首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
对水稻染色体片段代换系Z745进行染色体代换片段鉴定,并用以日本晴为背景亲本、水稻染色体片段代换系Z745为供体亲本杂交构建的次级F_2群体定位水稻穗部性状QTL,以期发现新的穗部性状QTL。结果发现,Z745共含有17个代换片段,分布于第1、3—8、10和12染色体,代换片段总长度为26.1 Mb,平均代换长度为1.54 Mb;Z745的穗长、一次枝梗数、二次枝梗数和穗粒数均极显著高于日本晴;鉴定出21个穗部性状QTL,分布于其中9个代换片段上,位于第1、3—5、7—8、10和12共8条染色体上,其中,穗长QTL 4个(1、4和7染色体)、一次枝梗数QTL 4个(1、5、7和8染色体)、二次枝梗数QTL 6个(1、7、10和12染色体)、穗粒数QTL 7个(1、3、7、8、10染色体)。定位到的穗长QTL (qPL7-1、qPL7-2)、二次枝梗数QTL(qNSB7-1)和穗粒数QTL(qSPP1-1)已被报道,其余穗部性状QTL尚未报道。  相似文献   

2.
基于SSSL的水稻重要性状QTL的鉴定及稳定性分析   总被引:10,自引:2,他引:10  
【目的】单片段代换系(SSSL)是通过高代回交和分子标记辅助选择构建的,只含有来自供体亲本的一个染色体片段,遗传背景与受体亲本相同的品系。本研究的目的是利用SSSL检测不同环境条件下水稻重要性状的QTL。【方法】以32个SSSL为材料,随机区组试验设计,在2~4个季节中对水稻22个重要性状的QTL进行分析。【结果】共鉴定出59个QTL,分布于第1、2、3、4、6、7、8、10和11号染色体上。其中的18个QTL能够在2次以上重复检出,稳定性较好的QTL占检出QTL的30.5%,大多数农艺性状的QTL效应较小、稳定性较差。不同的性状,QTL稳定性不同,千粒重、粒长、谷粒长宽比、抽穗天数等性状的QTL较稳定。稳定性好的QTL,不仅具有较大的加性效应,而且受环境影响较小。【结论】利用单片段代换系可以有效地对水稻重要性状的QTL进行多年多季的稳定性分析。水稻大多数重要农艺性状QTL的不稳定性,反映了水稻生长发育过程的可塑性,可能是通过栽培措施使水稻品种获得高产优质的重要遗传基础。  相似文献   

3.
水稻产量性状竞争优势QTL定位   总被引:1,自引:0,他引:1  
【目的】检测与水稻产量性状竞争优势相关的数量性状座位(QTL),探讨水稻竞争优势的遗传基础。【方法】以特青为母本、以基于IR24遗传背景的6个IRBB近等基因系为父本,配组衍生了由204个水稻恢复系株系组成的重组自交系(RIL)群体,并用各个RIL与不育系中9A杂交获得测交F1群体。两年同地种植两套群体,相邻两列并列种植相应的RIL和F1,设2次重复。成熟时每份材料每个重复混收中间4株,考查单株穗数、每穗实粒数、每穗总粒数、结实率、千粒重和单株产量,计算得出2次重复的平均值。在各个性状上,以同一年的数据为基础,将F1表现型减除对应RIL表现型,获得1套衍生数据。以(F1-RIL)数据为基础,应用QTLNetwork 2.0检测QTL;经1 000次Permutation计算,选用全基因组显著性水平P<0.05为阈值。【结果】6个产量性状在RIL和F1群体之间均呈极显著正相关,相关系数以千粒重最高,为0.903;以单株穗数和单株产量最低,分别为0.333和0.357;结实率、每穗实粒数和每穗总粒数居中,分别为0.406、0.448和0.680。结果还表明,随着RIL表型值的增加,F1杂种优势强度逐步降低、杂种劣势强度逐步升高。未检测到控制单株穗数的QTL,但在其他5个性状上共检测到16个QTL,分布于水稻第2、3、5、6、8和10染色体,其中,3个控制每穗实粒数,4个控制每穗总粒数,3个控制结实率,4个控制千粒重,2个控制单株产量,单个QTL的贡献率为1.7 %-22.1 %。控制每穗实粒数的所有3个QTL全部表现为中9A/IR24的竞争优势优于中9A/特青,而在每穗总粒数、结实率和千粒重上,分别有3、2和2个QTL表现为中9A/IR24的竞争优势优于中9A/特青,有1、1和2个QTL表现为中9A/特青的竞争优势优于中9A/IR24。在控制单株产量的2个QTL中,qGY2与控制每穗实粒数和每穗总粒数的qNGP2qNSP2位于同一区间,qGY10与控制每穗实粒数和结实率的qNGP10qSF10位于同一区间,它们均表现为中9A/IR24的竞争优势高于中9A/特青。【结论】亲本性状表现和杂种优势均对F1的产量表现具有重要作用,与竞争优势有关的QTL对杂交稻产量性状遗传控制具有重要作用。  相似文献   

