首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
我国设施农业发展迅速,目前对作物长势信息检测主要依靠传统判别方法,但是传统长势信息判断存在主观性强、费时费力等弊端,因此设计了适用于温室高架栽培作物的轨道式移动检测平台,该平台通过搭载作物生长和环境信息多传感检测装置,可实现对高架植物的茎、果、叶长势和冠层-空气温差等生长信息,以及环境温湿度、光照强度等气象环境因子进行监测.为了适应温室行走环境,提高行走的稳定性,移动检测平台采用轨道式移动机构设计,即利用温室加热管道作为轨道,以确保机构的稳定行走,对平台的运动功能进行验证,绝对误差最大值为7.2 mm,相对误差为0.72%.移动检测平台采用高举升升降机构,结合5自由度机械臂系统将传感器放到所需位置,将实际测量高度值与标准高度位置值进行数据对比分析,绝对误差最大值为0.83 mm,相对误差为0.78%,因此能精准地将所要使用到的传感设备放到所需的高度和预定位姿.  相似文献   

2.
为提高温室悬挂喷施机效率,实现单台机器对温室全方位覆盖,设计基于PLC通信的温室悬挂喷施机跨垄作业控制系统。该系统采用SIEMENS PLC 之间的PPI通信及SIEMENS PLC与Delta变频器之间的MODBUS通信方式,结合多传感器位置融合技术,通过主从PLC通信编程,对动作流程进行决策,实现了温室悬挂喷施机全自动换轨。在温室环境下对换轨作业精度与单次换轨时间进行试验结果表明,换轨车行驶速度为0.15 m/s时,作业精度<1 mm,单次换轨时间为185s。与人工换轨相比作业精度大幅提高,单次换轨时间明显缩短,满足工程应用需要。  相似文献   

3.
为更好地实现在实际农业作业环境下智能农业车辆的自主导航,提出了基于全景视觉的同时定位与地图创建方法(PV-SLAM)。首先对惯性测量单元(IMU)的姿态进行了解算分析,并设计实现了惯性测量单元的硬件电路模块。其次研究建立了农业车辆运动模型和全景视觉系统观测模型。然后将多目全景视觉(PV)和惯性测量单元(IMU)结合,采用扩展卡尔曼滤波(EKF),实现了自主导航农业车辆的PV-SLAM过程,并具体分析阐释了算法实现流程和步骤。试验结果表明,相较传统视觉SLAM算法,本研究提出的PV-SLAM方法,在较少或无固定路标情况下,获取的环境路标数平均增加80.2%,成功率平均提高15.8个百分点,在x和y方向的平均精度分别提高35.3%和37.8%,定位平均精度提高36.2%。PV-SLAM能较准确完整地提取环境路标信息,且对环境固定路标的依赖较小,因此在实际农业路径作业中运行效果较好。  相似文献   

4.
【目的】挂载多种农机具的果园作业机器人能减少果园劳动力投入、降低水果生产成本并提高果园生产效率,其中自主导航系统是果园作业机器人应用研究的重点和难点。【方法】文章针对果园作业机器人GPS导航过程中定位信号易受树叶遮挡及多路径效应干扰等问题,以果园作业机器人初始位置为原点建立世界坐标系,采用拓展卡尔曼滤波算法对通过三维激光雷达结合RANSAC算法获取的果园行直线进行优化,设计结合差速模型和纯跟踪算法的果园自主行间导航算法,并以该算法为基础开发果园作业机器人自主行间导航系统,驱动果园作业机器人沿树行中心行驶并完成自主调头进入下一行的工作。【结果】(1)根据现代化矮化密植果园的环境,果园自主行间导航算法能根据两侧果树行的三维点云,自主生成稳定的导航位置;(2)果园作业机器人能够沿果园行中心位置匀速行驶,并能够实时根据果园行的变化来修正自身的位姿。当速度在0.4 m/s时候,机器人运动的横向平均偏差为0.1 m,航向平均偏差为1.04°;(3)基于果园行宽相等的条件,果园作业机器人能够在行尾自主调头进入下一行,之后沿行内中心位置继续行驶。【结论】该文果园自主行间导航系统设计合理,算法稳定性高,导航精度高,不受驾驶路况的影响,能够满足现代化矮化密植果园作业的自主行驶需求。  相似文献   

