首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于移动LiDAR 点云的树木三维重建   总被引:1,自引:0,他引:1  
【目的】树木三维结构的描述是进行农林生态研究的重要科学基础,而移动激光雷达的使用将有利于快速、高效的农林树木三维结构重建。【方法】文章利用同时定位与构图技术实现基于移动激光雷达点云的农林样地树木三维重建,并以地基激光雷达数据为参考,验证三维重建精度,同时对比树木胸径,分析移动激光雷达在农林树木三维重建中的有效性和可行性。【结果】同时定位与构图技术可实现移动激光雷达点云的树木三维重建,其中,水平方向重建精度为0.038 m,垂直方向重建精度为0.017 m;以地基激光雷达数据拟合出的树干胸径为真实值,移动激光雷达点云拟合出的树干胸径为观测值,两者的相关系数为0.715 6,均方根误差(RMSE)和平均绝对误差(MAE)分别为0.011、0.01 m。【结论】移动激光雷达可实现农林树木三维结构快速重建,且基于重建结果可实现树干胸径准确提取。因此,移动激光雷达对提高农林树木测量效率具有积极作用。  相似文献   

2.
为探究无人机激光雷达(UAVLS)获取单木树冠三维结构的能力,利用无人机载激光雷达数据,对人工长白落叶松进行单木树冠特征因子的提取以及树冠轮廓的模拟,并与机载激光雷达(ALS)单木树冠特征因子的提取进行比较。结果表明:利用UAVLS数据1∶1匹配的单木数量远高于利用ALS数据匹配的单木数量,且UAVLS单木位置探测的精度达到0.338 1 m,比ALS提高了0.185 1 m;UAVLS单木树高的提取精度达到0.578 5 m,比ALS提高了1.294 5 m;对于冠幅及冠基高的提取,UAVLS也有更高的精度。与ALS相比,UAVLS不仅具有更高的单木探测精度,也具有更高的单木树冠结构参数提取精度;3种树冠轮廓模型拟合的R~2均高于0.75,表明3种常用的轮廓模型都能够很好的描述从UAVLS数据中获取的树冠外部轮廓,其中二次抛物线模型具有最强的模拟效果(M_(AE)=0.256 4,M_(RAE)=4.59%)。因此,无人机激光雷达数据提取单木树冠结构,可以提高林业调查的效率。  相似文献   

3.
森林冠层的三维重建研究能够更加直观反映森林空间结构,提高森林参数的测量精度。目前小光斑激光雷达已经广泛应用于林业研究中。为建立落叶松树冠三维形状模型,以长春净月潭实验区落叶松机载LiDAR(LiDAR,Light Detection And Ranging)数据为基础,采用K-means算法提取建模参数。该算法以单木树冠顶点作为初始聚类中心,经过4次迭代估测出单木树高和单木树冠直径,通过与试验区的单木实测数据对比,进行相关性分析,得到估测树高和估测树冠与实测数据相关系数分别为0.892 4和0.769 0,经过验证,估测树高和估测树冠的精度为94.06%和82.21%。利用激光雷达提取出的单木坐标、树高、树冠和冠基高采用旋转抛物线方法重建森林尺度三维模型呈现森林结构。  相似文献   

4.
[目的]利用激光雷达手段大范围估算森林参数。[方法]以安徽省黄山市休宁县岭南林场森林资源为研究对象,通过地面调查获取3种森林类型单木胸径和树高数据,并同步使用地基激光雷达获取点云数据,利用Hough变换检测算法提取每木胸径和树高,在Matlab2020a软件下构建基于地面调查数据和激光雷达提取值的估算模型。[结果]针叶林、阔叶林和毛竹林的胸径估测精度(R■)分别为0.921、0.921和0.996,RMSEc分别为2.080、2.460和0.291,模型表现显著;树高估测精度分别为0.908、0.846和0.500,RMSEc分别为1.120、1.620和1.210。[结论]该研究可为运用激光雷达手段大范围估算森林参数提供依据,也可为森林类型点云识别与分割提供参考。  相似文献   

5.
【目的】准确获取温室番茄作物行中单株冠层数据,为分析作物生长状态和为对靶喷药提供冠层数据支持。【方法】采用三维激光雷达(LiDAR)搭建番茄植株冠层检测平台,使用导轨以0.05 m/s的速度移动三维激光雷达,利用雷达上位机软件Ctrlview保存双侧扫描的A、B 2组共40株番茄植株点云。双侧点云使用ICP(迭代最近点)算法进行配准,利用基于特征值的平面拟合法去除地面,使用均值漂移算法(Meanshift)分割番茄行中的单株点云,获取冠层参数,与人工测量值比较验证精度,将单株点云在MATLAB中使用alpha shape算法进行重建并进行体积的获取,使用凸包算法作物参考值对比。【结果】该检测平台在激光雷达前进方向与垂直前进方向的测量误差分别为-2.65%、-3.95%;获取到的单株番茄植株高度与人工测量值相比,平均绝对误差分别为0.025和0.031 m;重建后求取的体积与凸包算法相比平均误差下降了约15.3%,与人工获取相比相差不大,各指标良好。【结论】番茄行点云分割结果与人工测量相比A、B 2组的均方根误差RMSE分别为0.039和0.043,冠层体积获取与参考值对比VRMSE为0.011 3,激光雷达在获取作物外形轮廓信息中具有一定的准确性和可靠性,该方法用于温室环境下单株作物冠层数据的获取。  相似文献   