4.
利用单片段代换系定位水稻粒形QTL   总被引:21,自引:4,他引:21  
 【目的】水稻谷粒形状(粒长、粒宽和长宽比)是衡量稻米外观品质的重要指标之一,为更好地开展粒形分子育种,对水稻粒形QTL进行分子定位。【方法】以单片段代换系(SSSL)为材料构建分离群体,利用微卫星标记对控制水稻谷粒长和谷粒宽的2个粒形QTL进行分子定位。【结果】粒宽QTL Gw-8被定位于第8染色体长臂末端微卫星标记RM502与RM447之间, 遗传距离均为0.3 cM。在此基础上构建了覆盖Gw-8的物理图谱,RM502与RM447位于同一克隆AP005529,两者之间的物理距离为55.0 kb。粒长QTL gl-3被定位于第3染色体着丝粒附近的微卫星标记RM6146和PSM377之间,遗传距离分别为1.5 cM和11.0 cM。【结论】利用单片段代换系能准确地定位水稻粒形QTL,这两个粒形QTL的定位为其克隆及稻米外观品质的分子育种奠定了基础。  相似文献   

5.
 【目的】利用SSR标记对陆海BC4F2和BC4F3代换系进行评价并检测纤维产量与品质相关的QTL,为筛选棉花染色体单片段代换系、精细定位纤维品质QTL、实现分子聚合育种奠定基础。【方法】利用GGT32(graphical genotyping)软件分析每个代换系的基因型组成,采用SAS PROC GLM的单向方差分析方法检测影响各性状的QTL。【结果】检测到50个单片段代换系,其中9株含有纯合的海岛棉片段,并筛选出12个代换片段少、纤维品质优良的代换系。共检测到15个控制产量性状和19个控制纤维品质的QTL,集中分布在12个连锁群中,解释的表型变异率在2.80%—14.13%。【结论】4个上半部平均长度QTL在2个世代中稳定遗传,1个上半部平均长度QTL在前人研究论文中检测到,部分标记位点同时控制几个不同的性状,并发现增效基因不全来自高值亲本。  相似文献   

6.
利用单片段代换系定位水稻抽穗期QTL   总被引:22,自引:4,他引:22  
 抽穗期是水稻品种的重要农艺性状之一,对抽穗期QTL进行定位并研究其遗传效应在水稻育种中是至关重要的。本研究利用以6个水稻品种为供体的52个单片段代换系为试验材料,通过t测验比较单片段代换系与受体亲本华粳籼74之间抽穗期的差异,对代换片段上的抽穗期QTL进行了鉴定。以P≤0.001为阈值共鉴定出20个抽穗期QTL,这些QTL分布于水稻的10条染色体。QTL加性效应值为-5.9~1.1,加性效应百分率为-7.4%~1.4%。有8个QTL被定位在小于10.0 cM的区段内。利用1个单片段代换系与华粳籼74杂交发展的F2群体对qHD-3-1进行了定位。在作图群体中,早抽穗和迟抽穗植株数符合3:1的分离比,早抽穗表现为显性。利用微卫星标记将qHD-3-1定位于3号染色体短臂,PSM304和RM569分别位于其两侧,遗传距离分别为2.4 cM和5.1 cM。  相似文献   