5.
为了实现水稻插秧机部分或完全自主行走,需要设计合适的导航控制器代替驾驶员分析插秧机与预定义路径的位姿信息后,决策出转向方向和角度控制插秧机按照预定义路径行走。采用基于驾驶员模拟技术,设计了以航向偏差和横向位置偏差作为输入变量,插秧机转向轮期望转角作为输出变量,总结并模拟驾驶员驾驶经验采用模糊控制算法制定模糊规则,构建二维模糊导航控制器;在MATLAB/Simulink下使用简化的二轮车运动学模型进行路径追踪斜坡响应和阶跃响应仿真研究,分析该二维模糊导航控制器控制水稻插秧机追踪预定义路径能力。仿真结果表明水稻插秧机路径追踪斜坡响应最大误差为1.23m,追踪距离为3.45m,稳态误差为0.41m;在此过程中航向追踪信号的超调量MP为17.5°,调整时间ts为7.15s,稳态误差ess为0.2°。水稻插秧机路径追踪30cm阶跃响应的超调量MP为0.8cm,调整时间ts为30.2s,稳态误差ess为0.5cm。水稻插秧机路径追踪仿真结果说明本研究设计的二维模糊导航控制器的转向决策成功控制水稻插秧机追踪预定义路径,该控制系统响应的快速性、平稳性、精确性均良好,为实现水稻插秧机自主行走提供理论支撑。  相似文献   

6.
施药机器人对行施药系统的设计与试验   总被引:2,自引:1,他引:1  
【目的】设计一种能在作物行间自主导航的施药机器人,实现移动机器人在温室中自动行走并均匀施药。【方法】针对导航路径识别受光线变化影响较大的问题,在Kinect摄像机获取的彩色图像中选取了HIS空间,并对K-means算法的聚类中心和聚类数目的选取进行了优化,随后采用改进的K-means算法对与光照信息无关的H、S分量联合分割,获得完整道路信息,并采用Candy算子检测边缘及改进的Hough变化方法拟合导航路径。采用模糊控制方法通过实时调整转角和转向,对车体行走偏移进行矫正。同时,为满足不同农作物的施药需求,在喷药系统上选用了自整定模糊PID控制算法。【结果】该系统可有效适应不同光照条件,提取作物行中心线平均耗时12.36 ms,导航偏差不超过5 cm,植株叶片正面的上、中、下层覆盖率分别为63.26%、50.89%和75.82%,单位面积(1 cm~2)雾滴数平均为55、42和78个。【结论】本系统可以满足温室移动机器人自主施药防治病虫害的需求。  相似文献   

7.
为满足高频次获取西瓜植株种植土壤中湿度和其他养分含量的需求,同时解决西瓜温室大棚内由于盆栽种植密集、空间狭小所带来的人工采集数据劳动强度大、作业环境恶劣等问题,设计了一种电动自走式土壤信息采集装置。该装置的移动平台可沿预设轨道到达盆栽相应位置,多关节机械手模拟人工检测方式伸至西瓜盆栽土壤中,对湿度数据自动采集。利用设计的采集装置整体结构以及多关节机械臂机构、传感器检测部件的结构,构建了该装置的控制系统和通信系统,并进行了西瓜盆栽土壤湿度采集试验。结果表明,该采集装置稳定行走的最大速度为0.24 m/s,多关节机械臂搭载传感器能精确插入盆栽土壤中,其水平方向定位误差最大值为11 mm,装置检测盆栽的漏检率为0.92%,采集土壤信息的效率为3.2盆/min,作业流畅、性能稳定,采用循环轮检方式可替代人工完成所有盆栽土壤信息的自动采集工作。研究表明,该采集装置相比人工采集提高了盆栽信息采集的效率,也实现了高频次、高通量采集盆栽土壤信息的要求。  相似文献   

8.
基于X射线脉冲星导航(XNAV)是一种新型的卫星自主导航技术。使用卫星上的相位测量值和脉冲星钟预报的相位值,可以确定卫星的位置和速度。由探测到的脉冲相位,计算出沿着脉冲星视线方向的卫星相对于地心的距离。同时测量三颗脉冲星,就可以计算出卫星在惯性系下的位置。结合距离测量方程和轨道动力学,设计了广义卡尔曼滤波算法。仿真验证表明,该导航算法能实现卫星的精确导航,定轨精度在百米以内。此外还分析了影响导航性能的因素。  相似文献   

