首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】研究LED蓝光不同光强对滇重楼生长、叶片光合荧光特性和解剖结构的影响,为阐明滇重楼LED光质生物学特性提供理论依据。【方法】采用波峰为460 nm的LED蓝光光源,设置200、150、100和50μmol/(m~2·s)4个光强梯度,研究不同光强下滇重楼生长、光合荧光特性和解剖结构特征。【结果】随着蓝光光照强度的增加,滇重楼植株鲜重、叶片净光合速率、气孔导度、蒸腾速率、PSⅡ、q_P、栅栏组织厚度呈先增后降的趋势,F_v/F_m、上表皮厚度呈下降趋势。150μmol/(m~2·s)光强下,滇重楼植株鲜重、叶片叶绿素含量、净光合速率、F_v'/F_m'、PSⅡ、q_P值均为最大;200μmol/(m~2·s)光强对滇重楼叶片光合荧光指标产生一定的抑制作用,植株鲜重下降。【结论】综合考虑不同LED蓝光光强下滇重楼生长、叶片光合荧光特性、解剖结构、光合素含量的变化规律,建议在滇重楼栽培中,将蓝光光强控制在150μmol/(m~2·s)为宜。  相似文献   

2.
该文以‘马斯特’康乃馨组培苗为试材,以荧光灯为对照(CK),采用LED为光源,研究红光、蓝光和不同红蓝复合光处理下,光质对康乃馨组培苗生长和生理的影响。结果表明:(1)康乃馨组培苗的株高最高在红光处理下最高,蓝光处理下最低,红蓝1∶3的株高明显高于荧光对照处理;单色光处理下根数显著高于对照处理。(2)蓝光处理下叶绿素a、叶绿素b及类胡萝卜素含量显著高于其他处理,蓝光能增加康乃馨组培苗光合色素的含量;复合光质处理和对照荧光灯处理下叶绿素a、叶绿素b和类胡萝卜素的含量没有显著差异;(3)红蓝3∶1处理下,可溶性糖含量和游离氨基酸含量最高;蓝光处理下蔗糖含量最高;红蓝1∶3处理下,游离氨基酸的含量最低;红光下可溶性蛋白最高。LED光源的的光质组合可以作为康乃馨组培苗育苗的光质。  相似文献   

3.
利用LED光源,以剑叶蕹菜为试材,研究红光、蓝光、红蓝光3∶1、红蓝光5∶1和白光(对照)对蕹菜光合特性、光合色素及品质的影响。结果表明:红光、红蓝光5∶1和红蓝光3∶1处理下蕹菜光合速率和气孔导度均高于白光,且以红光处理下光合速率和气孔导度最大;不同光质处理下蕹菜光合速率与气孔导度呈正相关关系,与胞间CO2浓度呈负相关关系。红蓝光5∶1处理下蕹菜叶片光合色素含量最高,而红光和蓝光处理叶绿素含量均低于白光;不同光质处理下,叶绿素a与叶绿素b的比值均接近3∶1;蓝光处理蕹菜类胡萝卜素含量最低。蓝光处理下蕹菜硝酸盐含量最高,红蓝光5∶1处理、红蓝光3∶1处理和红光处理下蕹菜硝酸盐含量均低于白光对照,且以红光处理下硝酸盐含量最低。红光处理维生素C含量极显著高于白光,蕹菜维生素C含量与硝酸盐含量呈负相关关系。红蓝光5∶1处理下可溶性糖含量最高,蓝光处理可溶性糖含量最低,而可溶性蛋白含量最高。  相似文献   

4.
红蓝单色光质下茄子叶片的光吸收与光合光响应特性   总被引:2,自引:0,他引:2  
以日光温室茄子‘黑帅圆茄’为试材,测试了高亮型发光二极管LED光源发出的白光(400~700 nm)和单色光质[红光(650±5)nm、蓝光(470±5)nm]下叶片和叶绿素的光吸收,以及光合对光强响应特性参数的影响,分析了红、蓝单色光质的光合效率。通过分光光度计在400~700 nm波长范围内扫描表明,叶绿素对强吸收波长400~480 nm和650~680 nm范围内的红光(660 nm)和蓝光(470 nm)的吸光值较高,白光(400~700 nm)较低。通过积分球采用LED光源测得红光下茄子叶片的光吸收系数ε最高,其次为白光,蓝光最低。在白光和红、蓝单色LED光源下,光饱和点LSP无明显差异,在1 800~2 000μmol/(m2.s)之间;但是,蓝光的表观光量子效率AQY、实际光量子效率PQY、最大净光合速率Pnmax和最大光合光转化效率LCEmax均比红光的低;蓝光的光补偿点LCP、光半饱和点LSPsemi比红光的高,白光居中。综合反映出蓝光的光合效率低于红光,其原因主要与蓝光的光吸收系数ε低于红光有关。  相似文献   