7.
玉米主要植株性状的杂种优势位点分析   总被引:1,自引:0,他引:1  
【目的】鉴定玉米株高等植株性状的杂种优势位点为优良玉米新品种选育提供重要的理论依据。【方法】利用一套以综3为供体,许178为受体的单片段代换系群体及其与轮回亲本许178的测交群体,于2014年在河南浚县、新乡、长葛3个试点进行田间鉴定,完全随机区组设计,3次重复,散粉后对株高、穗位高、叶片数进行测定。利用Duncan’s多重比较和t测验分别对玉米株高、穗位高和叶片数进行QTL分析和杂种优势位点分析。【结果】单片段代换系的测交群体在主要植株性状上均表现出一定的杂种优势,其中,株高在浚县、新乡和许昌点的中亲优势值分别为4.74%、3.61%和1.09%,穗位高的中亲优势值分别为6.06%、7.77%和7.51%,叶片数的中亲优势相对较小。利用SSSL群体在3个环境中定位了9个株高的QTL、10个穗位高的QTL、5个叶片数的QTL。利用测交群体定位了6个株高的杂种优势位点,其中3个HL同时被检测到;穗位高检测到8个杂种优势位点,有1个HL被同时检测到;叶片数定位了5个杂种优势位点,有1个HL被同时检测到。利用SSSL及其测交群体分别检测到3个植株性状的24个QTL和19个HL,在5个单片段代换系同时检测到同一性状的QTL和HL。【结论】株高、穗位高和叶片数的杂种优势在单片段代换系测交群体中呈:株高穗位高叶片数。定位到的QTL和HL中的一些在不同环境间存在保守性,且具有较大贡献率,这些主效QTL/HL所在的染色体区域可能存在调控所对应性状的主要基因,可作为进一步研究的依据。而且,少数染色体片段同时调控多个性状的杂种优势,表明所测性状间存在相关性。此外,定位到的株高、穗位高多数HL表现出超显性效应,而多数总叶片数相关的HL显示出显性效应,表明所测性状杂种优势主要来源于位点间的超显性效应。所测的3个性状间存在相关性,3个性状间平衡是遗传改良的重要目标。在育种实践中,上述主效QTL和HL可通过分子标记辅助选择,应用于理想株型育种,加快3个性状间协同改良进程。  相似文献   

8.
【目的】普通野生稻Oryza rufipogon Griff.蕴含丰富的遗传多样性,对其进行耐冷性数量性状位点(QTLs)的挖掘和效应分析,可为水稻耐冷性分子育种提供宝贵的基因资源和理论支持.【方法】以籼稻品种9311为受体亲本、普通野生稻品系DP15和DP30为供体亲本,构建染色体片段代换系,鉴定了18个水稻苗期耐冷QTLs,将其中分别包含4个耐冷QTL且遗传背景一致的4个代换系qSCT-1-CSSL、qSCT-4-CSSL、qSCT-8-CSSL和qSCT-12-CSSL分别两两杂交得到2个聚合系(qSCT-1/qSCT-12)-CSSL和(qSCT-4/qSCT-8)-CSSL,对聚合系中各耐冷QTL的互作效应及聚合效应进行研究.【结果和结论】4个耐冷QTL对水稻耐冷性有加性效应;互作分析显示各耐冷QTL间在聚合系中均存在正向互作.聚合效应在qSCT-4与qSCT-8间表现为QTL间明显的累加效应,而qSCT-1与qSCT-12间聚合的累加效应不明显,表现为qSCT-12对qSCT-1有上位作用.  相似文献   

9.
构建一套以日本晴为轮回亲本、广陆矮4号为供体亲本的水稻染色体片段代换系群体,代换片段总长度334.3 Mb,覆盖整个基因组的89.8%。利用此代换系群体,在3个环境中共鉴定出11个株高QTL,分别位于水稻第1、3、5、6、7和9染色体上。这些研究结果为株型性状的分子改良奠定了基础。  相似文献   

