首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
花生含油量杂种优势表现及主基因+多基因遗传效应分析   总被引:11,自引:1,他引:10  
 【目的】了解是花生遗传改良主要目标含油量的杂种优势和遗传特点,指导花生育种实践。【方法】利用植物数量性状主基因与多基因混合遗传模型的P1、P2、F1、F2 4个世代联合分析方法,分析以花生野生种为高油基因源的4个组合后代群体含油量的遗传效应。【结果】4个组合均存在一定的杂种优势,中亲优势率分别为1.41%~9.42%。不同亲本组合含油量基因遗传特点差异明显。SW9721-3×特21和SW9721-12×濮花22号2个组合分离世代F2含油量次数分布均呈混合正态分布,符合主基因+多基因遗传特征。D-0模型是这2个组合含油量的最佳遗传模型,其含油量遗传受1对加性-显性主基因+加性-显性-上位性多基因控制,主基因遗传率为45.00%~47.51%,多基因遗传率为18.72%~22.75%。SW9721-23×95-3和SW9721-38×鲁花11号2个组合F2含油量次数分布均呈正态分布,符合多基因遗传特征,多基因遗传率为66.09%~66.51%。【结论】花生含油量杂种优势和超亲分离普遍存在;控制含油量性状的基因在效应上存在较大差异,有的出现主基因特性;加性基因在花生含油量遗传中起主要作用,通过高油单株定向选择育种可以实现含油量的有效改良。  相似文献   

2.
菊属种间杂种若干花器官性状的表现   总被引:5,自引:0,他引:5  
【目的】研究菊属种间杂种部分花器管性状的遗传表现,为远缘杂交育种提供理论依据。【方法】对二倍体野生种甘菊、菊花脑和异色菊,四倍体野菊,同源四倍体菊花脑,栽培菊花(六倍体及其非整倍体)及其种间杂种F1代的花器官性状进行调查,并对调查结果进行统计分析。【结果】杂种总平均舌状花数目、筒状花数目和花序直径分别相当于亲中值的112.4%、108.0%、118.6%,且从二倍体物种组合到二倍体与四倍体组合再到二倍体、四倍体与栽培菊花组合,平均舌状花数目、筒状花数目和花序直径杂种优势逐渐降低,但二倍体野生种组合的筒状花数目除外。【结论】F1代的舌状花数目、筒状花数目和花序直径具杂种优势;栽培菊花比二倍体、四倍体的花色遗传能力强,白色、紫色遗传能力大于黄色;平盘型遗传能力比单窄瓣型强;多瓣型遗传能力比单瓣型强。  相似文献   

3.
【目的】明确爆裂玉米膨爆性状的遗传方式,为爆裂玉米育种和分子标记辅助选择(MAS)提供理论依据。【方法】以爆裂玉米杂交组合吉爆902(吉812×吉704)的P1、F1、P2、B1∶2、B2∶2和F2∶36个家系世代群体为材料,应用植物数量性状主基因+多基因混合遗传模型,对其膨爆性状进行多世代联合分析。【结果】爆裂玉米吉812×吉704组合的爆花率受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制遗传,该杂交组合的B1∶2、B2∶2和F2∶3群体爆花率的主基因遗传率分别为74.988 2%,78.345 1%和62.332 9%,多基因遗传率分别为3.118 9%,3.515 8%和6.115 6%。2对主基因中,加性效应为负值,显性效应为正值。第1对主基因的加性效应绝对值和显性效应值略大于或大于第2对主基因的相应效应值,2对主基因显性效应互作显著高于加性效应互作;第1对主基因加性×第2对主基因显性的互作效应值小于第2对主基因加性×第1对主基因显性的互作效应值。膨化倍数受1对加性主基因+加性-显性多基因控制,主基因遗传率较低,主基因加性效应d=-0.286 8。膨化体积受多基因控制,B1∶2、B2∶2和F2∶3家系世代多基因遗传率分别为10.49%,65.52%和28.99%,同时受环境影响较大。【结论】爆花率性状主基因遗传率较高,宜在早代对爆花率性状进行选择;膨化倍数性状主基因的遗传率较低,育种时应注重多基因的积累;膨化体积性状B2∶2家系世代多基因遗传率较高,同时受环境影响也较大,在育种时可以采用轮回选择及早代选择来提高育种效果。  相似文献   