9.
田间作物表型检测平台设计与试验   总被引:2,自引:0,他引:2  
为高灵活度、稳定有效地获取田间作物表型信息,设计了一种四轮独立驱动、独立转向的田间作物表型检测平台,该平台主要包括行走系统、控制系统和表型信息采集系统,采用Creo软件对平台进行结构设计并对主体框架不同工况进行有限元仿真分析。以西门子1200系列PLC为主控制器开发了一套控制系统,实现平台的原地转向、横向移动和阿克曼转向模式控制,采用基于模糊PID的四轮协同控制方法实现了四轮同步运动。设计的检测平台可根据检测需求挂载RGB相机、热红外相机、高光谱相机等不同传感器进行表型信息采集,并在采集过程中形成移动暗室,有效降低外界环境对表型信息采集效果的影响。田间试验结果显示:设计的检测平台在满电量状况下单次不间断作业可达6 h;四轮协同运动试验结果显示,车轮转速最大偏差率为1%,在水泥地面和田间直线行驶时平均偏移率分别为2.14%和2.57%,具有良好的移动稳定性;挂载RGB和热红外相机进行作物表型信息获取时,每小时可检测120个田间育种小区;在不同时间段,分别采集非暗室环境与暗室环境下棉花RGB图像并提取叶面积,结果表明平台所采集RGB图像更加稳定可靠;对暗室环境下RGB图像、热红外和高光谱图像进行采集分析,结果表明该平台所采集图像均质量良好且可获得有效信息。  相似文献   

10.
为了解决日光温室内人工喷药对人体的危害以及耗费人力这一问题,设计出一款基于模糊PID控制的多功能电磁寻迹日光温室喷药车。在硬件方面,以STM32F103C8T6单片机为核心控制单元,利用电磁传感器和模糊PID控制算法实现路径信息的识别,并制定模糊控制规则对日光温室喷药车进行精准控制,实现了日光温室喷药车在金属轨道上平稳行驶,同时单片机控制水泵实现喷药功能以及利用液位传感器实时获取剩余药量信息。在软件方面,完成了上位机Android移动设备程序、下位机控制程序的编写。实现了移动终端程序能够对温室喷药车进行数据监测、行驶、喷药等控制。在日光温室中反复测试寻迹功能、移动客户端远程控制以及喷药和数据显示等功能,测试结果表明,所开发的日光温室喷药车在小于45°和90°的导线上左右转成功率略低,只有90%~92%;在直线和45°~90°的导线上左右转成功率较高,高达100%。喷药车寻迹成功率较高,在日光温室内能够行驶稳定,精准寻迹,基本完成了喷药车寻迹功能。同时,在远程控制模式下能对日光温室喷药车进行前进、后退、左转、右转、加速等八个指令的控制,实现了无线远程遥控功能,并能够在移动客户端对药箱内的药量进行实时监测,满足日光温室作业需求,减少人体危害和体力劳动,达到预期目。  相似文献   

11.
【目的】提出一种基于改进型Bug算法的自动导航避障方法,为提高林间移动平台作业时的避障能力提供参考。【方法】通过6个超声波传感器将林间移动平台四周分为9个探测区域,根据各区域内的车-障距离确定相应的避障策略;改进传统Bug算法,将避障过程分成路径追踪、避行和绕行3个阶段;在避行阶段,建立避障转向角索引图,同时根据转向延迟试验获得转向时机的提前量,将该提前量与索引图结合,使林间移动平台在合适的时机使用最大转向角避障;在绕行阶段,通过设计带自调节函数的模糊控制器,控制林间移动平台绕障碍物边缘行驶。最后根据林间环境特点,设计大、小2种障碍物试验,分别对避障时机、绕行偏差和总路程等参数进行统计与分析。【结果】林间环境大、小障碍物避障试验表明:林间移动平台提前避障距离分别为93.9和81.7 cm,平台前方的2个传感器的探测距离在索引图范围内,可以精准实现提前避障;大、小障碍物避障总路程与理论路程之差分别占理论值的0.64%和0.42%,平均绕行偏差分别为-15.2和-7.9 cm,绕行标准差分别为7.7和12.5 cm,可以实现稳定绕障。【结论】所建立的基于改进型Bug算法的自动导航避障方法,避障路径冗余小且行驶稳定,满足了林间环境运输及其他移动作业的要求。  相似文献   