5.
采用LED不同波长(红+蓝、白、红、蓝、黄和绿)光源,以白色荧光为对照,研究不同光质条件下葡萄试管苗的增殖特性、光合特性和叶绿素荧光动力学特性.结果表明:葡萄试管苗的增殖倍数、冠鲜质量、根鲜质量、叶面积、叶绿素含量、净光合速率、叶绿荧光参数Fv/Fm、qP、ΦPSⅡ和Fv/Fo在LED红+蓝光下最高,而胡萝卜素含量和NPQ最低,在LED黄光和绿光下净光合速率为负值.在LED蓝光下,根长最短,这说明短波光抑制根系的伸长生长.  相似文献   

6.
红蓝单色光质下茄子叶片的光吸收与光合响应特性   总被引:1,自引:0,他引:1  
以日光温室茄子'黑帅圆茄'为试材,测试了高亮型发光二极管LED光源发出的白光(400~700 nm)和单色光质[红光(650±5)nm、蓝光(470±5)nm]下叶片和叶绿素的光吸收,以及光合对光强响应特性参数的影响,分析了红、蓝单色光质的光合效率.通过分光光度计在400~700 nm波长范围内扫描表明,叶绿素对强吸收波长400~480 nm和650~680 nm范围内的红光(660 nm)和监光(470 nm)的吸光值较高,白光(400~700 nm)较低.通过积分球采用LED光源测得红光下茄子叶片的光吸收系数ε最高,其次为白光,蓝光最低.在白光和红、蓝单色LED光源下,光饱和点LSP无明显差异,在1 800~2 000 μmol/(m2·s)之间;但是,蓝光的表观光量子效率AQY、实际光量子效率PQY、最大净光合速率Pnmax和最大光合光转化效率LCEmax均比红光的低;蓝光的光补偿点LCP、光半饱和点LSPsemi比红光的高,白光居中.综合反映出蓝光的光合效率低于红光,其原因主要与蓝光的光吸收系数ε低于红光有关.  相似文献   

7.
为探究LED白橙光不同配比对滇重楼叶片光合特性和荧光参数的影响,为阐明滇重楼光生物学特性及人工补光提供理论依据,以3年生滇重楼种苗为试验材料,采用6 000 K白光(W)与波长620 nm的橙光(O)组成的组合光源,在总光强固定的情况下,设置6个光质配比处理,分别为W、W∶O/1∶2、W∶O/1∶4、W∶O/1∶6、W∶O/1∶8、O。结果表明:随着橙光比例的增加,植株鲜重及净光合速率表现为W∶O/1∶2W∶O/1∶6W∶O/1∶4W∶O/1∶8O,W处理与W∶O/1∶2处理值差异不显著;叶绿素a、叶绿素b、Fv'/Fm'随橙光比例的增加总体呈下降趋势,类胡萝卜素呈先升后降的趋势,φPSⅡ及q P值变化规律不明显;O处理明显降低植株色素积累及光合速率。综合分析得知,处理W∶O/1∶2比例的橙光补光有利于滇重楼叶片色素积累及Fv'/Fm'、φPSⅡ及q P值提高,有利于有机物的积累。  相似文献   

8.
采用发光二级管(LED)调制光质和光量,研究不同光质处理对叶用莴苣品种‘奶油生菜’和‘美国大速生’幼苗叶片气体交换参数及叶绿素荧光的影响.结果表明:LED光源光质提高了叶绿素a、叶绿素b、叶绿素总含量及叶绿素a/b值,品种间叶绿素含量差异显著,‘奶油生菜’‘美国大速生’;光质对叶用莴苣幼苗叶片光合速率的影响是由非气孔因素引起的,蓝光LED增大了叶片Gs,‘奶油生菜’以蓝光LED的光合速率最高,而‘美国大速生’以荧光灯处理最高;LED-红∶蓝下叶用莴苣各品种均具有最高的原初光能转化效率、开放的PSII中心有效光化学转化效率、PSII的电子传递速率和叶片PSII潜在活性;与荧光灯相比,LED光源对提高叶用莴苣叶片光合能力具有明显优势,有利于提高叶片的PSII活性和QA的还原速率.  相似文献   