4.
潘晨  胡燕  包满珠  艾叶  何燕红 《中国农业科学》2014,47(12):2395-2404
【目的】孔雀草( Tagetes patula )是菊科万寿菊属一年生花卉,具有很高观赏价值和经济价值。优势育种是培育草花新品种的重要途径。本研究探究四倍体孔雀草优势育种后代是否具有杂种优势,并分析其遗传效应,为孔雀草的优势育种提供理论依据。【方法】对孔雀草6个母本(K2、K3、K4、K5、K15、K17)和3个父本(K6、K8、K13)采用NCII不完全双列杂交设计,并测量亲本和18个杂交组合的始花期、盛花期、株高、冠幅、分枝数、花朵数、花葶长、花径、花心径、舌状花数和管状花数等11个园艺性状。利用Excel软件对后代园艺性状进行杂种优势分析;利用DPS软件分析后代园艺性状的配合力和遗传力,选出优良亲本和杂交组合,并进一步分析其遗传表现。【结果】杂种优势分析表明,冠幅、花朵数、花径的超亲优势为正值;盛花期、株高、舌状花数的中亲优势为正值;始花期、分枝数、花葶长、花心径、管状花数的超亲优势和中亲优势均为负值。根据各亲本的一般配合力效应值表明:K6可用作培育低矮、紧凑、多花品种的父本;K13可用作培育早花、大花、复瓣和较长观赏期品种的父本;K3可用作选育株型紧凑、早花、复瓣和较长观赏期品种的母本;K5可用作培育低矮、紧凑、早花、多花和较长观赏期品种的母本;K17可用作培育低矮、大花和复瓣品种的母本。特殊配合力分析表明,同一亲本所配组合之间以及同一组合不同的园艺性状间的特殊配合力效应值差异很大。K2×K6和K3×K8在株高、花心径上特殊配合力表现出较强的负向效应,在花朵数、舌状花数上表现出较强正向效应,符合孔雀草低矮、多花和复瓣的育种目标;K4×K13在始花期、株高、冠幅、分枝数上特殊配合力表现出较强负向效应,在盛花期、花径、舌状花数上表现出较强正向效应,适合培育株型紧凑、早花、大花、复瓣和较长观赏期的品种。遗传力分析表明,始花期、盛花期、分枝数、花径、花心径、管状花数的一般配合力方差占主要因素,且其对应的广义遗传力和狭义遗传力都在中等以上,而株高、花朵数、舌状花数一般配合力方差和特殊配合力方差相差不大,且对应广义遗传力远大于狭义遗传力。【结论】孔雀草园艺性状的杂种优势明显,有利于培育早花、大花、多花、复瓣和较长观赏期的品种。K6、 K13、 K3、K5、K17为综合性状优良的亲本;K2×K6、K3×K8 和K4×K13为符合育种目标的优良组合。始花期、盛花期、分枝数、花径、花心径、管状花数主要受基因加性效应控制,株高、花朵数、舌状花数主要受基因非加性效应控制;除了始花期外,其它园艺性状在杂交育种中易受环境影响。  相似文献   