12.
基于PLC的工厂化水产养殖轨道式自动投饲系统设计与试验   总被引:1,自引:0,他引:1  
为了减少工厂化水产养殖过程中的人工成本和饲料成本,设计了一种基于西门子S7-200PLC的轨道式工厂化水产养殖自动投饲系统.该系统自有电源供电,运行在高温、高湿的工厂化水产养殖车间鱼池上方的H型钢轨上,能够排除车间相关养殖设备对自动投饲系统运行的干扰,实现对工厂化水产养殖车间鱼池的准确定位、精准投饲和投饲数据记录储存.初步试验运行结果表明,工厂化水产养殖轨道式自动投饲系统能够稳定运行,行走速度10~13 m/min,投饲精度95.9%以上,定位精度最大偏差43 mm,满足初始方案设计要求.  相似文献   

13.
为改善基于GNSS/INS组合定位的水稻插秧机在遇到遮挡、电磁干扰、传感器失效等情况时的导航效果,在原有GNSS/INS组合定位的基础上,提出一种视觉导航系统(vision navigation system,VNS)补充的水稻插秧机多传感器组合定位方法。首先设计改进的Otsu法和改进的Hough变换算法用于视觉定位信息提取,并构建插秧机和相机坐标系关系方程以求解位姿值;然后采用具有容错功能的联邦卡尔曼滤波算法将VNS输出的定位信息和GNSS、INS输出的定位信息进行融合;最后分别在水泥地和水田进行试验。结果显示,空旷水泥地场景下,GNSS/INS/VNS组合定位和GNSS/INS组合定位精度相近,而在遮挡水泥地场景下,GNSS/INS/VNS组合定位解算出的位置误差和航向误差的平均值分别为1.77 cm和0.99°,相较于GNSS/INS组合定位方法分别提高46.8%和61.5%;水田试验中,经过视觉补充后导航系统的横向偏差和航向偏差平均值分别降低45.7%和67.9%,横向偏差平均值为1.97 cm,航向偏差平均值为0.49°。试验结果表明,基于视觉补充的多传感器组合定位方法能有效降低导航系统的定位误差和跟踪偏差,满足插秧机自动驾驶作业的要求。  相似文献   

14.
为实现温室大棚内番茄的自动采摘工作,通过模拟人工采摘番茄的过程设计了基于五自由度机械臂的番茄智能采摘机器人,主要由定位导航系统、双目视觉系统和五自由度机械臂等组成。首先,通过对五自由度机械臂进行建模,求解出各关节的角度与目标点坐标的关系;然后利用双目视觉系统对植株上番茄的大小和颜色扫描来判断成熟程度,并定位目标中心点的三维坐标,再将其转化到机械臂坐标系下,最终通过控制各关节的舵机将末端执行器送到成熟番茄的位置完成采摘任务。对五自由度机械臂的控制精度进行测试,结果表明:在9个不同高度和不同方向的目标点中最大的距离偏差仅为6. 71 mm;在实际作业试验中,采摘成功率高达94. 82%,而单颗平均采摘耗时仅为9. 94 s,完全满足设计的要求,能够胜任温室内大规模番茄采摘的工作。  相似文献   

15.
提出一种基于机器视觉的莲子去芯位置定位的方法,并搭建试验平台进行去芯验证。采集4个产地、不同尺寸的莲子,用2个相互垂直的摄像头采集凹槽内莲子图像,对图像进行裁剪和灰度处理后,通过莲子头部和尾部的灰度特征差异识别莲子朝向;对沿长轴尾部向上的莲子图像进行二值化处理,经腐蚀运算以消除边缘杂质,缩放以增大特征点的曲率,利用角点检测确定莲子去芯位置坐标后进行坐标换算,计算机械手移动距离,实现莲子去芯作业。试验表明:莲子理想去芯位置为莲子尾部凸点,莲子朝向判别成功率约97%,尾部凸点识别准确率约97%,整体识别成功率约94%,去芯成功率约93%,单颗莲子图像处理平均时间约78 ms,平均去芯时间约0.5 s。若以尾部凸点识别成功数为基数计算,则莲子去芯成功率可达98.9%。  相似文献   

