯曲强度分别为56.71MPa和117.57 MPa,能够满足应用要求.  相似文献   

3.
污泥砖的研制及其影响因素研究   总被引:1,自引:0,他引:1  
【目的】以城市污水处理厂干化污泥为掺料制备污泥砖,并对影响砖体性能的因素进行分析,为降低污水处理厂运行成本,消除污泥对环境的潜在危害提供理论依据。【方法】以粘土和污泥为原料制备污泥砖,研究不同污泥掺量、成型压力、烧结温度及保温时间下砖体抗压强度及吸水率的变化,以得出污泥砖制备的最佳条件。【结果】当污泥掺量为0~200 g/kg时,随着污泥掺量的增加,污泥砖的抗压强度明显降低,吸水率却随之增大;当成型压力为20~80 MPa时,污泥砖的抗压强度随着成型压力的增大先升高后降低,而吸水率则先减小后增大;当烧结温度为900~1 100℃时,随着烧结温度的升高,污泥砖的抗压强度逐渐增强,吸水率逐渐降低;当保温时间≥1.5 h时,随着保温时间的延长,污泥砖的抗压强度降低,吸水率逐渐增大。【结论】兼顾污泥砖性能与节能环保原则,制备污泥砖的最佳条件为:污泥掺量100 g/kg,成型压力控制60 MPa,烧结温度1 050℃,保温时间1.5 h。  相似文献   

4.
[目的]有效脱除榨汁厂新鲜柑橘皮渣的部分水分并获得较高品质的柑橘皮渣和果胶。[方法]利用纤维素酶法辅助提取柑橘皮渣的果胶,在单因素试验基础上采用响应面试验考察纤维素酶浓度、提取温度、提取时间对果胶提取率的影响,分析果胶提取前后柑橘皮渣的微观结构、含水率、主要营养成分含量以及果胶产品的品质。[结果]在纤维素酶浓度为0.9%、提取温度为46.15℃、提取时间为1.8 h的最优工艺条件下,果胶提取率达7.773%;与新鲜柑橘皮渣相比,提取果胶后的柑橘皮渣的孔隙率变大,比表面积增大45.32%,含水率下降16百分点,粗蛋白和粗纤维含量分别下降1.26百分点、0.61百分点,粗脂肪和粗灰分含量略微上升,果胶的理化性质达到GB 25533—2010国家标准要求。[结论]该法简单、快速,不仅能有效脱除新鲜柑橘皮渣的部分水分,维持其主要营养成分含量,而且还能制得较高品质的果胶成品,为柑橘皮渣的开发利用提供了新思路。  相似文献   

5.
育苗钵混料挤出机试验研究   总被引:1,自引:0,他引:1  
以育苗钵成型效果为考查指标,采用正交极差分析法对影响育苗钵混和成型效果的主要机械因素——物料充满系数、混料绞龙转速、混料时间进行了分析研究,得到了3因素的最佳匹配组合。分析结果表明:充满系数0.5,转子转速250r/min,混料时间3min时育苗钵成型效果好,为育苗钵机械化生产提供依据。  相似文献   

6.
柱状竹炭基肥挤压造粒成型工艺的研究   总被引:3,自引:0,他引:3  
为探索挤压造粒工艺对竹炭和木醋液加以利用,用来制备成型质量优良的柱状竹炭基肥,将自制的挤压成型模具与万能试验机相结合搭建成挤压造粒平台。以抗渗水性、密度和抗压强度作为成型质量的综合评价指标,通过单因素试验来考察粘结剂种类、粘结剂添加量、竹炭含量、成型压力和模孔孔径5个因素对试验指标的影响情况;在此基础上,又进行了正交试验,筛选最佳成型工艺。试验结果表明,粘结剂种类、粘结剂添加量、成型压力和模孔孔径对抗压强度有显著影响,竹炭含量对抗压强度影响不显著;粘结剂种类、粘结剂添加量和模孔孔径对抗渗水性影响显著,竹炭含量、成型压力对抗渗水性影响不显著;粘结剂种类、竹炭含量对密度影响显著,其他因素对密度影响不显著。运用综合平衡法得到的最佳组合方式为:竹炭含量50%、粘结剂为木质素磺酸钠、粘结剂添加量为20%、成型压力为10 MPa、模孔孔径为5 mm。此条件下,成型质量最佳,抗压强度为36.90 N,密度为1.190 g·cm-3,抗渗水性为93.45 min。  相似文献   

7.
利用Design-Expert软件设计响应面分析法研究以酚醛树脂及木粉为主要原料制备模压复合材料的工艺条件;详细讨论了施胶量、模压温度及时间对材料抗弯强度的影响。结果表明:利用酚醛树脂和木粉混合模压方式制备的复合材料性能优良,其制备材料最优工艺参数为施胶量54%,模压温度157℃,模压时间60 s/mm,产品抗弯强度为43.783 MPa,达到或超过GB/T 24137—2009标准要求。  相似文献   