10.
粒重是决定水稻产量的三要素之一,是由多基因控制的数量性状。本研究以广陆矮4号为受体,日本晴为供体的119个染色体单片段代换系群体为试验材料,利用 SPSS软件分析了粒重与粒形性状之间的相关性,通过单因素方差分析和 Dunnett’s多重比较,测验单片段代换系与受体亲本广陆矮4号之间粒重的差异,以2年都能检测到的显著差异位点作为稳定表达的 QTL。结果表明:千粒重与粒长、长宽比呈极显著正相关,与粒宽、粒厚相关性不显著;以 P≤0.001为阈值,2年都能检测到的千粒重相关 QTL 19个,分布在除第10、12染色体以外的10条染色体上。其中,10个QTL的加性效应表现为增效作用,其加性效应值的变化范围为0.49~2.74 g,加性效应百分率的变化范围为2.00%~11.05%;9个 QTL加性效应表现为减效,加性效应值的变化范围为0.60~2.35 g,加性效应百分率的变化范围为2.40%~9.48%。这些QTL的鉴定,为进一步精细定位或克隆相应 QTL奠定了基础。  相似文献   

11.
【目的】玉米穗腐病是一种在全世界广泛发生且危害严重的真菌性病害,其中,拟轮枝镰孢引起的穗腐病(Fusarium ear rot,FER)在中国发生最为普遍。通过图像分析方法进行FER抗病QTL定位,并对前期通过病害评级方法定位的FER抗病QTL进行验证,探索一种新的玉米穗腐病的病害鉴定方法,为玉米穗腐病的遗传改良提供依据。【方法】利用高感FER的自交系(ZW18)分别与3个高抗自交系(承351、丹598和吉V203)构建F2群体(F2-C、F2-D和F2-J)和相应的F2﹕3家系,通过图像分析的方法获得每个F2﹕3家系的果穗病斑百分比,进而定位玉米FER抗病QTL。【结果】3个群体共定位到18个FER抗病QTL,其中,分别位于2.02—2.03 bins、4.06—4.07 bins和8.06 bin上的3个QTL(qRf2qRf3qRf4)可解释的表型变异率分别高达21.80%、25.80%和27.40%。F2-J群体的qRf11与F2-C群体的qRf1和F2-D群体的qRf6在第1染色体均有重叠区间,可解释的表型变异率达到16.50%。来自F2-D群体的qRf9与F2-J群体的qRf16在第8染色体8.05 bin有重叠区间,且抗性基因均来源于抗性亲本。F2-C群体的qRf3与F2-J群体的qRf15在第4染色体4.06—4.07 bins有重叠区间。另外,与之前通过病害评级方法定位的结果相比,qRf1qRf6qRf11在1.06—1.07 bins与评级方法定位的抗病位点qRfer13重合,qRf3qRf15在4.06—4.07 bins与评级方法定位的抗病位点qRfer3qRfer17重叠,qRf7qRfer6在2.04 bin的定位区间完全重合,qRf17qRfer20在S2重复中定位到9.03—9.05 bins的重叠区间,且来源于相同的抗源。【结论】定位到18个FER抗性位点,其中,位于1.04—1.07 bins、4.06—4.07 bins和8.05 bin上的抗病位点在不同群体中均可以被检测到,位于2.04 bin和9.03—9.05 bins上的抗病位点用不同的检测方法可以被检测到,表明在这些区间可能存在FER的抗性位点。QTL的定位区间在不同群体中的重叠性在一定程度上验证了定位区间的真实性,不同方法之间定位到重叠区间,说明利用图像分析方法定位FER抗病QTL具有一定的准确性。  相似文献   

12.
水稻第6染色体短臂产量性状QTL簇的分解   总被引:1,自引:0,他引:1  
【目的】将水稻第6染色体短臂上产量性状QTL分解到更小的区间中。【方法】从珍汕97B/密阳46重组自交系群体筛选到针对第6染色体短臂RM587-RM19784区间的剩余杂合体,衍生了一个由221个株系组成的F2:3群体,种植于海南和浙江两地,考察每株穗数、每穗实粒数、每穗总粒数、千粒重、结实率和单株产量,建立SSR标记连锁图,应用Windows QTL Cartographer 2.5检测QTL。【结果】在所分析的6个性状中,除穗数外在第6染色体短臂上的目标区间均检测到QTL,分别座落于目标区域中3个以上的不同区间中,单个QTL对群体性状表型变异的贡献率为6.3%~35.2%;控制产量构成因子的QTL基本以加性作用为主,但3个单株产量QTL的显性度分别为1.65、0.84和0.42。【结论】目标区间存在3个以上的产量性状QTL,且同一区间控制不同性状的QTL、不同区间控制同一个性状的QTL在遗传作用模式、效应方向和效应大小上存在一定差异。  相似文献   