16.
油菜精量集中排种器电驱控制系统设计与试验   总被引:1,自引:0,他引:1  
为适应丘陵区油菜机械化精量播种要求,针对地轮驱动致使传动系统复杂或滑移影响播种精度的问题,设计了一种油菜电驱排种控制系统。该系统集成无线蓝牙传输模块、单片机模块和Android终端平台开发,采用优化PID算法,实现集排器转速随作业速度的同步控制和自动调节播种穴距。台架试验研究了油菜电驱排种控制系统的控制精度和排种性能,当集排器转速为10~55 r·min~(-1)时,实际转速与理论转速的平均偏差均小于1.5%,且转速的变异系数均小于2.0%,稳定性较好;当穴距和作业速度分别为60~180 mm和1.6~3.2 km·h~(-1)时,穴距均匀性变异系数均低于15.0%。该系统实现了集排器电驱条件下播种穴距的同步调节,为油菜轻简化精量播种机的排种控制系统设计提供了参考。  相似文献   

17.
节水减氮对温室土壤硝态氮与氮素平衡的影响   总被引:9,自引:1,他引:8  
【目的】针对日光温室蔬菜生产中肥水超量施用问题,以提高氮肥利用率和实现温室菜田可持续利用为目标,研究节水减氮在温室蔬菜生产中的增效潜力,推荐适宜水氮用量。【方法】采用当地典型种植茬口冬春茬黄瓜-秋冬茬番茄,在沟灌方式下设计农民习惯灌溉(W1,>100%田间持水量)和减量灌溉(W2,75%-95%田间持水量)2个灌水水平;农民习惯施氮(N1)、较农民习惯减氮25%(N2)、减氮50%(N3)和无氮(N0)4个氮肥水平,对应黄瓜季施氮1 200、900、600和0 kg·hm-2,番茄季施氮 900、675、450和0 kg·hm-2,共W1N1、W2N2、W2N3、W1N0和W2N0 5个水氮用量组合处理,3年6季定位研究蔬菜关键生育期0-100 cm土体硝态氮动态变化,分析氮素平衡和经济效益,推荐合理水氮用量。【结果】农民习惯水氮管理W1N1处理土壤硝态氮积累明显,并向土壤深层迁移。节水减氮W2N3处理3年0-60 cm土层硝态氮供应保持在相对适宜水平,平均硝态氮含量为53.3-80.9 mg·kg-1;0-100 cm土体硝态氮未出现明显积累,平均含量较W1N1处理下降13.9%-31.1%;氮素表观损失下降56%,氮肥利用率提高2.4-3.3个百分点,并保持较高的经济效益。依据0-20 cm土层硝态氮含量与产量之间的显著回归关系,获得最佳产量土壤硝态氮含量黄瓜为37.4-72.9 mg·kg-1,番茄应低于90 mg·kg-1。根据蔬菜氮素需求量和关键生长期适宜的土壤硝态氮含量,结合根区土壤水分监测,推荐与供试条件相近的温室,沟灌冬春茬黄瓜产量160-180 t·hm-2下灌水450-550 mm配合施氮600 kg·hm-2较适宜,秋冬茬番茄产量70-80 t·hm-2时灌水170-200 mm配合施氮250 kg·hm-2较适宜。分析水氮减施增效原因为:节水20%-30%使土壤硝态氮趋近根区分布,节氮50%降低土壤剖面硝态氮积累,节水20%-30%配合减氮50%将根区硝态氮供应维持在适宜水平的同时,降低进入损失途径的氮素,从而实现增效。【结论】华北平原沟灌温室黄瓜-番茄农民生产现状节水减氮潜力较大。优化水分管理是实现氮肥减施增效的关键,在合理灌水量下,推荐适宜的施氮量是水氮减施增效的有效措施。较农民习惯管理节水20%-30%配合减氮50%,能有效降低氮素损失,提高氮肥利用率,保持较高经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号