8.
超临界CO2流体萃取柑橘皮精油工艺的研究   总被引:2,自引:1,他引:1  
[目的]充分利用柑橘果皮渣。[方法]采用超临界CO2萃取技术对柑橘皮精油进行萃取分离试验,考察萃取时间、萃取压力、萃取温度、萃取CO2流量等对提取率的影响,并对乙醇作为夹带剂进行了试验。[结果]最优工艺组合为:萃取温度35℃,萃取压力15MPa,萃取时间150min,CO2流量23L/h。加乙醇作夹带剂的提取率比所查资料的捷取率高,提取率为10.164%。[结论]在现有设备条件下,该工艺组合的得率是最理想的。  相似文献   

9.
【目的】研究利用果胶酶和纤维素酶酶解杏皮渣制备皮渣汁最佳工艺条件。【方法】采用单因素试验和正交试验,研究果胶酶用量、纤维素酶用量、酶解温度、酶解时间对杏皮渣出汁率、浸提汁可溶性固形物含量的影响。【结果】杏皮渣制汁的最佳条件是:果胶酶用量0.5%、纤维素酶用量2%、酶解温度49℃、酶解时间4h。出汁率为73.41%,比空白提高15.75%,可溶性固形物质量为22.88 g,比空白对照相比提高9.14 g。【结论】采用果胶酶和纤维素酶,能提高杏皮渣出汁率和可溶性固形物含量,改善杏皮渣制汁效果。  相似文献   

10.
为探讨高钙粉煤灰复合粘结剂对玉米秸秆原料成型密度和强度的影响,采用闭式冲压成型装置对添加高钙粉煤灰复合粘结剂的玉米秸秆进行成型实验研究,分别考察压力、温度、粒度和含水率对成型燃料的影响,并给出了最佳的成型压力范围。结果表明:玉米秸秆在压力为32~50MPa的范围内,加热温度85℃,物料含水率在12%以下,平均粒度为2mm的颗粒,能实现较好的有粘结剂成型,密度和强度基本符合工业要求。  相似文献   

11.
岳红坤  贾会珍  王俊 《安徽农业科学》2010,38(14):7318-7320,7333
[目的]优选出当归[Angelica sinensin(Oliv.)Diels]中阿魏酸的最佳萃取工艺。[方法]采用超临界CO2萃取技术提取当归中的有效成分,考察当归的粉碎粒度、萃取压力、萃取温度、分离温度对挥发油及阿魏酸萃取率的影响,采用高效液相测定其含量。[结果]采用超临界CO2萃取技术萃取当归挥发油的优化工艺参数为:当归的粉碎粒度30目,萃取压力28MPa,萃取温度35℃,分离釜Ⅰ温度45℃,分离釜Ⅰ压力6MPa,分离釜Ⅱ温度45℃,分离釜Ⅱ压力6MPa,CO2流量20L/h、萃取时间2h;采用超临界CO2萃取技术萃取当归中阿魏酸的优化工艺参数为:当归的粉碎粒度10目,萃取压力22MPa,萃取温度35℃,分离釜Ⅰ温度40℃,分离釜Ⅰ压力6MPa,分离釜Ⅱ温度40℃,分离釜Ⅱ压力6MPa,CO2流量20L/h,萃取时间2.0h。[结论]优选得到的工艺对当归中的有效成分具有较高的萃取率,较好地保留了药效成分。  相似文献   

12.
超临界CO_2流体萃取葡萄籽油的优化工艺   总被引:2,自引:0,他引:2  
采用超临界CO2流体萃取法,以葡萄籽为原料,通过单因素试验和正交试验设计,探讨了葡萄籽粉粒度、萃取压力、时间和温度等因素对葡萄籽油萃取率的影响.结果表明,萃取最佳工艺参数为葡萄籽粉粒度60目,萃取压力30 MPa,萃取时间2.5 h,萃取温度40℃,CO2流量40 kg/h,油脂萃取率达18.4%以上.  相似文献   

13.
以二维编织结构的黄麻纤维为增强体,以不饱和聚酯为基体树脂,通过模压工艺制备黄麻纤维/聚酯复合材料,考查了模压压力和温度等条件对复合材料力学性能的影响。结果表明:随着模压压力的升高,复合材料的力学性能呈增大趋势;在相同模压压力下,低温条件下的力学性能优于高温。在考查范围内,当模压温度为30℃,压力为6 MPa时复合材料的力学性能最好。扫描电镜观察材料内部结构显示,高温条件下制备的复合材料中存在大量气孔,影响力学性能;在相同温度下,压力越大复合材料中纤维与基体树脂的结合越紧密。  相似文献   

14.
超临界CO_2流体萃取花椒油优化工艺研究   总被引:2,自引:0,他引:2  
采用超临界CO2法,以花椒为原料,通过单因素试验和正交试验设计,探讨了花椒粉粒度、萃取压力、时间和温度等因素对花椒油萃取率的影响。结果表明最佳工艺参数为:花椒粉粒度为60目,萃取压力30MPa,萃取时间2.0 h,萃取温度40℃,CO2流量40 l/h,在此条件下,油脂萃取率可达7.68%以上。  相似文献   