6.
为探索地基激光雷达数据在植物真实三维建模上的应用,研究基于MeshLab软件的三维Alpha-Shape算法和移动立方体算法进行玉米植株三维真实模型的重建。三维Alpha-Shape算法基于离散激光雷达点云构建Delaunay三角网,通过Alpha值的设置判断各单纯形是否保留,完成玉米植株三维重建。移动立方体算法则通过查找每个体素与等值面相交的交面,所有交面连在一起即为所求的等值面。Alpha值分别设置为0.006 290、0.012 638、0.018 635,采用Alpha-Shape算法进行单株玉米三维重建,试验结果表明:当Alpha值设置较小时,对玉米叶片、茎秆等细节信息表达的比较精细,但许多叶片中间不连续;Alpha值设置较大时,对玉米植株细节信息表达不精细。基于移动立方体算法重建出的玉米植株曲面较为光滑,且孔洞较少,但重建结果不完整。  相似文献   

7.
森林资源调查是森林经营管理的基础,传统的调查与监测方法工作量大,费时费力,难以满足目前的监测研究需求。地基激光雷达(Terrestrial Laser Scanning,简称TLS)是一种主动遥感技术,提供一种非破坏性三维测量手段,能够获取目标对象高精度3D点云数据,自动化提取森林调查属性参数,在森林参数反演方面具有独特优势。介绍了TLS工作原理、技术特点以及林业应用现状,讨论了TLS在森林调查中的优缺点,并对其未来在林业应用前景进行了分析和展望。  相似文献   

8.
利用机载激光雷达数据提取单株木树高和树冠   总被引:17,自引:2,他引:15  
机载激光雷达是一种主动遥感技术。在林业应用方面,高采样密度激光雷达能够获取单株木三维结构特征,采用不同的数据处理方法,可以得到不同精度的单株木参数。该文利用高采样密度的机载激光雷达数据(离散回波,平均激光点间隔0.52 m、平均光斑直径0.3 m),研究了单株木的树高提取技术和树冠边界识别算法,针对单株木的树冠特征,提出了一种双正切角树冠识别算法;最后,使用重庆铁山坪林场的9个外业样地数据,对单株木树高和冠幅,以及样地平均树高和平均冠幅进行了验证。结果表明,单株木树高和冠幅的R2分别为0.34和0.03,样地平均树高和平均冠幅的R2分别为0.97和0.71,样地尺度的相关性明显高于单株木尺度的相关性。   相似文献   

9.
建筑物的整体稳定性是保证结构稳定的必要条件,其局部不均匀沉降将可能造成建筑物结构变化、局部应力集中等问题.为了保证建筑物能够正常使用,在建筑物建造和使用过程中有必要对其结构稳定及地基变化进行必要地变形监测.本文结合杨凌农业高新技术产业示范区框架结构电信生产楼的沉降监测实践,为探讨同类建筑物的变形监测,提供相应的布设方案及沉降观测方法.  相似文献   

10.
BIM三维协同设计,具有高效、直观、便捷,传统的二维平面设计受到严重的挑战,三维外业测绘数据的获取由全站仪、GPS RTK单点测量,已无法满足BIM技术的要求。现在我们可以高效、快速、方便地使用无人机倾斜测量、三维激光扫描、激光雷达等方法获取点云数据,构建三维地形场景模型,为水利工程BIM技术设计提供第一手三维地形模型基础资料。  相似文献   

11.
三维激光扫描成像系统在森林计测中的应用   总被引:4,自引:1,他引:4  
该文介绍了三维激光扫描成像系统的组成、工作原理、仪器的性能指标及软件功能.通过在甘肃省小陇山林业局的试验,总结了三维激光扫描成像系统进行精准测树的流程、内业数据处理方法、提取各种测树因子的方法、测量立木材积以及树冠体积的方法.结果表明:使用三维激光扫描成像系统可以获取树木的立体模型,得到某些传统方法难以获得的数据,如树冠体积、表面积等,并且可以随意重复量测;通过扫描获得的树木材积可以替代传统的区分求积方法,建立材积表不再需要大量伐树;使用立木扫描模型解决了树冠测量的难题.因此,将三维激光扫描成像系统作为精准测树工具,是一种切实可行的方法.  相似文献   