5.
【目的】株高和穗部性状是影响谷子产量的关键性状。探究谷子株高及穗部性状表型变异的遗传规律,为相关性状的遗传改良与基因定位提供参考依据。【方法】以谷子优质品种豫谷18为共同父本,分别与黄软谷和红酒谷杂交,构建2个分别包含250个家系的重组自交系F7群体(YYRIL和YRRIL)。采用主基因+多基因混合遗传模型,对YYRIL和YRRIL群体在2个环境下的株高、穗长、穗下节间长、穗码数、穗粒重等5个农艺性状的表型数据进行遗传分析。【结果】5个性状在所有环境中均表现连续变异且存在超亲分离现象,峰度和偏度绝对值小于1,近似正态分布,呈现数量性状的典型遗传特点。性状间相关性分析表明株高与穗长、穗下节间长在所有环境中均呈极显著正相关,穗码数与穗粒重呈极显著正相关。遗传模型分析显示YYRIL和YRRIL群体株高的最适遗传模型分别为PG-AI和PG-A多基因模型,多基因遗传率分别为95.15%和91.27%。2个群体穗码数的最适模型均为PG-AI,多基因遗传率为70.07%—71.58%。穗下节间长在2个群体的最适遗传模型分别为4MG-CEA和3MG-CEA,均为等加性主基因模型。穗下节间长在YYRIL群体的主基因遗传率为9.69%,4对主基因加性效应值相等,均为-0.34,具有负向效应;穗下节间长在YRRIL群体的主基因遗传率为45.78%,3对主基因加性效应值相等,均为1.17,具有正向效应。穗长在YYRIL群体的最适模型为MX2-ED-A,即2对显性上位主基因+加性多基因模型,主基因遗传率为43.56%,多基因遗传率为50.56%。控制穗长的2对主基因加性效应值分别为-1.21、1.68,多基因加性效应较小,为-0.0017;穗长在YRRIL群体的最适模型为MX2-AE-A,即2对累加作用主基因,加性多基因混合遗传模型;穗长的主基因遗传率为46.40%,多基因遗传率为46.91%。控制穗长的第1对主基因加性效应值为1.53,具有正向效应,第1对主基因加性×第2对主基因加性上位性互作效应值是0.60,多基因加性效应值为-0.47,表现为较低的负向遗传效应。穗粒重在YYRIL群体的最适遗传模型为MX2-ED-A;符合2对显性上位主基因+加性多基因模型,主基因遗传率为69.09%,多基因遗传率为12.08%;控制穗粒重的2对主基因加性效应值分别为0.58、5.82,以第2对主基因的加性效应为主,多基因加性效应值为-3.81。穗粒重在YRRIL群体的最适遗传模型为3MG-PEA,即3对部分等加性主基因遗传模型;穗粒重的主基因遗传率为81.10%,3对主基因加性效应值分别为-2.68、-2.68和2.66,前2对主基因的加性效应值相同,且均为负向效应。【结论】谷子株高、穗码数的最适遗传模型相似,均服从多基因遗传,遗传率较高,受环境影响较小;穗下节间长的遗传受主基因控制,主基因遗传率偏低,受环境影响较大,在栽培中应充分考虑环境因素;穗长遗传受主基因和多基因共同控制;穗粒重在2个群体均服从主基因遗传,主基因遗传率较高,可能存在主效QTL。  相似文献   

6.
以秋菊品种‘雨花落英’为母本和夏菊品种‘奥运含笑’为父本配制F1杂种,调查F1世代4个花期相关性状在2008至2009两个年度的表型资料,运用单个分离世代的主基因+多基因混合遗传模型,对4个花期相关性状进行遗传分析。结果表明:4个花期性状均存在一定的杂种优势,现蕾期、显色期、盛花期和衰败期4个花期性状的中亲优势值均达极显著水平,中亲优势率分别为22.23%、17.60%、12.45%和11.11%,且超亲分离现象普遍存在。混合遗传分析表明菊花盛花期符合B-6模型,由表现为加性-显性的2对主基因控制;现蕾期、显色期和衰败期符合B-1模型,由表现为加性-显性-上位性的2对主基因控制。控制现蕾期、显色期、盛花期和衰败期的主基因遗传率分别为89.92%、49.30%、28.56%和75.46%。  相似文献   

7.
本研究以栽培种花生品系05D677与品种中花12号为亲本材料,正反交构建2个F_2分离群体,根据主基因+多基因分离分析方法,进行子仁性状遗传分析。结果表明:2个F_2群体中花生子仁的仁长、仁宽及单仁重均存在广泛变异,表现出超亲遗传现象,且子仁性状频次均呈正态分布,具有数量性状特征,符合主基因+多基因遗传特点。仁长在2个F_2群体中均符合3对主基因控制的加性-上位性遗传模型,其遗传率分别为80.0%和76.8%;仁宽符合1对具有加性效应的主基因+多基因混合遗传模型或2对具有显性上位效应的主基因+多基因混合遗传模型,主基因遗传率分别为2.0%、15.6%;单仁重符合具有完全等加性效应的主基因遗传模型或3对具有加性-上位性效应主基因遗传模型,主基因遗传率分别为52.0%、92.6%。  相似文献   

8.
甜玉米果皮厚度主基因+多基因遗传效应分析   总被引:2,自引:0,他引:2       下载免费PDF全文
【目的】研究甜玉米果皮厚度的遗传模式,为甜玉米品质改良和分子标记辅助选择提供理论依据。【方法】以果皮厚度有显著差异的甜玉米自交系T4和T19为亲本配制杂交组合,用主基因+多基因混合遗传模型及P1、P2、F1、B1、B2和F2共6个世代联合分析的方法,对甜玉米果皮厚度性状进行分析。【结果】果皮厚度的最适遗传模型为D-2,即1对加性主基因+加性-显性多基因混合遗传;主基因遗传率大于相应分离世代的多基因遗传率,B1、B2、F2群体的主基因遗传率分别为59.65%,55.17%和65.24%,多基因遗传率分别为37.84%,41.40%和32.65%,主基因的加性效应值为-27.186 4,多基因的加性效应值为0.289 5,显性效应值为5.742 3。【结论】甜玉米果皮厚度以主基因遗传为主,育种中既要重视利用主基因,也要考虑多基因对性状的影响。  相似文献   