9.
以发光二极管(LED)为光源、荷兰西芹为试材探究红光、蓝光、红蓝(6∶1)、红蓝(2∶1)和白光(对照)对芹菜光合色素、光合特性及叶绿素荧光的影响。结果表明,芹菜的Fv/Fm和Fv/Fo趋势一致,表现为红蓝光(6∶1)红蓝光(2∶1)红光白光蓝光;ΦPSⅡ和qP在红蓝光(6∶1)下最高。光质对叶绿素a和叶绿素(a+b)的影响与Fv/Fm和Fv/Fo趋势一致,而叶绿素b含量在红蓝光(2∶1)下最高,红光下最低;类胡萝卜素在红蓝光(6∶1)下最高,蓝光下最低。不同光质下芹菜光合速率与蒸腾速率、气孔导度整体上呈正相关关系,与胞间CO2浓度呈负相关关系;除胞间CO2浓度在蓝光下最高外,光合速率、蒸腾速率和气孔导度均在红蓝光(6∶1)下最高。综合以上各光合指标,以红蓝光(6∶1)照射较佳。  相似文献   

10.
【目的】研究不同红蓝光质比LED对红叶石楠试管苗生长和抗氧化酶活性的影响,为高品质红叶石楠试管苗的生产提供理论依据。【方法】以红叶石楠试管苗为材料,采用LED光源的红光R(主波长640nm)和蓝光B(主波长464nm)设计5种不同光质配比(100%R、80%R+20%B、70%R+30%B、60%R+40%B、100%B),以普通荧光灯为对照(CK),探究不同光质比对红叶石楠试管苗形态指标、叶绿素、类胡萝卜素、根系活力、可溶性总糖、蔗糖、可溶性蛋白及抗氧化酶活性的影响。【结果】(1)红叶石楠试管苗株高、地下部鲜质量和干质量、总鲜质量在100%R处理下达到最大值;叶数、叶长、叶幅、地上部干物率、总干物率和类胡萝卜素含量在100%B处理下达到最大值;而根数、地上部鲜质量、地上部干质量和总干质量、地下部干物率、叶绿素a、叶绿素b、叶绿素总含量及根系活力在70%R+30%B处理下达到最大值。(2)各处理试管苗的可溶性糖、蔗糖和可溶性蛋白含量均以70%R+30%B处理最高。(3)叶片POD和SOD活性以70%R+30%B处理最高,CAT活性以100%R处理最高,MDA含量以80%R+20%B处理最高。【结论】红蓝光比为7∶3时有利于提高红叶石楠试管苗叶绿素、可溶性总糖、蔗糖、可溶性蛋白含量和根系活力及抗氧化酶活性,进而有效促进红叶石楠试管苗的生长,可以作为红叶石楠植物离体培养的最佳光质比。  相似文献   

11.
以4种不同光质(红光、蓝光、黄光、绿光)为光源(白光为对照),研究出苗后30 d和60 d的鱼腥草幼苗叶片结构和光合荧光特性对不同光质的响应。结果表明:与CK相比,黄光、蓝光、红光处理下鱼腥草幼苗的叶片厚度及叶片的上表皮、下表皮、栅栏组织、海绵组织厚度均有不同程度的增加,而绿光处理下的却表现为降低;与30 d的幼苗相比,60 d幼苗的叶片厚度在蓝光处理下的增幅最大;蓝光处理下鱼腥草幼苗叶片的叶绿素a、叶绿素b和叶绿素总含量均表现最高,白光处理的次之,绿光处理的最小;在不同光质下,幼苗叶片的光合速率呈显著性差异;蓝光处理下的光合荧光参数(F0、Fm、qP和NPQ)均大于白光处理的,说明蓝光处理最有利于鱼腥草叶片结构和光合荧光特性的改善。  相似文献   

12.
【目的】旨在筛选出适宜紫叶生菜生长的红蓝光配比。【方法】以白光作为对照处理,探究其余7个红蓝光配比对紫叶生菜生长形态、营养品质、光合色素、光合特性和抗氧化酶活性的影响。【结果】紫叶生菜在红光(R)及红蓝光配比(4R1B)处理下生长更佳,且在4R1B的红蓝光配比下,紫叶生菜的根冠比(鲜质量)、壮苗指数、地上部鲜质量及干质量和地下部鲜质量及干质量都表现出升高趋势;在1R1B的红蓝光配比下,除硝酸盐含量和胞间CO2浓度下降外,紫叶生菜的可溶性蛋白含量、维生素C含量、可溶性糖含量、花青素含量、净光合速率、蒸腾速率及气孔导度全部一致提高,且1R1B处理也能够显著提高紫叶生菜的SOD、CAT、POD活性和MDA含量;在6R4B的红蓝光配比下,紫叶生菜的叶绿素a、叶绿素b、类胡萝卜素含量及叶绿素总量与其余处理相比均提升。【结论】4R1B处理能够促进紫叶生菜的生长,而1R1B处理能够显著改善紫叶生菜的叶色、品质等。  相似文献   