12.
  目的  提出基于运动恢复结构的多株立木因子测量方法,以解决目前基于三维点云的立木因子测量方法获取立木树高和胸径存在效率低或成本高的问题。  方法  ①使用智能手机环绕包含多株立木的场景拍摄一段视频,并采用固定帧采样法和差异值哈希算法自动提取立木视频中的关键帧图像,然后,基于运动恢复结构(structure from motion,SfM)算法处理立木关键帧图像,从而获取立木场景的原始三维点云;②在对原始三维点云进行预处理及初步分割后,运用条件欧几里得聚类算法对多株立木三维点云进行分割,以提取单株立木三维点云;③对立木三维点云使用最值遍历法和椭圆拟合法实现立木树高和胸径的自动测量。  结果  与真实值相比,本研究方法测得的树高、胸径的平均相对误差分别为1.96%、3.19%,均方根误差分别为0.133 3 m、0.533 7 cm,相关系数分别为0.987 9、0.962 1。  结论  该方法具有较高的树高和胸径测量精度,提供了一种便捷、低成本的多株立木因子三维测量方法。图6表1参27  相似文献   

13.
三维激光扫描系统在立木材积测定中的应用   总被引:1,自引:0,他引:1  
该文提出了一种测定疏林立木材积的新方法,即利用三维激光扫描系统测量立木材积并建立材积表.采用该方法在标准地内按径阶对立木进行三维扫描,可以获取基本测树因子(包括立木的胸径、树高、冠幅)和三维立木模型,由Cyclone扫描软件可以计算立木材积.由扫描获取的立木胸径和树高能够回归建立二元立木材积方程.为检验扫描获取的基本测树因子的精度以及材积方程的适用程度,将扫描后的立木伐倒,并采用区分求积法实测材积.对比扫描数据和实测数据,扫描获取的基本测树因子和扫描材积均满足精度要求,说明这种新方法能够用于森林资源调查和建立立木材积表.  相似文献   

14.
基于三维激光点云的树木胸径自动提取方法   总被引:1,自引:0,他引:1  
胸径是评价林木生长状况的重要参数之一。针对接触式人工测量自动化程度低和基于点云的现有算法提取树木胸径精度不高的问题,提出一种基于点云数据的自动准确获取树木胸径的新方法。该方法以树木点云数据为基础,运用蚁群算法和B样条曲线拟合技术,实现树木胸径的自动准确提取。对实验区树木测量计算,结果表明,利用该方法提取树木胸径的均方根误差为±0.19 cm,平均绝对误差为0.15 cm,相对于基于点云的传统算法提取精度分别提高了50%和60.7%。该方法基于高精度点云数据,实现了树木胸径的无损自动提取,在精准林业领域具有推广价值。  相似文献   

15.
蒋昳萱    温小荣    蒋佳文    朱硕    孙圆    翁卫松  徐达 《西北林学院学报》2021,36(5):140-145
利用地基激光扫描技术采集了泗洪县陈圩林场中4块样地178株杨树的2期点云数据,对其进行干形变化分析。首先建立试验形率与胸高形数的估测模型,然后将(h+3)/2引申到树木干形分析中,定义TAP和TAP累积量,尝试用干形指标描述2期TLS数据的不同造林密度下杨树干形变化,最后对研究区整体干形变化进行分析。结果表明,试验形率可有效估测胸高形数,R2为0.773,RMSE为0.37%;TAP累积量和材积变化量随造林密度增加而降低,高径比变化量随造林密度增加而增加;研究区整体树木削度减少,材积增加,干形趋于通直圆满。因此,相较于传统干曲线严谨复杂的计算方法,TAP累积量的计算更加方便易算,用以代替连续的曲线方程,可以近似描述树木干形变化,为后续干形变化研究提供了新的思路。  相似文献   

16.
树干是树木的重要组成部分,对于林业调查研究具有重要意义。为了能从海量点云数据中快速精准提取林分树干,基于地面激光雷达单站点云数据,通过SOR滤波与体素化滤波对点云进行去噪和下采样处理,然后利用MLS移动最小二乘算法对数据进行平滑与孔洞修复,最后针对八叉树体元数据采用结合点法线的PROSAC算法建模提取林分树干。研究表明:PROSAC算法能适应条件复杂的林地,提取林分树干精度高、速度快、抗噪性强,可以提取多姿态树干点云,有极大的应用价值。本算法能快速精准地提取直径较大的树干点,且连续性较好,在保证算法效率与数据精度的基础上,能够获取连续性较好与姿态各异的林分树干点云。  相似文献   