9.
串番茄主要株型性状的遗传研究   总被引:6,自引:1,他引:5  
冯辉  王五宏  徐娜  鲁博  张婷  陈红波 《中国农业科学》2008,41(12):4134-4139
 【目的】通过对串番茄主要株型性状的遗传分析,探索叶片角度的遗传规律,为选育株型紧凑的串番茄品种提供理论依据。【方法】通过对筛选出的串番茄自交系进行多代杂交回交,应用主基因+多基因6个世代联合分离分析方法,分析叶片夹角、株幅、披垂值的遗传模型。【结果】串番茄的叶片夹角、株幅的遗传受1对加性主基因+加性-显性多基因(D-2)控制,叶片夹角的主基因加性效应为6.51,多基因加性效应为15.01,势能比值为0.914,显性度为0,主基因遗传率在B1、B2及F2群体中分别为45.61%、37.29%及47.71%;株幅的主基因加性效应为3.08,多基因的加性效应为3.58,显性效应为-1.59,势能比为-0.44,显性度为0,主基因遗传率在B1、B2及F2群体中分别为23.30%、20.73%及36.11%。披垂值的遗传受1对负向完全显性主基因+加性-显性多基因(D-4)控制,主基因加性效应为8.18,显性效应为-8.18,多基因加性效应为3.12,显性效应为19.07,势能比为6.09,显性度为-1,多基因遗传率在B1、B2及F2群体中分别为69.15%、68.5%和49.57%。【结论】对173×101组合的夹角和株幅性状改良以主基因为主,可在早期世代选择;对披垂值性状的改良应在晚代选择。  相似文献   

10.
甘蓝型油菜芥酸含量的基因分析   总被引:1,自引:0,他引:1  
【目的】芥酸含量是油菜非常重要的品质性状,研究芥酸含量的遗传模式为低芥酸和高芥酸育种提供指导。【方法】应用多世代联合分析数量性状主基因和多基因混合遗传的统计方法,分析了甘蓝型油菜组合1141B×垦C1的5个世代——亲本P1,P2,F1,F2和F2﹕3家系材料芥酸含量的遗传效应。【结果】分离世代F2及F2﹕3家系芥酸含量次数分布均呈混合的正态分布,符合主基因+多基因的遗传特征;E-1模型为芥酸含量的最适合性模型,即芥酸含量遗传是由2对加-显-上位性主基因+加-显多基因控制的。2对主基因加性效应值da、db分别为-16.26和-2.83,表明亲本1141B中主基因位点上的等位基因降低芥酸含量,而亲本垦C1中的等位基因增加芥酸含量。显性效应值ha、hb分别为10.93和-4.71,第一对主基因加性效应值和显性效应绝对值均高于第二对主基因显性效应值。因此,2对主基因控制芥酸含量,第一对主基因控制的芥酸含量高于第二对主基因。该组合2对主基因间互作效应明显,加性与加性效应互作值(i)为-1.21,显性与显性互作值(l)为-3.27。第一对主基因的加性效应与第二对主基因的显性效应互作值(jab)为5.70,第二对主基因的加性效应与第一对主基因的显性效应互作值(jba)为-7.25。其芥酸含量还受多基因控制,多基因加性效应([a])值为-0.08,多基因显性效应([d])值为2.32;F2的主基因遗传力和多基因遗传力分别为50.00%和16.62%;F2﹕3的主基因遗传力和多基因遗传力分别为89.70%和6.01%。【结论】芥酸含量是由2对加-显-上位性主基因+加-显多基因控制的,第一对主基因控制的芥酸含量高于第二对主基因。低芥酸和高芥酸育种中在F2﹕3家系进行选择效率较高。  相似文献   