13.
[目的]进一步挖掘小麦穗长具有利用价值的数量遗传位点(QTL),同时深入探究穗长与其他重要农艺性状之间的遗传关系,为精细定位和分子辅助选择育种奠定基础.[方法]以20828为母本、SY95-71为父本,构建126份F7代重组自交系群体.将亲本及其重组自交系分别于2016-2017年和2017-2018年生长季种植在中国...  相似文献   

14.
【目的】挖掘小麦胚大小性状相关的数量性状位点,解析胚大小与其他重要农艺性状之间的相关性,为胚相关性状QTL的精细定位及育种利用奠定基础。【方法】以四倍体小麦矮兰麦(Ailanmai)和野生二粒小麦(LM001)构建的121份F8代重组自交系群体(AM群体)作为研究材料,将其分别种植于成都市崇州试验基地(2018、2019和2020年)、成都市温江区试验基地(2020年)和雅安市试验基地(2020年),调查5个环境下的胚长、胚宽、胚长/胚宽、胚长/粒长、胚宽/粒宽以及胚面积6个性状,结合基于小麦55K SNP芯片构建的遗传连锁图谱对上述6个性状进行QTL定位。【结果】胚大小性状呈近似正态分布,符合数量性状的遗传特征。QTL定位共检测到27个胚大小相关性状的QTL,其中,7个分别控制胚长和胚宽的QTL可解释7.75%—21.74%和7.67%—33.29%的表型变异,共检测到5个在多环境稳定表达的主效QTL:QEL.sicau-AM-3B、QEW.sicau-AM-2B、QEW/KW.sicau-AM-2B、QEL/EW.sicau-AM-2B-1和QEA.sicau-AM-2B,其贡献率...  相似文献   

15.
【目的】筛选优异亲本和强优势杂交组合选育,为棉花F2生产应用提供理论依据。【方法】以8个核背景不同的陆地棉材料为亲本,采用5×3的NCⅡ遗传交配设计,在大田环境条件下,测定亲本、F1、F2和对照品种苗期株高、叶片SPAD值和光合作用参数。【结果】株高、SPAD值和净光合速率的广义遗传力和狭义遗传力较高,部分性状的F2遗传力高于F1。苗期各性状一般配合力好的亲本为P1(中901)、P2(ZB)、P6(大桃)和P7(Z98);杂交组合F1和F2在苗期性状(株高、SPAD值、净光合速率、气孔导度、胞间CO2浓度、蒸腾速率)中特殊配合力表现较好的为组合2(中901×Z98)、组合5(ZB×Z98)、组合7(SJ48×DT)。15个杂交组合的F1和F2在苗期各性状中较对照表现出不同的竞争优势,...  相似文献   