15.
为实现果蔬皮渣的资源化利用,研制出果蔬皮渣颗粒成型设备,对果蔬皮渣颗粒成型机关键部件模辊的模孔进行了结构设计,并以粉碎后的菠萝皮渣为压缩物料,运用有限元法对果蔬皮渣颗粒成型机压缩成型过程进行了数值模拟仿真分析,结果表明,模孔在锥形孔和成型孔交界处所受应力最大、疲劳寿命和安全系数最低。根据分析结果对应力疲劳薄弱部位进行结构优化设计,对比优化前和优化后数值模拟结果可知,优化后模孔各项性能指标都显著提升,优化效果明显,该结果为果蔬皮渣颗粒成型机的设计提供了有益参考。  相似文献   

16.
正交方法萃取花椒油优化工艺研究   总被引:2,自引:0,他引:2  
采用超临界CO2法,以花椒为原料,通过单因素试验和正交试验设计,探讨了花椒粉粒度、萃取压力、时间和温度等因素对花椒油萃取率的影响。结果表明最佳工艺参数为:花椒粉粒度为60目,萃取压力30 MPa,萃取时间2.0 h,萃取温度40℃,CO2流量40 L/h。在此条件下,油脂萃取率可达7.68%以上。  相似文献   

17.
淀粉基可降解薄膜的主要原料为淀粉和聚乙烯,制膜一般有混料改性、挤出造粒、吹塑成型3个步骤。在分析各段工艺要求、参照相关工艺数据的基础上,进行成型加工试验,从而确定了本试验配方(淀粉含量60%,聚乙烯20%)的淀粉基可降解薄膜的成型工艺参数:混料温度35℃,搅拌时间180 min,挤出造粒1~6段温度分别为95、115、140、150、145、140℃,吹膜成型1~3区温度为145、160、165℃,连接体165℃,模头160℃。将制备的薄膜进行田间覆膜试验,结果表明:膜内气温、地温、湿度与普通塑料薄膜相比没有降低,蚕豆的出苗率有所增加。  相似文献   

18.
[目的]为了给谷子秸秆压缩设备的设计提供参考和依据。[方法]利用单因素试验设计研究了含水率、温度、压力和颗粒度对谷子秸秆压块燃料物理性能(密度、耐久性、抗跌碎性)的影响规律,同时采用Taguchi法研究了谷秆压块的最佳成型条件及各因素对压块密度的影响。[结果]结果表明,谷秆原料含水率在6%~10%之间,成型温度为70~100℃,压力为70~110 MPa、颗粒度0.63mm条件下可成型高品位谷秆压块燃料。在颗粒度为0.16~0.63mm,含水率为8%(w.b.),温度为90℃,压力为110 MPa条件下成型的谷秆压块密度达最大值1.26g·cm-3。各因素对谷秆压块密度的贡献率分别为:颗粒度(61.4%)、含水率(11.2%)、压力(9.1%)和温度(8.1%),颗粒度是闭式成型条件下谷秆压块燃料密度的主要决定因素。[结论]谷秆是一种优质能源原料,研究结果为压缩成型设备的设计提供依据。  相似文献   

19.
荞麦秸秆固体燃料成型工艺参数优化   总被引:1,自引:0,他引:1  
[目的]为了找出荞麦秸秆固体燃料最优成型效果的参数组合,同时为荞麦秸秆燃料压缩成型设备的设计提供参考依据。[方法]通过单因素试验设计,研究了颗粒度、含水率、压力和温度对荞麦秸秆固体燃料成型效果(密度、抗跌碎性、耐久性)的影响。同时利用Taguchi法分析了荞麦秸秆压块的最佳成型条件及各因素对密度影响的主次顺序。[结果]结果表明,荞麦秸秆原料含水率在6%~10%,成型温度为90~130℃,压力为90~110 MPa、颗粒度0.16~1.25 mm的条件下成型品质较高。各因素对荞麦秸秆压块密度的贡献率次序依次为:颗粒度(62.68%)、含水率(16.72%)、温度(15.05%)和压力(1.63%),颗粒度是荞麦秸秆成型效果的主要影响因素。[结论]在颗粒度为0.16~0.63 mm,含水率为5%,温度为130℃,压力为90 MPa时压块密度达到最大值1.17 g·cm~(-3),在此条件下生产荞麦秸秆固体燃料效果最优。  相似文献   

20.
多年生柠条是一种成型固体燃料的优质原料。通过对压力、温度、含水率和颗粒度与抗压强度、抗剪强度的关系进行多变量统计分析,研究成型过程中各参数对柠条块状燃料抗压强度及抗剪强度的影响。结果表明,颗粒越细小,压块燃料的塑性及强度越差,较大颗粒度、较高含水率(以此顺序)是增大柠条压块燃料抗压强度和抗剪强度的重要因素。要保证柠条压块燃料在运输储存过程中具有足够的强度而保持完整,柠条原料颗粒度不宜过小,含水率在8%~14%之间为宜,从节能和低成本角度考虑,成型温度至少为80℃,最高不能超过150℃,压力60~110MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号