11.
切花菊花器性状的遗传变异与相关性研究   总被引:8,自引:0,他引:8  
通过了解目标性状在基因型中的遗传变异特性,可以对菊花Dendranthema×grandiflora目标性状进行有效的遗传改良。调查了52个切花菊品种花器性状的遗传变异度、广义遗传力和遗传进度等相关遗传特性。结果表明,表型变异系数的变异范围为28.66%(花径)至82.63%(舌瓣数)。遗传变异系数的变异范围为28.20%(花径)至82.10%(舌瓣数)。就单个性状而言,表型变异系数略大于遗传变异系数。5个花器性状遗传力均较高(〉96%),其中舌瓣数和管瓣数的遗传力最大(分别为99.36%和99.07%),而且具有较高的遗传进度(分别为168.59%和149.42%),表明舌瓣数和管瓣数为加性遗传基因控制,可以在早世代进行直接选育。另外,相关性分析表明,5个花器性状之间均存在极显著的相关关系。  相似文献   

12.
四倍体菊花脑与栽培菊种间杂交及F1杂种的遗传表现#br#   总被引:3,自引:1,他引:2  
 【目的】通过染色体加倍途径克服栽培菊花与二倍体野生菊种间杂交障碍,实现野生菊的优异性状或基因导入栽培菊花,拓宽菊花基因库,获得菊花新种质。【方法】以菊花脑(Chrysanthemum nankingense,二倍体)及其四倍体为父本,与栽培菊花‘钟山紫星’(Ch. grandiflorum ‘Zhongshanzixing’)杂交,通过细胞学进行杂种鉴定,并对杂种F1代部分性状进行统计分析。【结果】二倍体与四倍体菊花脑的花粉活力均较高,且在母本‘钟山紫星’柱头上能正常萌发,但‘钟山紫星’与二倍体菊花脑杂交不能结实,而与四倍体菊花脑杂交结实率达3.25粒/花序。‘钟山紫星’、四倍体菊花脑及其杂种F1代体细胞染色体数分别为54、36和45,减数分裂中期Ⅰ染色体平均构型均以二价体为主,分别是27Ⅱ、1.70Ⅰ+13.23Ⅱ+0.03Ⅲ+1.90Ⅳ和5.32Ⅰ+13.84Ⅱ+2.79Ⅳ+0.16Ⅵ。杂种F1代株高、叶宽和叶柄长呈正向中亲优势,而节间长、叶形指数、花序直径、花盘直径和小花数目均呈负向中亲优势,均达到极显著水平。【结论】二倍体菊花脑通过染色体加倍途径可以有效克服其与栽培菊花间的远缘杂交障碍。  相似文献   

13.
多头切花菊品质性状遗传多样性分析   总被引:3,自引:0,他引:3  
本研究利用12个品质性状分析了15个多头切花菊品种的遗传多样性。结果表明:12个品质性状表现出不同程度的多样性,舌状花轮数、舌状花瓣长度、分枝长度的变异系数较大,而叶长的变异系数最小;主成分贡献值较大的性状有舌状花轮数、花径和舌状花瓣长度等花部性状,其次是茎杆性状(节间长度、茎粗、株高);多头切花菊品质性状之间均存在显著、极显著的相关关系,花序直径与花径、舌状花瓣长度,花枝数与花序高度,花径与舌状花瓣长度具有极显著正相关关系;品质性状基于遗传距离UPGMA聚类,在遗传距离4.21处,可将15个多头切花菊品种分为5大类。  相似文献   