16.
【背景】开花期是大豆重要的生育期性状,不仅决定了大豆品种的适种范围,而且对大豆的产量和品质有重要影响。江淮地区是中国重要的大豆产区,目前对该地区夏大豆开花期性状遗传基础研究相对较少。【目的】利用2个夏大豆材料杂交衍生的重组自交系群体对开花期进行QTL定位,为分子标记辅助选择育种和基因克隆提供依据。【方法】以科丰35(KF35)和南农1138-2(NN1138-2)为亲本,构建了含91个家系(F2:8)的重组自交系群体(NJK3N-RIL),在6个环境下调查开花期性状数据。利用限制位点相关DNA测序(restriction-site associated DNA sequencing,RAD-seq)技术对群体亲本及家系材料进行SNP标记分型,并利用窗口滑动法进行bin标记划分。利用bin标记构建该群体的遗传图谱,结合多年多点的表型数据,使用QTL Network 2.2软件中的基于混合线性模型的复合区间作图法(mixed-model based composite interval mapping,MCIM)和Windows QTL Cartographer V2.5_011软件中的复合区间作图法(composite interval mapping,CIM)对开花期性状进行QTL分析。【结果】在大豆全基因组范围内共获得36 778个高质量SNP标记,被划分为1 733个bin标记。利用1 733个bin标记构建了一张覆盖大豆20条染色体遗传图谱,图谱长度为2 362.4 cM,标记间平均遗传距离为1.4 cM。利用MCIM法共检测到9个控制开花期的加性QTL、2对上位性QTL和1个环境互作QTL,3种效应累积贡献率分别为63.9%、4.6%和2.1%。利用CIM法共检测到10个控制开花期的QTL,其中qFT-8-1qFT-11-1qFT-15-1qFT-16-1能在3个及以上环境检测到。综合2种分析方法,共检测到12个开花期QTL,其中qFT-8-1qFT-11-1qFT-15-1qFT-16-1qFT-16-2qFT-20-1qFT-20-2等能够被2种方法检测到。同时qFT-5-1qFT-8-1qFT-8-2qFT-13-1qFT-15-1qFT-20-2等是本研究新检测到的开花期QTL。【结论】夏大豆开花期遗传构成复杂,但加性QTL效应占绝对优势,上位性互作及环境互作效应对开花期影响较小。qFT-8-1qFT-11-1qFT-15-1qFT-16-1能够被2种方法在多个环境中检测到,是NJK3N-RIL群体中控制开花期的重要位点。  相似文献   

17.
【Objective】 Hard seededness of wild soybean is an important effector that limits the utilization of wild resources in soybean genetic improvement. Bulked segregant analysis (BSA) was employed to identify major quantitative trait loci (QTLs) related with hard seededness in soybean, which laid a foundation for effective utilization of wild soybean germplasm in cultivated soybean improvement. 【Method】 F2 and F7 segregation populations were constructed from a cross between cultivated soybean Zhonghuang39 and wild soybean NY27-38. Uniformly sized seeds were selected from each line, and 30 seeds were soaked in a petri dish with 30 mL distilled water for 4 hours at 25℃. The assay was replicated 3 times. The number of permeable and impermeable seeds were counted. In F2 population, the first DNA pool was constructed from 22 individuals with permeable seeds (imbibition rate >90%), and second DNA pool was constructed from 16 individuals with impermeable seeds (imbibition rate <10%). In F7 population, 20 lines with permeable seeds (100% imbibition) and 20 lines with impermeable seeds (no imbibition) were used to construct two DNA pools, respectively. To detect genomic regions associated with hard seededness, these DNA bulks were genotyped with 259 polymorphic SSR markers to identify markers linked to QTL. A linkage map was constructed with 192 SSR markers, QTLs related with hard seededness were identified by composite interval mapping in F7 segregation population. 【Result】 Out of 259 SSR loci polymorphic between Zhonghuang39 and NY27-38, 10 and eight polymorphic SSR markers between the permeable and impermeable pools were detected in 16.3 Mb interval on chromosome 2 and 23.4 Mb interval on chromosome 6, respectively, in F2 population. The QTL region (276.0 kb) located between Satt274 and Sat_198 on chromosome 2 contained previously cloned gene GmHs1-1, the QTL explained 17.2% of the total genetic variation. The other QTL was mapped on chromosome 6 flanked by BARCSOYSSR_06_0993 and BARCSOYSSR_06_1068, accounting for 17.8% of the total genetic variation. In F7 population, eleven, nine and four SSR polymorphic markers between the permeable and impermeable pools were detected in 27.4 Mb interval on chromosome 2, 27.8 Mb interval on chromosome 6, 18.2 Mb interval on chromosome 3, respectively. A linkage map of 192 SSR markers and covering 2 390.2 cM was constructed through composite interval mapping in F7 population. Three QTLs related with hard seededness were detected. The QTL on chromosome 2 located between Satt274 and Sat_198, explained 23.3% of the total genetic variation; the QTL on chromosome 6 flanked by Sat_402 and Satt557, explained 20.4% of the total genetic variation; the QTL on chromosome 3 flanked by Sat_266 and Sat_236 accounted for 4.9% of the total genetic variation. 【Conclusion】 In this study, three QTLs related to soybean hard seededness were identified by both BSA and traditional linkage mapping, indicating that BSA is an effective strategy for identifying QTLs in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号