17.
基于局域最大值法单木位置探测的适宜模型研究   总被引:2,自引:0,他引:2  
以凉水自然保护区为研究区域,基于机载激光雷达数据,采用动态窗口局部最大值法对郁闭度较高的针叶林进行单木位置自动提取。采用树冠高度模型(CHM)和树冠最大模型(CMM)配合两种动态窗口,即树高--树冠大小回归方程和该方程的95%预测下限来探测树冠顶点,用探测百分比、1∶1对应关系的单木个数、生产者精度和用户精度进行了精度评价。结果表明:利用CMM能够抑制树冠内部枝杈产生的错判现象;利用树高--树冠大小回归方程95%的预测下限做动态窗口,能够有效防止在局部最大值方法中产生的小树漏测现象。因此,利用CMM和95%的预测下限做动态窗口的局域最大值法有利于提高单木位置探测的精度,为密林中自动地探测单木位置提供依据。   相似文献   

18.
  目的  提出一种智能手机单目视觉下的多株立木高度提取方法。  方法  该方法以智能手机为采集设备,利用Graph Cut 算法对输入的立木图像进行分割定位,实现单幅图像中多株立木轮廓的自动获取;再通过智能手机相机对摄像头进行标定,从而基于几何相似法获取智能手机相机图像的深度信息。在不同角度下拍摄标靶,进行深度提取模型的精度优化,进而确定信息提取的最优方位。同时,结合高精度陀螺仪获取相机俯视角,根据提取的深度信息和相机俯视角实现非接触条件下的多株立木高度测量。  结果  使用型号为MI 2S的小米智能手机为试验设备,在本方法中的立木高度测量模型具有良好的稳定性,并且试验中最高相对误差为2.45%,树高测量精度可达97.55%。  结论  基于智能手机单目视觉下的立木高度提取方法精确度高、操作简便,能够有效满足国家森林资源二类调查中对于树高测量精度的要求。   相似文献   

19.
树木形态结构快速精确测定方法初探   总被引:1,自引:1,他引:0  
简要介绍了树木形态结构快速精确的测定新方法,并以5 a生绿波2号核桃为例,利用多基线数字近景摄影测量系统对植株进行了形态结构测定,获得了高精度的植株三维空间点云模型,从而为树木形态结构及树木可视化研究提供基础数据。  相似文献   

20.
【Objective】Accurate measurement of volume and structure of fruit tree canopy can provide important reference for variable application of pesticide and fertilizer, as well as yield estimation. In order to accurately measure the canopy volume, a scanning platform based on laser sensor (LMS111-10100, SICK) was built. Aiming at the problem of irregular canopy shape, the poor accuracy of the existing real-time measurement methods of canopy volume and difficult to measure and estimate the canopy volume, a new estimation method based on irregular triangular prism modules was proposed in this work. 【Method】Five spherical landscape trees with regular canopy and ten citrus trees with irregular canopy were scanned by the laser sensor at the speeds of 0.5, 1.0 and 1.5 m·s -1, respectively. The canopy volume was measured by two methods: cuboid module method (CMM) and irregular triangular prism module method (ITPMM), and the error analysis was conducted based on manual measurement. 【Result】 The results showed that the error ranges of CMM for measuring landscape trees at the different speeds of 0.5, 1.0 and 1.5 m·s -1were 4.17%-6.59%, 4.56%-7.42% and 4.17%-9.86%, respectively, while the error ranges of the ITPMM for measuring landscape trees were 2.37%-4.63%, 3.18%-5.00% and 4.10%-5.73%, respectively. The distance range of the relative error of the two methods for measuring citrus trees was -0.28%-4.22%%, and the average difference was 1.78%. The error ranges of CMM for measuring citrus trees at the different speeds of 0.5, 1.0 and 1.5 m·s -1 were 11.63%-31.02%, 11.88%-33.23% and 13.28%-33.30%, respectively. The error ranges by ITPMM for measuring citrus trees were 3.25%-6.69%, 4.50%-8.31% and 5.66%-11.55%, respectively. The distance range of the relative error of the two methods for measuring citrus trees was 6.43%-26.20%, and the average difference was 13.04%. 【Conclusion】 The research showed that the estimation error of the ITPMM was significantly smaller than the CMM. For the same target, when the speed was 0.5 m·s -1, both of the estimation accuracy for the two methods were the highest. As the sensor speed increased, laser scanning points on the canopy decreased. So, the relative error of volume estimation increased with increase of advance speed of the laser sensor. When scanning the regular target, the accuracy difference between the two methods was small; when scanning the irregular target, the error of the CMM was larger. The processing time of a frame laser data by the CMM was 2.86 ms, and the processing time by the ITPMM was 4.73 ms, which were less than the scanning period of 20 ms of the laser sensor. The data processing time could match the acquirement of real-time collection and processing of laser data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号