14.
切花小菊绿心性状杂种优势与混合遗传分析   总被引:1,自引:1,他引:0  
【目的】绿心性状是单瓣切花小菊重要的观赏性状,研究切花小菊绿心性状杂种优势和遗传基础以利于指导绿心切花小菊的选育工作。【方法】分别以‘南农丰收’(黄心小菊)ב南农红霞’(绿心小菊)的81个杂交后代和‘南农红云’(绿心小菊)ב南农小清新’(绿心小菊)的70个杂交后代作为遗传群体,选取花心颜色等级得分值(简称花心颜色值,下同)、绿心相对面积和绿心持续期等3个指标对F1代绿心性状杂种优势进行分析,同时运用单个世代主基因+多基因混合遗传模型对绿心性状进行遗传分析。【结果】2个组合F1代群体各指标变异系数范围为24.88%-90.76%,组合I(黄心×绿心)各指标变异程度普遍大于组合II(绿心×绿心),组合II各指标平均值普遍优于组合I。组合I花心颜色值、绿心相对面积和绿心持续期的中亲优势分别为-0.14、-3.42和0.11,除绿心持续期杂种优势为正值,其他指标杂种优势均为负值;组合II花心颜色值、绿心相对面积和绿心持续期的中亲优势分别为-0.11、-10.61和-1.02,绿心持续期的超亲优势为-0.52。2个组合F1群体均存在正向和负向超亲个体。组合I和组合II的F1代花心颜色中绿色占比分别为3.70%和2.86%,父本颜色和比母本颜色低一等级的颜色在后代中占比接近且较大,均大于等于20.00%。2个组合绿心颜色得分、绿心相对面积和绿心持续期均由2对主基因控制,除花心颜色值为负向效应外,其他指标表现为正向增效效应。花心颜色值、绿心相对面积和绿心持续期的主基因遗传力分别为98.64%-98.83%、95.04%-96.54%和66.73%-92.52%。2个组合花心颜色值、绿心相对面积与绿心持续期两两之间均呈显著正相关。【结论】F1代超亲分离现象普遍存在,可选取其中有利个体进行选育,绿色花心颜色遗传能力弱,选择花心颜色为绿色的品种做父本,有利于提高后代出现绿色花心的可能性。花心颜色值、绿心相对面积和绿心持续期均具有高遗传力,适于早期世代选择,各指标之间的正相关性有利于集中优势选育绿心小菊。  相似文献   

15.
利用层次分析法初选单头切花菊杂种F1代优良单株的研究   总被引:1,自引:0,他引:1  
【目的】建立从大量杂种F1代植株中筛选出符合单头切花菊育种目标优良单株的评价体系。【方法】采用定性与定量相结合的层次分析法,以株型、株高、茎的曲直性、茎粗、节间长度、叶片长、叶片宽、托叶大小、叶的硬度、花径大小、花型、花色、花梗长、花梗粗、舌状花数共15个性状作为评价因子,通过构造两两比较的判断矩阵,确定不同性状对品种选择的权重影响,建立一个较为科学、合理的综合评价系统。【结果】运用建立的综合评价系统对587个单头切花菊杂种F1代进行综合评价,优选出212个花型饱满,花色纯正,花径较大,综合性状优良的株系。【结论】利用层次分析法初步建立了单头切花菊杂种F1代初选的评价体系,可以有效地从大量杂种后代中初选出符合育种目标的优良单株。  相似文献   

16.
菊花AINTEGUMENTA克隆与功能分析   总被引:1,自引:0,他引:1  
【目的】从菊花中分离克隆AINTEGUMENTA,分析其序列特征和在菊花中的时空表达特性,通过基因沉默研究其对菊花花序发育的影响,分析可能的调控方式和潜在机理,为菊花花序大小的调控奠定理论基础。【方法】使用RACE方法从菊花中克隆AINTEGUMENTA全长,通过DNAMAN等软件对其序列进行分析。采用荧光定量的方式检测其在菊花不同器官和发育时期的表达。构建35S::CmANT-GFP融合蛋白载体进行亚细胞定位,构建TRV2-CmANT沉默表达载体侵染菊花。使用SPSS软件统计分析CmANT沉默系菊花表型变化,通过光学显微镜观察舌状花花瓣表皮细胞变化,使用荧光定量方式检测CmANT相关基因在沉默系中的表达。【结果】从菊花中克隆了CmANT全长,其编码的氨基酸序列长度为540,理论等电点为7.39,蛋白质的理论分子量为60.4 kD,含有两个AP2保守功能区域和VYL修饰位点。在与其他物种的ANT蛋白构建的系统进化树中,CmANT与AtANT聚在一起。荧光定量结果表明:(1)CmANT在花蕾中的表达量最高,其次是根>茎>叶。(2)在花序不同部位的比较中,舌状花中的表达量最高,其次是筒状花,在花萼中的表达量最低。(3)CmANT在舌状花中的表达随着发育时期的延续而降低。(4)CmANT在2,4-D诱导下的3-6 h内表达量持续上升。WoLF PSORT软件预测和35S::CmANT-GFP融合蛋白在洋葱表皮细胞中的定位结果显示,CmANT蛋白定位在植物细胞核中。TRV-CmANT-1和TRV-CmANT-2沉默系的平均花径相比对照分别减小18.93%和27.47%,舌状花的数目分别减少11.39%和14.66%,其中TRV-CmANT-2与对照差异显著(P<0.05),筒状花数目分别减少14.55%和36.56%。顶端花序的舌状花平均长度分别减少34.17%和54.68%,舌状花的宽度分别比对照减小24.05%和10.13%。叶片平均鲜重分别比对照组减小13.19%和21.98%,叶片鲜重与筒状花数目显著相关(P<0.05)。舌状花花瓣表皮细胞显微观察发现,沉默系舌状花花瓣表皮细胞长度和宽度与对照差异不明显。CmLAX3在两沉默系中的表达明显上升,在小花原基分化期时分别是对照中的1.8和1.78倍,同期CmCYCD3的表达分别下降了32.28%和38.19%,CmXTH4和CmEXPA1的表达量在多个时期也明显降低。【结论】根据沉默系表型与相关基因的表达,推测CmANT的沉默可能解除了对CmLAX3抑制,促进了生长素的转运和过量积累,间接抑制了CmCYCD3的活性,限制了细胞的分裂增殖,引发细胞数目变少,导致沉默系器官变小。  相似文献   