13.
系统研究不同 LED 光质对剑麻组培苗在不同光质的照射下各生长指标的差异性,找到适宜剑麻组培苗生长快繁的最优光质,从而为剑麻组培专用 LED 光源的研发提供数据支持和理论依据。分析9种设计的光质和对照组普通日光灯照射下剑麻组培苗的干重、发芽率、光合色素(叶绿素a、叶绿素b和类胡萝卜素)含量的情况,对不同光质照射下剑麻组培苗生长、生理指标进行差异性比较。试验结果表明,在光质450nm+660nm处理下的剑麻组培苗,其干重、发芽率均为最大,光合色素含量也较高。综合各方面因素,得知组合光质450nm+660nm是剑麻组培苗生长的最优光质。  相似文献   

14.
【目的】研究不同比例红蓝光对盐胁迫下葡萄幼苗光合色素、光合特性、叶绿素荧光特性及钾钠离子含量的影响,为葡萄抗逆研究提供参考依据。【方法】以赤霞珠和LN33盆栽葡萄幼苗为试验材料,在200 mmol/L NaCl处理下进行不同比例红蓝光3R∶7B、5R∶5B、7R∶3B照射,5 d后测定幼苗光合色素含量、光合参数和叶绿素荧光参数、钠钾离子含量。【结果】与对照(CK)相比,盐胁迫下2个品种叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素总量(Chla+b)和叶绿素a/b(Chla/b)显著降低;叶绿素初始荧光(F0)和热耗散量子比率(Phi_Do)显著升高,光化学反应效率(Phi_Eo)和单位反应中心电子传递能(ETo/RC)显著下降;净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)显著降低;钠离子和钾离子含量分别显著升高和降低。与盐胁迫相比,3个红蓝光处理显著提高了2个品种Chla、Chlb、Chla+b、Chla/b,降低了...  相似文献   

15.
【研究目的】该文研究新型光源LED辐射的不同光质对菊花组培苗生长的影响,以期为植物组培专用LED光源的研发提供数据支持和理论依据。【方法】以菊花组培苗为试材,采用LEDs光源发射的单色光谱红光[(625±20)nm]、蓝光[(460±20)nm]、远红光[(730±20)nm]和绿光[(530±20)nm],进行不同光质配比组合,荧光灯作为对照,对组培苗形态、生根,色素含量,碳氮代谢及抗氧化酶系活性进行差异比较。【结果】菊花组培苗在红光下徒长,能效最大。蓝光下矮壮,根系活力最大,复合LEDs光质下,组培苗形态正常。RBG处理的菊花组培苗叶片色素含量最高。红光有利于叶绿素b的合成,蓝光有利于叶绿素a的合成。单频红光处理的菊花叶片淀粉含量最高,RBG处理的叶片可溶性糖、碳水化合物蔗糖、游离氨基酸含量最高。蓝光有利于蛋白质的合成,LEDs光质处理的叶片C/N比高于荧光灯。【结论】LEDs光源系统将成为植物组织培养的理想光源。  相似文献   

16.
为探究西瓜幼苗生长所需最佳LED光源,在智能温室借助栽培架进行光质照射试验,设置白光(CK)、红光(R)、蓝光(B)、红蓝光(R3B2)、红蓝光(R7B3)5个光源水平,研究不同光质照射对西瓜幼苗光合参数、生理品质及保护酶系统的影响。结果表明,红光、红蓝光(R3B2)、红蓝光(R7B3)处理下西瓜幼苗叶片光合速率较CK分别提高38.82%,15.55%和21.23%,蓝光处理下最低;蒸腾速率和气孔导度的变化规律与光合速率一致,胞间CO_2浓度与光合速率呈负相关关系。硝酸盐含量以蓝光处理下最高、红光处理下最低,可溶性糖和维生素C含量以红光处理下最高,可溶性蛋白含量以蓝光处理下最高;西瓜幼苗维生素C含量与硝酸盐具有负相关关系。抗坏血酸过氧化物酶(APX)与超氧化物歧化酶(SOD)活性在红光处理下活性最高,过氧化物酶(POD)活性在红蓝光(R7B3)处理下最高,蓝光处理下最低,而过氧化氢酶(CAT)在蓝光处理下最高,红光处理下最低。可见,在红光处理下西瓜幼苗光合速率最大,硝酸盐含量最低,可溶性糖含量、维生素C含量、APX和SOD活性最高,西瓜幼苗生长以红光照射最佳。  相似文献   