17.
【目的】探寻预测陆地棉F1表现的方法,降低育种成本,提高育种效率。【方法】采用60个陆地棉亲本,通过部分NCII交配设计,形成一个由亲本和180个F1杂交组合组成的部分NCII群体,用亲本加性效应(additive effect,A)、一般配合力(general combining ability,GCA)和表型中亲值(mid-parent value,MP)等3种预测方法对F1的产量和纤维品质性状进行预测。【结果】陆地棉皮棉产量杂种优势明显。皮棉产量正向中亲优势的组合占97.78%,中亲优势平均达19.63%;正向超亲优势的组合占79.44%,超亲优势平均达8.47%。3种预测方法对F1表现具有不同的预测效果,其中,以亲本加性效应对F1的表现预测效果最优,其对皮棉产量、铃数、铃重、衣分、纤维长度、纤维强度和马克隆值等7个目标性状预测精度(pearson相关系数)达到0.738—0.928。性状的加性方差分量和亲本杂交次数对预测效果有影响。加性方差分量越大,所有方法的预测精度都越高;随着每个亲本杂交次数的增加,加性效应预测和GCA预测的精度提高,但表型中亲值预测的效果基本无变化。【结论】陆地棉F1的表现可以通过利用包含亲本的部分NCII设计群体和亲本的加性效应进行有效预测,采用“大群体、少杂交”的策略可以在保持预测效果的同时降低预测的工作量。  相似文献   

18.
【目的】探究烟草根系性状的杂种优势表现及相关基因差异表达,为深入解析烟草根系吸收和合成相关物质杂种优势的形成机制提供理论依据。【方法】以烟碱和钾含量性状具有杂种优势的12个杂交种及其7个亲本为材料,通过测定根系长度、数量和体积等性状,分析了烟草根系性状的遗传特点及杂种优势表现,并采用实时荧光定量PCR检测烟草根系发育相关基因的差异表达。【结果】7个亲本材料的根系长度为94.80~476.77 cm,根系数量为343~820条,根系体积为0.18~0.61 cm3;12个杂交组合根系长度为285.56~734.75 cm,根系数量为576~1184条,根系体积为0.41~1.01 cm3,3个性状的变异系数为19.97%~29.68%。烟草根系长度、数量和体积的广义遗传力分别为95.49%、92.12%和85.76%,中亲优势组合率分别为91.67%、91.67%和100.00%。根系长度主要受基因的加性效应控制,根系数量和根系体积主要受基因的非加性效应控制,均表现出明显的杂种优势。不同根系发育相关基因的中亲表达优势与根系性状杂种优势存在一定的相关性,其中,NtAUX1和NtARF16基因的中亲表达优势与根系长度杂种优势呈显著(P<0.05,下同)或极显著(P<0.01,下同)相关;NtFLA18基因基因的中亲表达优势与根系数量和体积的杂种优势呈显著或极显著负相关。NtFLA18基因在K326×韭菜坪2号中的相对表达量较双亲下调表达,NtAUX1基因呈显性表达模式,NtARF16基因的相对表达量较双亲上调表达,这些基因的表达模式与烟草根系杂种优势的形成有关。【结论】烟草根系长度、数量和体积均具有较强的遗传率和普遍的杂种优势,可利用杂种优势选育出根系发达的烟草新种质。GDH88、Va116、南江三号和G70可作为改良根系的优良亲本;K326×GDH88、Va116×毕纳1号、G70×韭菜坪2号、G70×南江三号和K326×韭菜坪2号可作为培育优良根系构型的重要储备材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号