17.
  以10个地理种源滇重楼为研究对象,对其光合特性进行了比较研究。结果表明:龙里、巧家、永平、云龙、永胜、维西、迪庆、石屏、墨江和西昌10个种源滇重楼叶片的叶绿素总量(Ct)、叶绿素a/b值(Chla/b)、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、瞬间水分利用效率(WUE)的种间差异显著(P<005),表明不同种源间的光合特性及水分利用能力有较大差别,维西、迪庆、西昌三种源的滇重楼是具有较高光合生产潜力的滇重楼品种。相关分析表明:10个种源滇重楼叶片的叶绿素总量及叶绿素a/b与Pn,Tr,Ci,WUE相关性均不显著,说明滇重楼叶片的叶绿素含量与光合作用之间无直接关系;Pn与 Tr,Gs呈显著正相关(P<005),体现了三者有较好地协同响应的特征;Tr与Gs,WUE与WUEi均呈极显著正相关(P<001),而Tr与WUE,WUEi,Gs与WUEi呈极显著负相关(P<001),Gs与WUE呈显著负相关(P<005),说明分别作为影响WUE和WUEi的因子的Tr,Gs与两者有着极其密切的关系。  相似文献   

18.
为探究西瓜幼苗生长所需最佳LED光源,在智能温室借助栽培架进行光质照射试验,设置白光(W)、红光(R)、蓝光(B)、红蓝光(R_3B_2)、红蓝光(R_7B_3)5个光源水平,研究不同光质照射对西瓜幼苗SPAD值、光合参数及生理品质的影响。结果表明,红光、红蓝光(R_3B_2)、红蓝光(R_7B_3)处理下西瓜幼苗叶片光合速率均高于白光对照,较对照分别提高38.82%,15.55%和21.23%,蓝光处理下最低;蒸腾速率和气孔导度的变化规律与光合速率一致,胞间CO_2浓度与光合速率呈现负相关关系。西瓜幼苗叶片SPAD值以蓝光处理下最低,红蓝R_7B_3处理下最高,单只红光或蓝光质下SPAD值低于红蓝复合光质。硝酸盐含量以蓝光下最高、红光下最低,可溶性糖和维生素C含量以红光下最高,可溶性蛋白含量以蓝光下最高。西瓜幼苗维生素C含量与硝酸盐具有负相关关系。  相似文献   

19.
试验研究不同光质(白光、红光、蓝光、红蓝光1∶1)对盆栽白术生长和光合色素含量的影响.结果表明不同光质对白术根系生长影响显著,红光处理下白术根鲜重、根长显著降低,其他光质处理之间差异不显著,蓝光下根鲜重稍高;红光下株高最高,红蓝光下株高最低;蓝光下根冠比最高,差异性显著;不同光质对白术地上部鲜重和叶片中光合色素含量影响差异不明显,蓝光下叶绿素a/b稍大.由此可见红光促进白术苗期地上部的生长同时抑制根系的生长,苗期增加蓝光照射可提高叶片对光能的利用率,积累更多的光合产物,促进地上部光合产物向根的运输.  相似文献   

20.
不同光质冷阴极荧光灯光照处理对红掌试管苗生长的影响   总被引:1,自引:0,他引:1  
以红掌‘骄阳,为材料,研究不同比例光质冷阴极荧光灯(CCFL)光照处理对其试管苗生长的影响.结果表明:适宜比例的光质处理可有效促进红掌试管苗生长与其品质提高.在100%R(红光)处理下,红掌试管苗的株高、根长以及可溶性糖含量均达到最大值;在70%R+30%B(蓝光)处理下,叶数、根数及叶长、试管苗各部分鲜干质量、干物率以及根系活力达到最大值.叶绿素a、叶绿素b含量均在60%R+40%B处理下达到最大值,而叶绿素a/b比值与红光/蓝光比值呈负相关,在100%B处理下达到最大值.综合分析,70 %R+30%B处理较佳,有利于红掌试管苗的形态生长、根部生长以及干物质积累.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号